The present invention relates to hemostatic bone graft materials, and to a process for making the hemostatic bone graft materials. More specifically, the present invention relates to hemostatic bone grafts that, in addition to reducing or stopping bleeding in a surgical-type setting, may serve as an osteoinductive and/or an osteoconductive material.
Hemostasis, or the stoppage of blood flow, results from plugging blood flow or from forming a blood clot. Plugging blood flow can be accomplished by exerting pressure on or by sealing the bleeding site. The formation of blood clots results from at least three pathways: (1) by a clot cascade; (2) by rapid constriction of the injured vessel; (3) and by the aggregation of platelets to form a plug on the injured surface of the blood vessel.
The clot cascade pathway is initiated by a series of transformations from inactive zymogens to active proteins. An activated protein, or clotting factor, catalyzes the activation of the next protein. Because the pathway is catalytic in nature, only very small amounts of protein need to be activated in order to activate the clotting process.
Clot cascades are calcium-dependent processes and are induced by either intrinsic or extrinsic means. In the case of induction by intrinsic means, clot formation components present in blood are triggered by contact with an abnormal surface, as compared to normal vascular tissue. In the case of clotting induction by extrinsic means, substances not normally present in blood are added. The clotting cascade can be initiated by denaturing clot proteins, which can be accomplished by the removal of water, including the rapid removal of water; by the addition of heat; or by chemical precipitation.
Clotting cascades, whether induced by intrinsic or extrinsic means, ultimately follow a common pathway. The common pathway includes activating clotting factor X, which then converts prothrombin to thrombin by its proteolytic action. In addition, activation of prothrombin is promoted by the presence of calcium ions and by phospholipid surfaces. Thrombin is responsible for cleaving fibrinogen into fibrin monomers, which results in the formation of a fibrin clot. Fibrinogen is an elongated protein consisting of six polypeptide chains. It is highly soluble in plasma. Upon cleavage of fibrinogen by the proteolytic action of thrombin, four peptide bonds are cleaved, and insoluble fibrin monomers result. Those fibrin monomers spontaneously associate to form fibrin, which takes the form of long, insoluble fibers. Fibrin monomers spontaneously associate to form a fibrin clot because of the removal of negatively charged groups found in fibrinogen. The release of the negatively charged groups by thrombin changes the surface-charge pattern of fibrin monomers, which in turn leads to their aggregation and to hemostasis.
Hemostatic agents control blood loss. Bee's wax is generally known to act as a hemostatic plug and has been used to control bone bleeding. Generally, bee's wax resists hydrostatic pressure and is cohesive. Bee's wax, however, is not resorbable and does not allow bone to grow in the site where it is placed. Therefore, bee's wax is undesirable for controlling blood loss from bleeding bone or in areas associated with bone.
In the field of internal medical care, such as internal surgery, there is a need for controlling bleeding in order to prevent excessive blood loss or hemorrhage. There also is a need to provide a product that can be easily applied to a bleeding site that also can promote both blood clotting and bone growth.
A biocompatible hemostatic bone graft that aids in the reduction of operative and post-operative bleeding is provided. The hemostatic bone graft may be bioactive and may induce osteoconductive and/or osteoinductive activity upon implantation.
The hemostatic bone grafts of the present invention may cause blood clotting. The hemostatic bone grafts of the present invention may be waxy so as to plug a bleeding site. In one embodiment, a biocompatible material for promoting blood clotting may include demineralized bone matrix (DBM) and a clot producing material. According to another embodiment, DBM may be fibrous in order to cause blood clotting. Clot producing material, according to certain embodiments, may include polyethylene glycol (PEG), aluminum, hydroxyapatite, which may be unsintered, absorbents, absorbent DBM that has been treated to alter the surface tension of surrounding liquids to provide for rapid water uptake into the bone, a hydroscopic agent, a surface tension reducing material, and/or a substance capable of inducing protein precipitation, such as those materials capable of removing the water of solvation from protein. In another embodiment, biocompatible materials for blood clotting include bone, biocompatible polymers, or combinations thereof that are configured as wicking materials such as capillary tubes, small fibers, or U-shaped materials that allow blood to clot upon wicking.
In another embodiment, the hemostatic bone grafts of the present invention may contain both demineralized bone and a sealant. The sealant may take the form of a waxy, sticky substance, including lipids, PEG, lecithin, saccharides such as polysaccharides, fatty acids, including high molecular weight fatty acids, other suitable sealants, or combinations of these. Glycerol may be added to the waxy material in some embodiments.
In one embodiment, the invention comprises substantially water-free demineralized bone and lecithin. The bone may be in a concentration high enough to establish substantial contiguity of the bone, which may be done using bone fibers or bone particles. A surface tension reduction material also may be used. For example, PEG may be used, such as to coat the bone, to provide for increase uptake of water into the bone. This embodiment may be minimally moldable or generally stiff, and may be capable of being softened at body or elevated temperatures.
In the various embodiments of the invention, any suitable type of bone materials can be used, including substantially fully demineralized bone, partially demineralized bone, surface demineralized bone, or nondemineralized bone, or mineralized bone.
According to some embodiments, a surface tension reduction material may include glycerol, non-crystalline starch, amphipathic zwitterions, a polyalcohol, and/or aluminum sulfate, other suitable materials, or combinations of these. In some embodiments, ethanol may be used.
A protein precipitating agent used in accordance with some embodiments may include ammonium sulfate, PEG, a hydrogel, unsintered hydroxyapatite, calcium phosphate, other suitable agents, or combinations of these. Other embodiments may include as a clot producing material materials that absorb water from blood, leading to clot formation. In another embodiment, a biocompatible material for promoting blood clotting includes demineralized bone matrix and a hydrostatic agent, in which case the biocompatible material may take the form of a sheet, a powder, a matrix, a paste, a wax, a gel, or other suitable form. Demineralized bone matrix, according to some embodiments, may include fibrous demineralized bone. A hydrostatic agent used in accordance with particular embodiments may include the use of waxes, solid fatty acids or derivatives, non-crystalline starches, PEG, or combinations thereof.
Another embodiment provides a biocompatible material for promoting blood clotting that includes demineralized bone matrix, a protein precipitating agent, and a material that promotes water uptake by the demineralized bone. Because PEG affects both protein precipitation and promotes water uptake by DBM, according to certain embodiments, PEG may be used as either a protein precipitating agent or as a material that promotes water uptake by DBM.
According to another embodiment, a method for promoting blood clotting is provided that includes forming a biocompatible product having a mixture of demineralized bone matrix and a clot producing material, and placing the product on a bleeding site. The method may include adding lyophilized demineralized bone matrix and/or may include lyophilizing the mixture. The method may include adding fibrous demineralized bone matrix as the demineralized bone matrix, according to certain embodiments. The biocompatible material according to some embodiments may take the form of a sheet, a powder, a matrix, a wax, a paste, or a gel.
Another method for producing a biocompatible material for promoting blood clotting includes mixing lyophilized demineralized bone matrix and PEG. The demineralized bone matrix and PEG may be in a ratio of about 1:9, about 3:2, a ratio in between, or any other suitable ratio. The mix may further include about four parts water to a mixture of about three parts demineralized bone matrix to about two parts PEG. According to certain embodiments, the PEG may be melted in order to facilitate blending with the DBM. The mixture may be lyophilized and/or the demineralized bone matrix may be lyophilized, according to some embodiments.
Included in another method for producing a biocompatible material for promoting blood clotting is mixing demineralized bone matrix and aluminum sulfate, freezing the mixture, and lyophilizing the mixture. Yet another method for producing a biocompatible material for promoting blood clotting includes mixing demineralized bone matrix and lecithin. The mixture may be heated and/or smoothed. Furthermore, the demineralized bone matrix may be smoothed. In other certain embodiments, the mixture may further include a carrier and a preservative. In another embodiment, the method may include treating the demineralized bone matrix with an alcohol, dissolving the lecithin in alcohol, forming a mixture by pouring the demineralized bone matrix solution over a sieve, pouring the lecithin dissolved in alcohol over the sieve, and then lyophilizing the mixture.
A hemostatic bone graft is provided herein. The hemostatic bone graft reduces or stops blood flow from a bleeding site, such as bleeding bone, by promoting denaturing of clot proteins and/or by absorbing liquid. Additionally, inventive bone waxes are provided that are sticky and may be used to plug a bleeding site, and in some embodiments, trigger a clot cascade and promote bone growth. Thus, according to various embodiments, the hemostatic bone graft may promote clotting, act as a plug, and/or promote bone growth, or combinations of these and other properties. Hemostatic bone grafts can be described as osteoimplants, the details of which are further described in U.S. Pat. No. 6,843,807, the contents of which are incorporated by reference herein.
In one embodiment, a reduced surface tension hemostatic lyophilized DBM is provided that scavenges and/or sequesters liquid from blood and other body fluids and/or assists in the clotting process to reduce post-operative bleeding. In some embodiments, the amount of DBM used in these absorptive formulations is such that particles are substantially contiguous, facilitating rapid water uptake throughout the preparation. For example, demineralized bone powder particles may be used in the absorptive formulations and is described in further detail in U.S. Pat. No. 5,073,373, the entire contents of which are incorporated herein by reference. The demineralized bone used in the present invention also can take the form of fibers, as disclosed in U.S. Pat. No. 5,507,813, which is incorporated by reference herein. The use of fibers may allow less bone to be used in the present invention, since particle contiguity can be assured with less bone than in particle forms.
The hemostatic bone grafts may comprise substantially water-free DBM in combination with other materials, and may be produced in a variety of forms, including powders, fibers, sheets, strips, blocks, matrices, putties, gels, and pastes. It should be understood that other calcium-based materials may be used as hemostats in addition to DBM or in combination with DBM, including calcium phosphate, unsintered hydroxyapatite, or calcined hydroxyapatite. This combination may be useful because addition of calcium can facilitate calcium-dependent processes, such as the clot cascade process.
Hemostatic bone grafts may also be formed of materials other than DBM, such as from biocompatible mineralized bone and/or polymers.
Sheet 100 contains DBM that is a clot-producing product that absorbs liquid, triggering a clot cascade at a bleeding site where applied. In addition, the absorption characteristics of sheet 100 may be increased, such as by incorporating biocompatible materials that act as capillary tubes, or by other suitable techniques. For example, curled bone fibers (mineralized, nondemineralized, or demineralized) may be included in or on sheet 100. See U.S. Pat. No. 5,507,813. The bone fibers may be of any suitable geometry and surface characteristics to cause blood to be wicked up into the tubes. As a result, in addition to sheet 100 having increased wicking capabilities, the wicked blood may clot inside of the tubes.
Although one of each of curled fiber 310, elongated fiber 320, and U-shaped fiber 330 is depicted in
According to certain embodiments that may incorporate DBM into the hemostatic bone graft, additives also may be combined with DBM to assist the clotting process. The additives may aid in water uptake, particularly by the DBM, for example by affecting the surface tension of water, and facilitating rapid uptake of water by the substantially water-free DBM. Additives combined with DBM in a mixture may also cause protein precipitation, may have a cytolytic effect on blood cells, or may serve to plug blood flow. The amount of DBM/additive-containing material required to have a hemostatic effect depends, in part, on the amount of DBM in the product. For products having from 25-40% DBM, the amount required may range from a 1:10 ratio of DBM to blood up to a 1:1 ratio of DBM to blood. Other suitable ratios, either greater or lesser, may be used for each of these. In addition, depending on the form of DBM, a greater or lesser amount by weight is required to trigger a hemostatic effect. For example, lower amounts of fibrous DBM are required to ensure contiguity of fibers and transfer of liquid to the interior of the preparation than with powdered DBM, and therefore wicks more liquid by weight compared to the powdered form. Factors that affect the amount of DBM/additive-containing material include the dryness of the mixture. As the dryness of the mixture increases, wicking capability increases.
According to certain embodiments, a hemostatic bone graft may be formed by treating DBM with PEG. PEG serves as a surface tension reducer and, when placed on bone, changes the surface tension in the surrounding area. PEG also is hemostatic and precipitates proteins. DBM coated with PEG rapidly absorbs moisture. Therefore, when used in a surgical setting, DBM/PEG products may serve as protein precipitating agents, moisture absorptives, and also osteoinductive materials. Various forms of PEG may be used as carriers for DBM matrices. For example, PEG is available in a variety of molecular weights, including 1,000, 1,500, and 10,000 molecular weight (MW) and other suitable molecular weights, each of which may be combined with DBM. Furthermore, blending various MW PEGs adjusts its handling characteristics. For example, the melting point and therefore consistency of blended PEG is different from the unblended form. Therefore, depending on the preparation method, the DBM/PEG product may have a variety of physical characteristics.
In various embodiments, all of the various constituents of the hemostatic bone graft, including the carrier and any added materials, are resorbed by the body, leaving the DBM behind. This allows the hemostatic bone graft to act as a hemostat during the period of time when bleeding is taking place, and as a bone growth-inducing material after the bleeding has been stopped. Thus, for example, when PEG is combined with DBM to prepare a hemostatic bone graft, the PEG will be resorbed by the patient's body, and the DBM will remain behind to induce bone growth at the defect site.
In one illustrative embodiment, PEG is used by combining 2.5 g DBM with 3.33 g sterile deionized water and 1.67 g 10,000 MW PEG. The materials are mixed, frozen for 1 hour, lyophilized for 24 hours, and stored. In other embodiments, 0.25 g DBM, 1.55-1.75 g PEG, and 3.33 g water are mixed, lyophilized, and stored. Alternatively, solvents may replace water, and rather than lyophilizing the mixture, solvents may be evaporated off from the mixture.
In another illustrative embodiment, 1.0 g DBM is combined with 3.0 g 1,000 MW PEG. The materials are mixed and stored.
In yet another illustrative embodiment, 3.0 g 1,500 MW PEG is heated until pliable and the pliable PEG is combined with 1.0 g DBM. The DBM/PEG combination is mixed and stored.
Each of the above-described illustrative embodiments of combining PEG with DBM differs with respect to the handling properties of the finished product.
According to alternative embodiments of the present invention, hemostatic agents other than PEG, or in addition to PEG, may be combined with DBM. For example, mineralized bone material or DBM may be treated with aluminum sulfate. Aluminum sulfate acts as a hemostat by constricting blood vessels. Aluminum sulfate-coated DBM may also be used as an osteoinductive and osteoconductive material. In addition, aluminum sulfate-coated DBM, when air-dried, holds its form and is more rigid than untreated DBM. Therefore, aluminum sulfate-coated DBM may be a desirable osteoimplant for areas that require support and/or rigidity. Using aluminum sulfate in one embodiment includes treating all sides of a lyophilized, demineralized bone matrix with both 70% ethanol and a solution of deionized water and aluminum sulfate, where the aluminum sulfate originates from a 8.57 g styptic pencil (90% aluminum sulfate, 10% inert ingredients). The treated bone matrix may then be frozen and lyophilized for 48 hours, and the aluminum sulfate-coated DBM may be used as a hemostat in a surgical setting to retard or stop blood flow during surgery.
Additional hemostatic agents may be used in combination with DBM, according to further embodiments. For example, ethanol, ammonium sulfate, hydrogels, absorptive (unsintered) hydroxyapatite or calcium phosphate, and hygroscopic materials are precipitating agents that may be combined with DBM. Hydroxyapatite powder is able to absorb liquids and provides a large surface area that promotes blood clotting and bone growth. The combination of DBM and hydroxyapatite powder to form a hemostatic bone graft is advantageous over hydroxyapatite powder alone because the powder is difficult to place. Furthermore, the combination of DBM and hydroxyapatite may increase the product's ability to sequester liquid over DBM or hydroxyapatite alone.
Some embodiments include combining DBM with surface tension reducers. PEG is one type of surface tension reducer. According to certain embodiments, lecithin may be mixed with lyophilized, mineralized bone fiber to form a wax-like substance for use in filling voids and controlling blood loss during surgery. Lecithin is a waxy, thick, and sticky substance that may serve as a plug-like substance in a surgical-type setting.
One illustrative embodiment using lecithin comprises a 7.14 g mixture of lecithin-added bone fiber combined with 5.31 g starch and 3.58 g glycerol. The ingredients are ground to smooth for even hydration. The mixture is placed in an oven at 50° C. for 32 minutes and then placed in an oven at 80° C. for 2 minutes. The resulting mixture may be rolled into a ball and has the handling characteristics of wax. In alternative embodiments, the bone matrix may be DBM.
In another illustrative embodiment, a lecithin-added bone fiber mixture weighing 7.69 g is combined with 5.31 g carrier and 3.58 g preservative. Any clumps of fiber may be loosened and the carrier and preservative added. The mixture may be treated to smooth out any further clumps of tissue. The product is rolled into a ball and placed in ajar. The additional loosening step results in a looser yet solid mixture, without waxy characteristics.
In yet another illustrative embodiment, 31.25 g of bone fiber may be treated with a mixture of 469 ml HCl and 2 ml Triton, and then with 469 ml HCl and rinsed. Acid treatment of bone fiber demineralizes the fibers. According to certain embodiments, acid treatment may last between 30-50 minutes. After acid treatment, the demineralized bone fiber is treated with water, rinsed, and mixed with 235 ml ethanol. The mixture of ethanol and demineralized bone is mixed for several hours (i.e., 10-14 hours), poured through a sieve, and dried almost completely. To the resulting bone fiber product on the sieve is poured a solution of 31.25 g lecithin and 93.75 ml ethanol. Excess lecithin may be captured as the product is pressed of the excess. The resulting product weight can range from 52-67 g. The lecithin/demineralized bone matrix is lyophilized and a dry sheet of bone/lecithin results.
Lecithin is one type of surface tension reducer that may be used to control blood loss during surgery. In addition to lecithin, other materials may be mixed with DBM to reduce surface tension according to embodiments of the present invention, including fatty acids of any type, varieties of PEG, starch (including non-crystalline starch), carboxymethyl cellulose, maltodextrin, surfactants (such as fatty acids), ethanol, glycerol, salts, polyalcohols, amphipathic zwitterions, and wicking fibers described above in relation to
Additives that have a cytolytic effect on cells may be mixed with DBM to form a hemostat. Cytolytic materials cause cells to burst, which may trigger clot cascades. In one embodiment, DBM is mixed with glycerol to form a hemostat. Embodiments may include mixing surfactants with DBM to form a hemostat. Other embodiments may include mixing cytolytic additives with DBM and surface tension reducers and/or protein precipitators.
The above-mentioned embodiments are not meant to be limiting. Rather, additional embodiments of the present invention are possible. For example, DBM may be combined with a sieve material, such as zeolite, see U.S. Pat. No. 4,822,349, which promotes adsorption of blood's water molecules into microscopic holes in the surfaces of its hollow particles. Clotting factors and platelet molecules in blood are too large to enter the sieve material, and they remain concentrated in the surgical site, forming a strong, stable, natural clot that stays in place. Another example includes combining DBM and hyaluronic acid powder to form a dry hemostatic bone graft. In yet another embodiment, DBM may be combined with hygroscopic agents that affect fluid pressure or the exertion or transmission of pressure.
Various modifications may be made to the embodiments disclosed herein. For example, cancellous bone may be used in the hemostatic bone graft to promote rapid in-growth at a bleeding site and result in rapid fixation. In addition, hemostatic bone grafts material may be poured or placed into molds in order to shape the hemostatic bone graft material into useful shapes and sizes. The above description should not be construed as limiting, but merely as exemplifications of, preferred embodiments. Those skilled in the art will recognize other modifications within the scope and spirit of the present disclosure.
This application claims priority to U.S. Provisional Application No. 60/732,978, filed on Nov. 2, 2005, the content of which is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
159334 | Kumpf | Feb 1875 | A |
781882 | Hunter | Feb 1905 | A |
2516438 | Wheeler | Jul 1950 | A |
2968593 | Rapkin | Jan 1961 | A |
3458397 | Myers et al. | Jul 1969 | A |
3609867 | Hodosh | Oct 1971 | A |
3739773 | Schmitt et al. | Jun 1973 | A |
3790507 | Hodosh | Feb 1974 | A |
3829904 | Ling et al. | Aug 1974 | A |
3891997 | Herbert | Jul 1975 | A |
3922726 | Trentani et al. | Dec 1975 | A |
3947287 | Belde et al. | Mar 1976 | A |
4059684 | Gross et al. | Nov 1977 | A |
4123806 | Amstutz et al. | Nov 1978 | A |
4134792 | Boguslaski et al. | Jan 1979 | A |
4172128 | Thiele et al. | Oct 1979 | A |
4191747 | Scheicher | Mar 1980 | A |
4209434 | Wilson et al. | Jun 1980 | A |
4224698 | Hopson | Sep 1980 | A |
4291013 | Wahlig et al. | Sep 1981 | A |
4294753 | Urist | Oct 1981 | A |
4355331 | Georges et al. | Oct 1982 | A |
4363319 | Altshuler | Dec 1982 | A |
4394370 | Jefferies | Jul 1983 | A |
4430760 | Smestad | Feb 1984 | A |
4440370 | Rood | Apr 1984 | A |
4440750 | Glowacki et al. | Apr 1984 | A |
4450592 | Niederer et al. | May 1984 | A |
4458733 | Lyons | Jul 1984 | A |
4472840 | Jefferies | Sep 1984 | A |
4485097 | Bell | Nov 1984 | A |
4512038 | Alexander et al. | Apr 1985 | A |
4516276 | Mittelmeier et al. | May 1985 | A |
4563350 | Nathan et al. | Jan 1986 | A |
4563489 | Urist | Jan 1986 | A |
4581030 | Bruns et al. | Apr 1986 | A |
4595713 | St. John | Jun 1986 | A |
4620327 | Caplan et al. | Nov 1986 | A |
4623553 | Ries et al. | Nov 1986 | A |
4627853 | Campbell et al. | Dec 1986 | A |
4627931 | Malik | Dec 1986 | A |
4636526 | Dorman et al. | Jan 1987 | A |
4678470 | Nashef et al. | Jul 1987 | A |
4698375 | Dorman et al. | Oct 1987 | A |
4709703 | Lazarow et al. | Dec 1987 | A |
4743259 | Bolander et al. | May 1988 | A |
4795463 | Gerow | Jan 1989 | A |
4795467 | Piez et al. | Jan 1989 | A |
4822349 | Hursey et al. | Apr 1989 | A |
4824939 | Simpson | Apr 1989 | A |
4842604 | Dorman et al. | Jun 1989 | A |
4857269 | Wang et al. | Aug 1989 | A |
4863472 | Tormala et al. | Sep 1989 | A |
4888366 | Chu et al. | Dec 1989 | A |
4902296 | Bolander et al. | Feb 1990 | A |
4919939 | Baker | Apr 1990 | A |
4932973 | Gendler | Jun 1990 | A |
4946792 | O'Leary | Aug 1990 | A |
4950296 | McIntyre | Aug 1990 | A |
4961707 | Magnusson et al. | Oct 1990 | A |
4975526 | Kuberasampath et al. | Dec 1990 | A |
4994030 | Glowczewskie, Jr. et al. | Feb 1991 | A |
5001169 | Nathan et al. | Mar 1991 | A |
5007930 | Dorman et al. | Apr 1991 | A |
5015247 | Michelson | May 1991 | A |
5032445 | Scantlebury et al. | Jul 1991 | A |
5053049 | Campbell | Oct 1991 | A |
5073373 | O'Leary et al. | Dec 1991 | A |
5092887 | Gendler | Mar 1992 | A |
5108399 | Eitenmuller et al. | Apr 1992 | A |
5112354 | Sires | May 1992 | A |
5123925 | Smestad et al. | Jun 1992 | A |
5139527 | Redl et al. | Aug 1992 | A |
5162114 | Kuberasampath et al. | Nov 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5171574 | Kuberasampath et al. | Dec 1992 | A |
5197882 | Jernberg | Mar 1993 | A |
5207710 | Chu et al. | May 1993 | A |
5236456 | O'Leary et al. | Aug 1993 | A |
5284655 | Bogdansky et al. | Feb 1994 | A |
5290558 | O'Leary et al. | Mar 1994 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5306304 | Gendler | Apr 1994 | A |
5314476 | Prewett et al. | May 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5329846 | Bonutti | Jul 1994 | A |
5343877 | Park | Sep 1994 | A |
5366507 | Sottosanti | Nov 1994 | A |
5368859 | Dunn et al. | Nov 1994 | A |
5405390 | O'Leary et al. | Apr 1995 | A |
5405402 | Dye et al. | Apr 1995 | A |
5425639 | Anders | Jun 1995 | A |
5425762 | Muller | Jun 1995 | A |
5432000 | Young et al. | Jul 1995 | A |
5439684 | Prewett et al. | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5447725 | Damani et al. | Sep 1995 | A |
5449375 | Vidal et al. | Sep 1995 | A |
5455041 | Genco et al. | Oct 1995 | A |
5464439 | Gendler | Nov 1995 | A |
5476880 | Cooke et al. | Dec 1995 | A |
5480436 | Bakker et al. | Jan 1996 | A |
5484601 | O'Leary et al. | Jan 1996 | A |
5490962 | Cima et al. | Feb 1996 | A |
5496375 | Sisk et al. | Mar 1996 | A |
5507813 | Dowd et al. | Apr 1996 | A |
5510396 | Prewett et al. | Apr 1996 | A |
5518680 | Cima et al. | May 1996 | A |
5531791 | Wolfinbarger, Jr. | Jul 1996 | A |
5545222 | Bonutti | Aug 1996 | A |
5556430 | Gendler | Sep 1996 | A |
5567806 | Abdul-Malak et al. | Oct 1996 | A |
5607269 | Dowd et al. | Mar 1997 | A |
5641518 | Badylak et al. | Jun 1997 | A |
5656593 | Kuberasampath et al. | Aug 1997 | A |
5662710 | Bonutti | Sep 1997 | A |
5676146 | Scarborough | Oct 1997 | A |
5683459 | Brekke | Nov 1997 | A |
5700479 | Lundgren | Dec 1997 | A |
5707962 | Chen et al. | Jan 1998 | A |
5723117 | Nakai et al. | Mar 1998 | A |
5727945 | Dannenbaum | Mar 1998 | A |
5782919 | Zdeblick et al. | Jul 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5846484 | Scarborough et al. | Dec 1998 | A |
5888219 | Bonutti | Mar 1999 | A |
5899939 | Boyce et al. | May 1999 | A |
5910315 | Stevenson et al. | Jun 1999 | A |
5922753 | Petrie et al. | Jul 1999 | A |
6030635 | Gertzman et al. | Feb 2000 | A |
6090998 | Grooms et al. | Jul 2000 | A |
6123731 | Boyce et al. | Sep 2000 | A |
6132472 | Bonutti | Oct 2000 | A |
6206923 | Boyd et al. | Mar 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6294187 | Boyce et al. | Sep 2001 | B1 |
6311690 | Jefferies | Nov 2001 | B1 |
6326018 | Gertzman et al. | Dec 2001 | B1 |
6340477 | Anderson | Jan 2002 | B1 |
6361565 | Bonutti | Mar 2002 | B1 |
6375663 | Ebner et al. | Apr 2002 | B1 |
6432436 | Gertzman et al. | Aug 2002 | B1 |
6436138 | Dowd et al. | Aug 2002 | B1 |
6436139 | Shapiro et al. | Aug 2002 | B1 |
6437018 | Gertzman et al. | Aug 2002 | B1 |
6458375 | Gertzman et al. | Oct 2002 | B1 |
6565884 | Nimni | May 2003 | B2 |
6599515 | Delmotte | Jul 2003 | B1 |
6599520 | Scarborough et al. | Jul 2003 | B2 |
6616698 | Scarborough | Sep 2003 | B2 |
6630153 | Long et al. | Oct 2003 | B2 |
6632247 | Boyer, II et al. | Oct 2003 | B2 |
6638309 | Bonutti | Oct 2003 | B2 |
6652592 | Grooms et al. | Nov 2003 | B1 |
6652593 | Boyer, II et al. | Nov 2003 | B2 |
6706067 | Shimp et al. | Mar 2004 | B2 |
RE38522 | Gertzman et al. | May 2004 | E |
6733534 | Sherman | May 2004 | B2 |
6736853 | Bonutti | May 2004 | B2 |
6776938 | Bonutti | Aug 2004 | B2 |
6808585 | Boyce et al. | Oct 2004 | B2 |
6843807 | Boyce et al. | Jan 2005 | B1 |
6855169 | Boyer, II et al. | Feb 2005 | B2 |
6863694 | Boyce et al. | Mar 2005 | B1 |
6911212 | Gertzman et al. | Jun 2005 | B2 |
6913621 | Boyd et al. | Jul 2005 | B2 |
7045141 | Merboth et al. | May 2006 | B2 |
7163691 | Knaack et al. | Jan 2007 | B2 |
RE39587 | Gertzman et al. | Apr 2007 | E |
7311713 | Johnson et al. | Dec 2007 | B2 |
7323193 | Morris et al. | Jan 2008 | B2 |
20010020186 | Boyce et al. | Sep 2001 | A1 |
20020026244 | Trieu | Feb 2002 | A1 |
20020029084 | Paul et al. | Mar 2002 | A1 |
20020035401 | Boyce et al. | Mar 2002 | A1 |
20020055143 | Bell et al. | May 2002 | A1 |
20020107570 | Sybert et al. | Aug 2002 | A1 |
20020120338 | Boyer, II et al. | Aug 2002 | A1 |
20020161449 | Muschler | Oct 2002 | A1 |
20030009235 | Manrique et al. | Jan 2003 | A1 |
20030036800 | Meredith | Feb 2003 | A1 |
20030045934 | Bonutti | Mar 2003 | A1 |
20030093154 | Estes et al. | May 2003 | A1 |
20040023387 | Morris et al. | Feb 2004 | A1 |
20040062790 | Constantine et al. | Apr 2004 | A1 |
20040097612 | Rosenberg et al. | May 2004 | A1 |
20040220681 | Cole et al. | Nov 2004 | A1 |
20050065214 | Kronenthal | Mar 2005 | A1 |
20050170396 | Baker et al. | Aug 2005 | A1 |
20060002976 | Kronenthal | Jan 2006 | A1 |
20060013857 | Kronenthal | Jan 2006 | A1 |
20060030948 | Manrique et al. | Feb 2006 | A1 |
20060147545 | Scarborough et al. | Jul 2006 | A1 |
20060280801 | Kronenthal | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
179 833 | Feb 1905 | DE |
44 34 459 | Apr 1996 | DE |
29608321 | Aug 1996 | DE |
0 082 621 | Jun 1983 | EP |
0 243 151 | Oct 1987 | EP |
0 267 015 | May 1988 | EP |
0 321 442 | Jun 1989 | EP |
0 366 029 | May 1990 | EP |
0 406 856 | Jan 1991 | EP |
0405429 | Jan 1991 | EP |
0 411 925 | Feb 1991 | EP |
0 413 492 | Feb 1991 | EP |
0 419 275 | Mar 1991 | EP |
0 483 944 | May 1992 | EP |
0 495 284 | Jul 1992 | EP |
0 520 237 | Dec 1992 | EP |
0 555 807 | Aug 1993 | EP |
0 567 391 | Oct 1993 | EP |
0 693 523 | Jan 1996 | EP |
1 142 581 | Oct 2001 | EP |
2691901 | Dec 1993 | FR |
2175807 | Oct 1986 | GB |
90591986 | Mar 1986 | JP |
2121652 | May 1990 | JP |
3210270 | Sep 1991 | JP |
4097747 | Feb 1992 | JP |
9506281 | Jun 1997 | JP |
0880425 | Nov 1981 | RU |
WO 8607265 | Dec 1986 | WO |
WO 8904646 | Jun 1989 | WO |
WO 8911880 | Dec 1989 | WO |
WO 9421196 | Sep 1994 | WO |
WO 9515776 | Jun 1995 | WO |
WO 9639203 | Dec 1996 | WO |
WO 9725941 | Jul 1997 | WO |
WO 9800183 | Jan 1998 | WO |
WO 9817209 | Apr 1998 | WO |
WO 9840113 | Sep 1998 | WO |
WO 9939757 | Aug 1999 | WO |
WO 0108584 | May 2000 | WO |
WO 0034556 | Jun 2000 | WO |
WO 0035510 | Jun 2000 | WO |
WO 0050102 | Aug 2000 | WO |
WO0108584 | Aug 2001 | WO |
WO 0202156 | Jan 2002 | WO |
WO 0247587 | Jun 2002 | WO |
WO 2004108023 | Dec 2004 | WO |
WO2005065396 | Jul 2005 | WO |
WO 2006057011 | Jun 2006 | WO |
WO 2006076712 | Jul 2006 | WO |
Entry |
---|
Robert A. Stairs. Calculation of surface tension of salt solutions: effective polarizability of solvated Ions. Can. J. Chem. 73: 781-787. 1995 found on website http://article.pubs.nrc-cnrc.gc.ca/ppv/RPViewDoc?issn=1480-3291&volume=73&issue=6&startPage=781. |
E. Abel. The Vapor Phase above the System Sulfuric Acid-Water. J. Phys. Chem. 50(3) pp. 260-283. 1946. found on website http://pubs.acs.org/doi/abs/10.1021/j150447a011. |
JADA, vol. 133, Dec. 2002. http://jada.ada.org/cgi/reprint/133/12/1610-a. |
Abjornson et al., “A Novel Approach to Bone Grafting Substitutes”, Society for Biomaterials, p. 1372 (2000). |
Block, Michael S., D.M.D. et al., “Bone Maintenance 5 to 10 years After Sinus Grafting”, J. Oral Maxillofacial Surg., vol. 56, pp. 706-714, 1998. |
Bobyn et al., “The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by Ingrowth of Bone”, Clinical Orthopaedics and Related Research, 1980, pp. 263-270. |
Bolander et al.,“The Use of Demineralized Bone Matrix ion te Repair of Segmental Defects”, The Journal of Bone and Joint Surgery, vol. 68-A, No. 8, pp. 1264-1273. |
Bostrom et al., “Use of Bone Morphogeneic Protein-2 in the Rabbit Ulnar Nonunion Model”, Clinical Orthopaedics and Related Research, No. 327, pp. 272-282 (1996). |
Covey et al., “Clinical Induction of Bone Repair with Demineralized Bone Matrix or a Bone Morphogenetic Protein”, Orthopaedic Review, Aug. 1989, vol. XVIII, No. 8, pp. 857-863. |
Crowe et al., “Inhibition of Enzymatic Digestion of Amylose by Free Fatty Acids in Vitro Contributes to Resistant Starch Formation”, J. Nutr. 130(8): 2006-2008, 2000. |
Edwards et al., “Osteoinduction of Human Demineralized Bone: Characterization in a Rat Model”, Clinical Orthopaedics & Rel. Res. 357:219-228, Dec. 1998. |
Gekko et al., “Mechanism of Protein Stabilization by Glycerol: Preferential Hydration in Glycerol-Water Mixtures”, vol. 20, No. 16, pp. 4667-5676 (1981). |
Gepstein et al., “Bridging Large Defects in Bone by Demineralized Bone Matrix in the Form of a Powder”, The Journal of Bone and Joint Surgery, vol. 69-A, No. 7, pp. 984-991, 1987. |
Gher, Marlin E., et al., “Bone Grafting and Guided Bone Regeneration for Immediate Dental Implants in Humans”, J. Periodontology, 1994, 65:881-891. |
Glowacki et al., “Application of Biological Principle of Induced Osteogenesis for Craniofacial Defects”, The Lancet, 1981, vol. 1, No. 8227, pp. 959-962. |
Glowacki et al., “Demineralized Bone Implants”, Symposium on Horizons in Plastic Surgery, vol. 12, No. 2, pp. 233-241, 1985. |
Glowacki et al., “Fate of Mineralized and Demineralized Osseous Implants in Cranial Defects”, Calcified Tissue Int. 33: 71-76, 1981. |
Groeneveld et al., “Mineralized Processes in Demineralized Bone Matrix Grafts in Human Maxillary Sinus Floor Elevations”, John Wiley & Sons, Inc. pp. 393-402 (1999). |
Habal et al., “Autologous Corticocancellous Bone Paste for Long Bone Discontinuity Defects: An Experimental Approach”, Annals of Plastic Surgery, Aug. 1985, vol. 15, No. 23, pp. 138-142. |
Ito, Takayasu et al., “Sensitivity of Osteoinductive Activity of Demineralized and Defatted Rat Femur to Temperature and Furation of Heating”, Clinical Orthopaedics and Related Research, No. 316, 1995, pp. 267-275. |
Jurgensen, K., M.D. et al., “A New Biological Glue for Cartilage-Cartilage-Cartilage Interfaces: Tissue Transglutaminase”, Journal of Bone and Joint Surgery, Inc., Feb. 1997, pp. 185-193. |
Kaban et al., “treatment of Jaw Defects with Demineralized Bone Implants”, Journal of Oral and Maxillofacial Surgery, pp. 623-626 (Jun. 6, 1998). |
Kakiuchi et al., “Human Bone Matrix Gelatin as a Clinical Alloimplant”, International Orthopaedics, 9, pp. 181-188 (1985). |
Kiviranta et al., “The Rate fo Calcium Extraction During EDTA Decalcification from Thin Bone Slices as Assessed with Atomic Absorption Spectrophometry”, Histochemistry 68, 1980, pp. 119-127. |
Kubler, et al., “Allogenic bone and Cartilage Morphogenesis”, J. Craniomaxillofac. Surg. 19(7): 238-288, 1991. |
Lewandrowski et al., “Flexural Rigidity in Partially Demineralized Diaphysical Bone Grafts,” Clin. Ortho. Rel. Res. 317: 254-262, 1995. |
Lewandrowski et al., “Kinetics of Cortical Bone Demineralization: controlled demineralization—a new method for modifying cortical bone allografts,” J. Biomed. Mater. Res. 31:365-372, 1996. |
McLaughlin et al., “Enhancements of Bone Ingrowth by the Use of Bone Matrix as a Biologic Cement”, Clinical Orthopaedics and Related Research, No. 183, pp. 255-261 (Mar. 1984). |
Meijer et al., Radiographic Evaluation of Mandibular Augmentation with Prefabricated Hydroxylapatite/Fibrin Glue Imlants, Journal of Oral and Maxillofacial Surgery, 1997, pp. 138-145. |
Mellonig, “Decalicified Freeze-Dried Bone Allograft as an Implant Material in Human Periodontal Defects”, The International Journal of Periodontics and Restorative Dentistry, pp. 41-45, 1984. |
Mellonig, James T. D.D.S., M.S., “Bone Allografts in Periodontal Therapy”, Clinical Orthopaedics and Related Research, No. 324, Mar. 1996. |
Mulliken, J.B. and Glowacki, “Induced Osteogenesis for Repair and Construction in the Craniofacial Region”, J. Plastic and Reconstructive Surgery, May 1980, p. 553-559. |
Neigal et al., “Use of Demineralized Bone Implants in Orbital and Craniofacial”, Opthal. Plast. Reconstrs. Surg., 12: 108-120, 1996. |
Paralkar, et al., PNAS, 100(11): 6736-6740, 2003. |
Parma-Benfenati, S., et al., “Histologic Evaluation of New Attachment Utilizing a Titanium-Reinforced Barrier Membrane in a Nucogingival Recession Defect. A Case Report”, J. Periodontology, Jul. 1998. |
Perez, B.J. et al., “Mechanical properties of a discontinous random fiber composite for totally bioabsorbable fracture fixation devices”, Paper presented in : Bioengineering Conference, 1995, Proceedings of the 1995 IEEE 21st Annual Northeast, May 22-23, 1995, pp. 55-56. |
Product literature for Bio-Gide®, Resorbable barrier membrane from OsteoHealth Co., Division of Luitpold Pharmaceutical, Inc. 1998. |
Product literature for Gore Resolut XT, Bioabsorbable membrane from Gore Regenerative Technologies, Palm Beach Gardens, FL 1998. |
Ray, Robert et al. “Bone Implants: Preliminary Report of an Experimental Study”, Journal of Bone and Joint Surgery, vol. 29A (5), Oct. 1957. |
Reddi et al., Proc. Natl. Acad. Sci. 69:1601-1605, 1972. |
Russell et al., Orthopaedics, 22(5):524-53, May 1, 1999. |
Stevenson et al., “Factors Affecting Bone Graft Incorporation”, Clinical Orthopaedics and Related Research, No. 323, 1996, pp. 66-74. |
The Term “Substantially”, Merriam-Webster Online Dictionary, at the web—http://www.m-w.com, p. 1. |
Teparat, Thitiwan et al., “Clinical Comparison of Bioabsorbable Barriers With Non-Resorbable Barriers in Guided Tissue Regeneration in the Treatment of Human Intrabony Defects”, J. Periodontology, Jun. 1998. |
Todescan et al., “A Small Animal Model for Investigating Endosseous Dental Impants:Effect of Graft Materials on Healing of Endoss, Porous-Surfaced Implants Placed in a Fresh Extraction Socket”, The Journal of Oral and Maxillofacial Implants, vol. 2, No. 2, pp. 217-223, 1987. |
Ueland et al., “Increased Cortical Bone Content of Insulin-Like Growth Factors in Acromegalic Patients”, J. Clin. Endocrinol. Metab., 84(1): 123-127, 1999. |
Urist, M.R. et al., “The Bone Induction Principle”, Clin. Orthop. Rel. Res. 53:243-283, 1967. |
Urist, M.R., “Bone Formation by Autoinduction”, Science, 150(698):893-9,1965. |
Whiteman et al., J. Hand. Surg. 18B:487, 1993. |
Whittaker et al., “Matrix Metalloproteinases and Their Inhibitors—Current Status and Future Challenges”, Celltransmissions, 17(1): 3-14. |
Xiaobo et al., Orthop., No. 293, pp. 360-365, 1993. |
Zhang, et al., “A Quantative Assessment of Osteoinductivity of Human Demineralized Bone Matrix”, J. Periodontol. 68(11): 1076-1084, 1997. |
Urist et al. “Bone Formation in Implants of Partially and Wholly Demineralized Bone Matrix,” Clinical Orthopaedics and Related Research, vol. 71, pp. 271-278 (1970). |
Grafton™ Allogenic Bone Matrix (ABM), Advertising Brochure, Advanced Processing of Human Allograft Bone, Osteotech, Inc., 1992. |
Frenkel et al. “Use of Demineralized Bone Matrix Gel to Enhance Spine Fusion”, 19th Annual Meeting of the Society for Biomaterials, Apr. 28-May 2, 1993, Birmingham, AL, p. 162. |
Stevenson et al. “Long Bone Defect Healing Induced by a New Formulation of Rat Demineralized Bone Matrix Gel,” 40th Annual Meeting, Orthopedic Research Society, Feb. 21-24, 1994, New Orleans, LA, p. 205-35. |
Pedrozo, Hugo A. et al. “Growth Plate Chondrocytes Store Latent Transforming Growth Factor (TGF)-β1 in Their Matrix Through Latent TGF-β1 Binding Protein-1,” Jour. of Cellular Physiology, 177(2): 343-354 (1997). |
Bautista, Catalino M. et al. “Isolation of a novel insulin-like growth factor (IGF) binding protein from human bone: A potential candidate for fixing IGF-II in human bone,” Biochem. and Biophys. Research Communications, 176(2): 756-763 (Apr. 30, 1991). |
Mohan, S. “Insulin-Like Growth Factor Binding Proteins in Bone Cell Regulation,” Growth Regulation, 3(1): 67-70 (1993). |
Japanese Office Action dated Mar. 18, 2009, from related, co-pending application JP 2003-533987. |
Ruppert, Rainer et al. “Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity,” Eur. J. Biochem, 237(1): 295-302 (1996). |
Kubler, N. R. et al. “EHBMP-2: The first BMP-variant with osteoinductive properties,” Mund Kiefer Gesichtschir, 3(1): S134-S139 (1999). |
Reddi, A. Hari. “Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN,” Arthritis Research, 3(1): 1-5 (2001). |
Gazzerro, Elisabetta et al. “Bone Morphogenetic Proteins Induce the Expression of Noggin, Which Limits Their Activity in Cultured Rat Osteoblasts,” Jour. of Clin. Invest., 102(12): 2106-2114 (1998). |
Yamaguchi, Akira. “Recent advances in researches on bone formation—Role of BMP in bone formation,” Nihon Rinsyo, 56(6): 1406-1411 (1998). |
Dallas, Sarah L. et al. “Dual Role for the Latent Transforming Growth Factor-β Binding Protein in Storage of Latent TGF-β in the Extracellular Matrix and as a Structural Matrix Protein,” Jour. of Cell Biol., 131(2): 539-549 (1995). |
Pedrozo, Hugo A. et al. “Vitamin D3 Metabolites Regulate LTBP1 and Latent TGF-β1 Expression and Latent TGF-β1 Incorporation in the Extracellular Matrix of Chohdrocytes,” Jour. of Cell. Biochem., 72(1): 151-165 (1999). |
Number | Date | Country | |
---|---|---|---|
20080063671 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60732978 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11556072 | Nov 2006 | US |
Child | 11773775 | US |