This disclosure relates generally to the field of medical devices, systems and methods for use in surgical procedures. More specifically, this disclosure relates to surgical devices, units, systems and methods that can provide for hemostasis or sealing of bodily tissues including bone.
The management and control of intraoperative bleeding can include the techniques of coagulation, hemostasis, or sealing of tissues and are often performed with the aid of electrodes energized from a suitable power source. Typical electrosurgical devices apply an electrical potential difference or signal between an active electrode and a return electrode on a patient's grounded body or between an active electrode and a return electrode on the device to deliver electrical energy to the area where tissue is to be affected. Electrosurgical devices pass electrical energy through tissue between the electrodes to provide coagulation to control bleeding and hemostasis to seal tissue. The electrosurgical devices are usually held by the surgeon and connected to the power source, such as an electrosurgical unit having a power generator, via cabling.
Dry-tip electrosurgical devices can adversely affect tissue and surgical procedures by desiccating or perforating tissue, causing tissue to stick to the electrodes, burning or charring tissue, and generating smoke at the surgical site. More recently, fluid-assisted electrosurgical devices have been developed that use saline to inhibit such undesirable effects as well as to control the temperature of the tissue being treated and to electrically couple the device to the tissue. Fluid-assisted electrosurgical devices have been developed which, when used in conjunction with an electrically conductive fluid such as saline, may be moved along a tissue surface without cutting the tissue to seal tissue to inhibit blood and other fluid loss during surgery.
Fluid-assisted electrosurgical devices apply radiofrequency (RF) electrical energy and electrically conductive fluid to provide for sealing of soft tissues and bone in applications of orthopedics (such as total hip arthroplasty, or THA, and total knee arthroplasty, or TKA), spinal oncology, neurosurgery, thoracic surgery, and cardiac implantable electronic devices as well as others such as general surgery within the human body. The combination of RF energy and the electrically conductive fluid permits the electrosurgical device to operate at approximately 100 degrees Celsius, which is nearly 200 degrees Celsius less than traditional electrosurgical devices. Typically, hemostasis is performed with fluid-assisted devices having electrodes in the bipolar arrangement that are referred to as bipolar sealers. By controlling bleeding, bipolar sealers have been demonstrated to reduce the incidence of hematoma and transfusions, help maintain hemoglobin levels, and reduce surgical time in a number of procedures, and may reduce the use of hemostatic agents.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description.
An aspect of the present disclosure includes a surgical system, method, and surgical devices that can provide the therapeutic analog of traditional electrosurgical hemostatic sealing without dispersing or constantly dispersing fluid such as saline or deionized water at the surgical site. The use of the surgical device as a hemostatic sealer simplifies surgical preparation and procedures as it reduces the use of suction, and can eliminate hot saline at the surgical site. Further, the surgical device provides precise temperature control in various conditions and targeted treatment. The surgical device can be more ergonomic via a lighter attached cable, such as a cable without a saline tube, or a cordless handpiece.
In one aspect, the disclosure is directed to a surgical device configured as a hemostatic sealer. The hemostatic sealer includes a handle having a switch to activate a source of thermal energy and a thermal assembly coupled to the handle. The thermal assembly includes an electrically resistive material disposed on an electrically insulative substrate. The resistive material is coupled to the switch to receive the source of thermal energy.
In another aspect, the disclosure is directed to a surgical device configured as a hemostatic sealer. The surgical device includes a handle having a switch, a shaft extending distally from the handle, and a thermal assembly operably coupled to the distal end of the shaft. The thermal assembly includes a heating element and an electrically insulative substrate. The substrate provides a shape of the thermal assembly. The heating element includes an electrically resistive material electrically coupled to the switch and disposed on the substrate.
The surgical device includes a thermal assembly that provides even thermal therapy and bleeding management with precise temperature control that will interface with tissue. Activation of the thermal assembly quickly heats a heating element into the temperature range of about 80 degrees Celsius to 110 degrees Celsius, i.e., the known temperature range for good hemostasis, and will quickly reduce heat at deactivation of the thermal assembly to avoid inadvertent thermal damage to tissue, the surgical drape, or other surgical equipment. In one example, the thermal assembly heats to the selected thermal range upon one second of activation and cools to a safe temperature within one second of deactivation.
Precise temperature control is provided with two features. First, the heating assembly includes a heating element formed of a thin electrically resistive material on a thermally insulative and durable substrate. The heating element is coupled to a source of electrical energy, which is not limited to the RF range. In one example, the heating element includes a thin nickel-chrome plating in the range of 0.001 to 0.005 inches thick on a ceramic substrate. Second, the resistance or impedance of the heating element changes with temperature, and the resistance or impedance is monitored with a controller. The controller maintains the target temperature in the thermal assembly via selective operation of the source of electrical energy. In one example, the source of electrical energy and the controller can be included within a handheld surgical device.
The surface of the thermal assembly is smooth and slides along the tissue without saline. In one example, the surface of the thermal assembly includes a lubricious or non-stick coating to improve lubricity.
Throughout the description, like reference numerals and letters indicate corresponding structure throughout the several views. Also, any particular features(s) of a particular exemplary embodiment may be equally applied to any other exemplary embodiment(s) of this specification as suitable. That is, features between the various exemplary embodiments described herein are interchangeable as suitable and may not be exclusive. From the specification, it should be clear that the terms “distal” and “proximal” are made in reference to a user of the device.
The system 10 includes a source of thermal energy 12 coupled to a heating element 14. In one example, the source of thermal energy 12 includes a source of electrical energy electrically coupled to the heating element 14. The heating element 14 can be configured as part of heating assembly on a distal tip of a surgical device. The heating element 14 can include a resistive material that is configured to rise in temperature when an electrical current is passed through the heating element 14. The source of thermal energy 12 can be selectively activated via a switch to apply the electrical current to the heating element 14. Activation of the thermal assembly quickly heats the heating element 14 into the temperature range of about 80 degrees Celsius to 110 degrees Celsius, such as to a preselected temperature within that range. In one example, the heating element include a low thermal mass or heat capacity so that the heating element 14 heats to the preselected temperature or temperature range upon one second of activation and cools to a safe temperature within one second of deactivation.
The system 10 includes a temperature detection mechanism 16 operably coupled to detect the temperature of the heating element 14. The temperature detection mechanism 16 can directly or inferentially determine temperature of the heating element 14. In one example, the temperature detection mechanism includes a thermocouple. In another example, the resistance or impedance of the heating element 14 changes with temperature, and the resistance or impedance of the heating element 14 is detected with the temperature detection mechanism 16. The temperature detection mechanism 16 is operably coupled to a controller 18 to monitor the temperature of the heating element 14. The controller 18 can include a processor and memory to execute a set of instructions in an application to monitor and control the temperature of the heating element 14 with the source of thermal energy 12. In some examples, the system 10 can include a display or a data output couplable to an external monitor to provide graphical or indications of temperature or other information as determined by the controller 18.
In some examples, the system 10 may provide for a selective application of fluid if desired by a surgeon. Fluid may be provided from a fluid source that can include a bag of fluid through a drip chamber to delivery tubing and to a handheld surgical device. In one example, the fluid includes saline and can include physiologic saline such as sodium chloride (NaCl) 0.9% weight/volume solution. Saline is an electrically conductive fluid, and other suitable electrically conductive fluids can be used. In other examples, the fluid may include a nonconductive fluid, such as deionized water.
Another example of a surgical device can include a thermal assembly mounted on jaws or clamps that are movable with respect to each other. For example, jaws or clamps can selectively pinch tissue with a thermal assembly. Other examples are contemplated.
Surgical device 100 extending along longitudinal axis A includes a handpiece 104. Handpiece 104 includes a handle 106 that can include a finger grip portion with ridges (not shown) on the lower surface or bottom B of the device 100 and intended to be held in the surgeon's hand. In the illustrated example, the device 100 is cordless and includes the features of a thermal control system within the handpiece 104. The handpiece 104 includes a proximal end 108 for balance and, in one example, can include an electrical connector for electrically coupling a cable to the device 100 to supply power. Handpiece 104 may be configured to enable a user of device 100 to hold and manipulate device 100 between the thumb and index finger like a writing instrument or an electrosurgical pen. Handpiece 104 may comprise a sterilizable, rigid, electrically insulative material, such as a synthetic polymer (e.g., polycarbonate, acrylonitrile-butadiene-styrene).
The handle 106 can include an upper surface, or top T, that is opposite bottom B. A controller 110, such as a set of one or more switches 112 coupled to circuitry such as on a printed circuit board, in the example is disposed on top T and configured to be operated by the user's thumb or index finger to control one or more functions of the device 100. In the example, the switch can provide binary activation (on/off) control for each function and can be configured as a pushbutton. For example, switch 112 can be pushed to activate the thermal assembly 102 and released to deactivate the thermal assembly 102. Another switch (not shown) can be used selectively activate fluid dispersal. Other functions of the device are contemplated.
The surgical device 100 can include a probe assembly 120 extending distally from the handpiece 104. The probe assembly 120 in the example includes a shaft 122. The shaft 122, or other portions of device 100 may include one or more elements forming a subassembly to be generally one or more of rigid, bendable, fixed-length, variable-length (including telescoping or having an axially-extendable or axially-retractable length) or other configuration.
In one example, the handle 106 and shaft 122 can be formed from an electrically or thermally insulative material such as a high temperature micromolded polymer. Example insulative materials can include polytetrafluoroethylene (PTFE), polycarbonate (PC), polyoxymethylene (POM or acetal), or polyether ether ketone (PEEK).
The shaft 122 is configured to communicate a source of thermal energy to the thermal assembly 102. The shaft 122 carries one or more electrical conductors to a distal end 124 including the thermal assembly 102. Electrical pathways of the handpiece 104 and probe assembly 120 can be formed as conductive arms, wires, traces, other conductive elements, and other electrical pathways formed from electrically conductive material such as metal and may comprise stainless steel, titanium, gold, silver, platinum or any other suitable material.
In examples of the device 100 that can selectively disperse fluid, the shaft 122 includes a fluid lumen extending into the handpiece 104 for fluidly coupling to delivery tubing in a cable extending from proximal end 108. The fluid lumen includes can an outlet port disposed on or proximate the thermal assembly 102 for selectively dispersing fluid in the surgical site. In one example, fluid lumen can be included in a hypotube configured to mate with delivery tubing to supply fluid to thermal assembly 102. Hypotube can be constructed from non-conductive commonly used flexible tubing, such as polyvinyl chloride (PVC), PEEK, or a thermoplastic elastomer (TPE). In one example, the TPE is a polyether block amide (PEBA) available under the trade designation PEBAX from Arkema of Colombes, France.
In one example, the source of thermal energy is an electrical current. The heating element 142 is formed of an electrically resistive material. The tabs 146 are couplable to electrical conductors in the shaft 122 and in electrical communication with the heating element 142. The electrical current is passed through the heating element 142 between the tabs 146 to heat the thermal assembly 140. In this example, electrically resistive material has a low thermal mass, or heat capacity, and can change temperature quickly depending on whether a current is applied. Additionally, the electrically resistive material can change resistance or impedance based on its temperature. In one example, the temperature of the heating element 142 can be monitored inferentially by detecting resistance or impedance of the heating element 142.
In one example, the heating element 142 is constructed from a material, such as an alloy, having a high resistivity. An example of an alloy having a high resistivity includes a nickel chrome, or nichrome, alloy. Other examples are contemplated. In one example, the heating element 142 is configured as a plating on the substrate 144. In other examples, the heating element 142 can be configured as a wire. An example thickness of a nichrome plating may be in a range of 0.001 to 0.005 inches. Other features of the heating element besides resistivity can include temperature coefficient of resistivity and corrosion resistance.
The substrate 144 in the example can be selected as having high thermal insulative properties as well as electrically insulative properties and durability. Examples of substrate 144 can include ceramics, glass, and plastics that are suitable for receiving a plating of resistive material. The substrate can be configured in a shape that is suited for the particular application of the surgical device 100. In some examples of a surgical device 100 in which fluid is selectively provided to the surgical site, the substrate may include an outlet port in fluid communication with the fluid lumen to disperse fluid from the heating assembly 102.
Portions of the thermal assembly 140 that interface with tissue are made smooth to improve lubricity so the thermal assembly 140 may slide along tissue without sticking. In one example, the surface of the thermal assembly 140 can include a lubricious coating 148 such as PTFE to further improve lubricity. The thermal assembly 140 is configured to slide smoothly along tissue without the use of saline.
In one example, thermal assemblies 160, 180 can be attached to a shaft, such as shaft 122, and heating elements 164, 184 can be electrically coupled to electrical pathways within the shaft 122. Thermal assemblies 160, 180 can include lubricious coatings (not shown) such as PTFE over the heating elements 164, 184 to improve lubricity. Lubricious coatings may also cover the substrates 162, 182.
Although the present disclosure has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the present disclosure.
This Non-Provisional Utility application claims benefit to U.S. Provisional Application No. 62/568,953, filed Oct. 6, 2017, titled “HEMOSTATIC SURGICAL SEALER,” the entirety of which incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2888928 | Seiger | Apr 1957 | A |
3223088 | Barber et al. | Dec 1965 | A |
3682130 | Jeffers | Aug 1972 | A |
3750650 | Ruttgers | Aug 1973 | A |
3955284 | Balson | May 1976 | A |
4014342 | Staub et al. | Mar 1977 | A |
4195637 | Gruntzig et al. | Apr 1980 | A |
4207897 | Loyd et al. | Jun 1980 | A |
4244371 | Farin | Jan 1981 | A |
4248224 | Jones | Feb 1981 | A |
4275734 | Mitchiner | Jun 1981 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4278090 | Van Gerven | Jul 1981 | A |
4321931 | Hon | Mar 1982 | A |
4342218 | Fox | Aug 1982 | A |
4355642 | Alfemess | Oct 1982 | A |
4377168 | Rzasa et al. | Mar 1983 | A |
4381007 | Doss | Apr 1983 | A |
4519389 | Gudkin et al. | May 1985 | A |
4598698 | Siegmund | Jul 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4664110 | Schanzlin | May 1987 | A |
4671274 | Scrochenko | Jun 1987 | A |
4708126 | Toda et al. | Nov 1987 | A |
4736749 | Lundback | Apr 1988 | A |
4779611 | Grooters et al. | Oct 1988 | A |
4802475 | Weshahy | Feb 1989 | A |
4823791 | D'Amelio | Apr 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4919129 | Weber et al. | Apr 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4932952 | Wojciechowicz, Jr. | Jun 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4950232 | Ruzicka et al. | Aug 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5112299 | Pascaloff | May 1992 | A |
5167659 | Ohtomo et al. | Dec 1992 | A |
5190541 | Abele et al. | Mar 1993 | A |
5195959 | Smith | Mar 1993 | A |
5230704 | Moberg et al. | Jul 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5281215 | Midler | Jan 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5316000 | Chapelon et al. | May 1994 | A |
5317878 | Bradshaw et al. | Jun 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5322520 | Milder | Jun 1994 | A |
5323781 | Ideker et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5324286 | Fowle | Jun 1994 | A |
5330521 | Cohen | Jul 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5352222 | Rydell et al. | Oct 1994 | A |
5353783 | Nakao et al. | Oct 1994 | A |
5354258 | Dory | Oct 1994 | A |
5361752 | Moll et al. | Nov 1994 | A |
5376078 | Dinger et al. | Dec 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5395312 | Desai | Mar 1995 | A |
5396887 | Imran | Mar 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5400770 | Nakao et al. | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5401272 | Perkins | Mar 1995 | A |
5403309 | Coleman et al. | Apr 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405348 | Anspach et al. | Apr 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5413556 | Whittingham | May 1995 | A |
5417709 | Slater | May 1995 | A |
5423807 | Mlilder | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5427119 | Swartz et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5435308 | Gallup et al. | Jul 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5441503 | Considine et al. | Aug 1995 | A |
5443463 | Stem et al. | Aug 1995 | A |
5443470 | Stem et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5450843 | Moll et al. | Sep 1995 | A |
5452582 | Longsworth | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5469853 | Law et al. | Nov 1995 | A |
5472876 | Fahy | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5487385 | Avitall | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5490819 | Nicholas et al. | Feb 1996 | A |
5492527 | Glowa et al. | Feb 1996 | A |
5496271 | Burton et al. | Mar 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5498248 | Milder | Mar 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5505500 | Webb et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5516505 | McDow | May 1996 | A |
5520682 | Baust et al. | May 1996 | A |
5522870 | Ben-Zion | Jun 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540562 | Giter | Jul 1996 | A |
5540708 | Lim et al. | Jul 1996 | A |
5542196 | Hirsch et al. | Aug 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5545195 | Lennox et al. | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5556397 | Long et al. | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560362 | Silwa, Jr. et al. | Oct 1996 | A |
5560373 | DeSantis | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5562720 | Stem et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5569254 | Carlson et al. | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573532 | Chang et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575788 | Baker et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5590657 | Cain et al. | Jan 1997 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5599346 | Edwards et al. | Feb 1997 | A |
5605539 | Buelna et al. | Feb 1997 | A |
5607462 | Imran | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5630837 | Crowley | May 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5656029 | Imran et al. | Aug 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5637090 | McGee et al. | Sep 1997 | A |
5671747 | Connor | Sep 1997 | A |
5673695 | McGee et al. | Oct 1997 | A |
5676662 | Fleischhacker et al. | Oct 1997 | A |
5676692 | Sanghvi et al. | Oct 1997 | A |
5676693 | Lafontaine | Oct 1997 | A |
5678550 | Bassen et al. | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681278 | Igo et al. | Oct 1997 | A |
5681294 | Osborne et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5687737 | Branham et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5690611 | Swartz et al. | Nov 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697925 | Taylor | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5697928 | Walcott et al. | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5712543 | Sjostrom | Jan 1998 | A |
5713942 | Stem | Feb 1998 | A |
5716389 | Walinsky et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5718701 | Shai et al. | Feb 1998 | A |
5720775 | Lanard | Feb 1998 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5730074 | Peter | Mar 1998 | A |
5730127 | Avitall | Mar 1998 | A |
5730704 | Avitall | Mar 1998 | A |
5733280 | Avitall | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5743903 | Stem et al. | Apr 1998 | A |
5755760 | Maguire et al. | May 1998 | A |
5766167 | Eggers et al. | Jun 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5782828 | Chen et al. | Jul 1998 | A |
5785706 | Bednarek | Jul 1998 | A |
5788636 | Curley | Aug 1998 | A |
5792140 | Tu et al. | Aug 1998 | A |
5792167 | Kablik et al. | Aug 1998 | A |
5797905 | Fleischman et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5735290 | Nelson et al. | Sep 1998 | A |
5800428 | Nelson et al. | Sep 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5810809 | Rydell | Sep 1998 | A |
5814044 | Hooven | Sep 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5840030 | Ferek-Petric et al. | Nov 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5843152 | Tu et al. | Dec 1998 | A |
5844349 | Oakley et al. | Dec 1998 | A |
5846187 | Wells et al. | Dec 1998 | A |
5846191 | Wells et al. | Dec 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5861021 | Thome et al. | Jan 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5871525 | Edwards et al. | Feb 1999 | A |
5873845 | Cline et al. | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5873886 | Larsen et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879295 | Li et al. | Mar 1999 | A |
5879296 | Ockuly et al. | Mar 1999 | A |
5879348 | Owens et al. | Mar 1999 | A |
5881732 | Sung et al. | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5885278 | Fleischman | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5895355 | Schaer | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5897553 | Mulier | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5899898 | Arless et al. | May 1999 | A |
5899899 | Arless et al. | May 1999 | A |
5899915 | Saadat | May 1999 | A |
5902289 | Swartz et al. | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906580 | Kline-Schoder et al. | May 1999 | A |
5906587 | Zimmon | May 1999 | A |
5906606 | Chee et al. | May 1999 | A |
5908029 | Knudson et al. | Jun 1999 | A |
5913854 | Maguire et al. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5916214 | Cosio et al. | Jun 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5925045 | Reimels et al. | Jul 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
5931810 | Grabek | Aug 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5935123 | Edwards et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5928191 | Houser et al. | Sep 1999 | A |
5954661 | Greenspon et al. | Sep 1999 | A |
5975919 | Laufer | Sep 1999 | A |
5971980 | Sherman | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5980516 | Mulier et al. | Nov 1999 | A |
5989248 | Tu et al. | Nov 1999 | A |
5993412 | Deily et al. | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
6004316 | Laufer | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6007499 | Martin | Dec 1999 | A |
6010500 | Sherman et al. | Jan 2000 | A |
6012457 | Lesh | Jan 2000 | A |
6015391 | Rishton et al. | Jan 2000 | A |
6016811 | Knopp et al. | Jan 2000 | A |
6018676 | Davis et al. | Jan 2000 | A |
6019757 | Scheldrup | Feb 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6030381 | Jones et al. | Feb 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6042556 | Beach et al. | Mar 2000 | A |
6042593 | Storz et al. | Mar 2000 | A |
6048333 | Lennox et al. | Apr 2000 | A |
6053923 | Veca et al. | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6056745 | Panescu et al. | May 2000 | A |
6056746 | Goble | May 2000 | A |
6056747 | Saadat et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6068653 | LaFontaine | May 2000 | A |
6083237 | Huitema et al. | Jul 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6141576 | Littmann et al. | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6165174 | Jacobs et al. | Dec 2000 | A |
6190384 | Ouchi | Feb 2001 | B1 |
6193716 | Shannon, Jr. | Feb 2001 | B1 |
6210406 | Webster | Apr 2001 | B1 |
6210410 | Farin et al. | Apr 2001 | B1 |
6210411 | Hofmann et al. | Apr 2001 | B1 |
6212426 | Swanson | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6231591 | Desai | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238347 | Nix et al. | May 2001 | B1 |
6238387 | Miller, III | May 2001 | B1 |
6238393 | Mulier | May 2001 | B1 |
6245061 | Panescu et al. | Jun 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6251110 | Wampler | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6266551 | Osadchy et al. | Jul 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6312383 | Lizzi et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328735 | Curley et al. | Dec 2001 | B1 |
6328736 | Mulier | Dec 2001 | B1 |
6332881 | Carner et al. | Dec 2001 | B1 |
6352533 | Ellman et al. | Mar 2002 | B1 |
6358248 | Mulier | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6371955 | Fuimaono et al. | Apr 2002 | B1 |
6371956 | Wilson et al. | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6409722 | Hoey | Jun 2002 | B1 |
6413254 | Hissong et al. | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6430426 | Avitall | Aug 2002 | B2 |
6440130 | Mulier | Aug 2002 | B1 |
6443952 | Mulier | Sep 2002 | B1 |
6447507 | Bednarek et al. | Sep 2002 | B1 |
6461314 | Pant et al. | Oct 2002 | B1 |
6461956 | Patterson | Oct 2002 | B1 |
6464700 | Koblish et al. | Oct 2002 | B1 |
6471697 | Lesh | Oct 2002 | B1 |
6471698 | Edwards et al. | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475216 | Mulier | Nov 2002 | B2 |
6477396 | Mest et al. | Nov 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6488678 | Sherman | Dec 2002 | B2 |
6488680 | Francischelli | Dec 2002 | B1 |
6494892 | Ireland et al. | Dec 2002 | B1 |
6497704 | Ein-Gal | Dec 2002 | B2 |
6502575 | Jacobs et al. | Jan 2003 | B1 |
6508815 | Strul et al. | Jan 2003 | B1 |
6517536 | Hooven et al. | Feb 2003 | B2 |
6537248 | Mulier | Mar 2003 | B2 |
6537272 | Hoey | Mar 2003 | B2 |
6558382 | Jahns | May 2003 | B2 |
6558385 | Bloom et al. | May 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6579288 | Swanson et al. | Jun 2003 | B1 |
6585732 | Mulier | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6603988 | Dowlatshahi | Aug 2003 | B2 |
6610055 | Swanson et al. | Aug 2003 | B1 |
6610060 | Mulier | Aug 2003 | B2 |
6613048 | Mulier | Sep 2003 | B2 |
6635034 | Cosmescu | Oct 2003 | B1 |
6645199 | Jenkins et al. | Nov 2003 | B1 |
6645202 | Pless et al. | Nov 2003 | B1 |
6648883 | Francischelli | Nov 2003 | B2 |
6656175 | Francischelli | Dec 2003 | B2 |
6663627 | Francischelli | Dec 2003 | B2 |
6666862 | Jain et al. | Dec 2003 | B2 |
6679882 | Komerup | Jan 2004 | B1 |
6682501 | Nelson | Jan 2004 | B1 |
6689131 | McClurken | Feb 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6706038 | Francischelli | Mar 2004 | B2 |
6706039 | Mulier | Mar 2004 | B2 |
6716211 | Mulier | Apr 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6736810 | Hoey | May 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6755827 | Mulier | Jun 2004 | B2 |
6764487 | Mulier | Jul 2004 | B2 |
6766817 | da Silva | Jul 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776780 | Mulier | Aug 2004 | B2 |
6786906 | Cobb | Sep 2004 | B1 |
6807968 | Francischelli | Oct 2004 | B2 |
6827713 | Bek et al. | Dec 2004 | B2 |
6827715 | Francischelli | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6849073 | Hoey | Feb 2005 | B2 |
6858028 | Mulier | Feb 2005 | B2 |
6887238 | Jahns | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6911019 | Mulier | Jun 2005 | B2 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6916318 | Francischelli | Jul 2005 | B2 |
6918404 | Dias da Silva | Jul 2005 | B2 |
6936046 | Hissong | Aug 2005 | B2 |
6942661 | Swanson | Sep 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6949098 | Mulier | Sep 2005 | B2 |
6953461 | Bloom et al. | Oct 2005 | B2 |
6960205 | Jahns | Nov 2005 | B2 |
6962589 | Mulier | Nov 2005 | B2 |
6979332 | Adams | Dec 2005 | B2 |
7018241 | Caveney et al. | Mar 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7066586 | da Silva | Jun 2006 | B2 |
7156845 | Mulier et al. | Jan 2007 | B2 |
7166106 | Bartel et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7237990 | Deng | Jul 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7247161 | Johnston et al. | Jul 2007 | B2 |
7261711 | Mulier et al. | Aug 2007 | B2 |
7276074 | Adams et al. | Oct 2007 | B2 |
7309325 | Mulier et al. | Dec 2007 | B2 |
7311708 | McClurken | Dec 2007 | B2 |
7322974 | Swoyer et al. | Jan 2008 | B2 |
7361175 | Suslov | Apr 2008 | B2 |
7364579 | Mulier et al. | Apr 2008 | B2 |
7445436 | Mittelstein et al. | Nov 2008 | B2 |
7537595 | McClurken | May 2009 | B2 |
7604635 | Bloom et al. | Oct 2009 | B2 |
7645277 | Bloom et al. | Jan 2010 | B2 |
7651494 | Bloom et al. | Jan 2010 | B2 |
7736361 | Palanker | Jun 2010 | B2 |
7776014 | Visconti et al. | Aug 2010 | B2 |
7815634 | Bloom et al. | Oct 2010 | B2 |
7909820 | Lipson et al. | Mar 2011 | B2 |
7918852 | Tullis et al. | Apr 2011 | B2 |
7942872 | Ein-Gal | May 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7993337 | Lesh | Aug 2011 | B2 |
7997278 | Utley et al. | Aug 2011 | B2 |
7998140 | McClurken | Aug 2011 | B2 |
8034071 | Scribner et al. | Oct 2011 | B2 |
8038670 | McClurken | Oct 2011 | B2 |
8048070 | O'Brien et al. | Nov 2011 | B2 |
8083736 | Bloom et al. | Dec 2011 | B2 |
8109956 | Shadeck | Feb 2012 | B2 |
8172828 | Chang et al. | Apr 2012 | B2 |
8177783 | Davison et al. | May 2012 | B2 |
8202288 | Adams et al. | Jun 2012 | B2 |
8216233 | McClurken et al. | Jul 2012 | B2 |
8323276 | Palanker et al. | Dec 2012 | B2 |
8348946 | McClurken et al. | Jan 2013 | B2 |
8361068 | McClurken | Jan 2013 | B2 |
8388642 | Muni et al. | Mar 2013 | B2 |
8414572 | Davison et al. | Apr 2013 | B2 |
8475455 | McClurken et al. | Jul 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8568409 | O'Brien et al. | Oct 2013 | B2 |
8632533 | Greeley et al. | Jan 2014 | B2 |
8882756 | Greeley et al. | Nov 2014 | B2 |
8906012 | Conley et al. | Dec 2014 | B2 |
8920417 | Conley et al. | Dec 2014 | B2 |
8979842 | McNall, III et al. | Mar 2015 | B2 |
20010032002 | McClurken et al. | Oct 2001 | A1 |
20010047183 | Privitera et al. | Nov 2001 | A1 |
20020038129 | Peters et al. | Mar 2002 | A1 |
20020049483 | Knowlton | Apr 2002 | A1 |
20020062131 | Gallo, Sr. | May 2002 | A1 |
20020082643 | Kammerer et al. | Jun 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20020198519 | Qin et al. | Dec 2002 | A1 |
20030014050 | Sharkey et al. | Jan 2003 | A1 |
20030032954 | Carranza et al. | Feb 2003 | A1 |
20030045872 | Jacobs | Mar 2003 | A1 |
20030073993 | Ciarrocca | Apr 2003 | A1 |
20030097129 | Davison et al. | May 2003 | A1 |
20030144656 | Ocel | Jul 2003 | A1 |
20030191462 | Jacobs | Oct 2003 | A1 |
20030204185 | Sherman et al. | Oct 2003 | A1 |
20030216724 | Jahns | Nov 2003 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040015219 | Francischelli | Jan 2004 | A1 |
20040024395 | Ellman et al. | Feb 2004 | A1 |
20040044340 | Francischelli | Mar 2004 | A1 |
20040049179 | Francischelli | Mar 2004 | A1 |
20040078069 | Francischelli | Apr 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040087940 | Jahns | May 2004 | A1 |
20040111136 | Sharkey et al. | Jun 2004 | A1 |
20040111137 | Sharkey et al. | Jun 2004 | A1 |
20040116923 | Desinger | Jun 2004 | A1 |
20040138621 | Jahns | Jul 2004 | A1 |
20040138656 | Francischelli | Jul 2004 | A1 |
20040143260 | Francischelli | Jul 2004 | A1 |
20040186465 | Francischelli | Sep 2004 | A1 |
20040193151 | To | Sep 2004 | A1 |
20040204679 | Visconti et al. | Oct 2004 | A1 |
20040215183 | Hoey | Oct 2004 | A1 |
20040220560 | Briscoe | Nov 2004 | A1 |
20040236322 | Mulier | Nov 2004 | A1 |
20040243163 | Casiano et al. | Dec 2004 | A1 |
20040267326 | Ocel | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050037672 | Caveney et al. | Feb 2005 | A1 |
20050069437 | Mittelstein et al. | Mar 2005 | A1 |
20050090815 | Francischelli | Apr 2005 | A1 |
20050090816 | McClurken et al. | Apr 2005 | A1 |
20050143729 | Francischelli | Jun 2005 | A1 |
20050171525 | Rioux et al. | Aug 2005 | A1 |
20050209564 | Bonner | Sep 2005 | A1 |
20050222566 | Nahahira | Oct 2005 | A1 |
20050267454 | Hissong | Dec 2005 | A1 |
20050277970 | Norman et al. | Dec 2005 | A1 |
20060009756 | Francischelli | Jan 2006 | A1 |
20060009759 | Christian | Jan 2006 | A1 |
20060064085 | Schechter et al. | Mar 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060149225 | McClurken | Jul 2006 | A1 |
20070016185 | Tullis et al. | Jan 2007 | A1 |
20070049920 | Bloom et al. | Mar 2007 | A1 |
20070049999 | Esch | Mar 2007 | A1 |
20070093808 | Mulier et al. | Apr 2007 | A1 |
20070112343 | Mische et al. | May 2007 | A1 |
20070118114 | Miller et al. | May 2007 | A1 |
20070149965 | Gallo, Sr. et al. | Jun 2007 | A1 |
20070208332 | Mulier et al. | Sep 2007 | A1 |
20080004656 | Livneh | Jan 2008 | A1 |
20080015563 | Hoey et al. | Jan 2008 | A1 |
20080058796 | O'Brien et al. | Mar 2008 | A1 |
20080071270 | Desinger et al. | Mar 2008 | A1 |
20080103494 | Rioux et al. | May 2008 | A1 |
20080207208 | Schutz | Aug 2008 | A1 |
20080208189 | Van Wyk | Aug 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20090222001 | Greeley et al. | Sep 2009 | A1 |
20090264879 | Bloom et al. | Oct 2009 | A1 |
20090270896 | Sullivan et al. | Oct 2009 | A1 |
20090306655 | Stangenes | Dec 2009 | A1 |
20100069904 | Cunningham | Mar 2010 | A1 |
20100100095 | Bloom et al. | Apr 2010 | A1 |
20100160906 | Jarrard | Jun 2010 | A1 |
20100168743 | Stone et al. | Jul 2010 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20100241178 | Tilson et al. | Sep 2010 | A1 |
20100298763 | Adams et al. | Nov 2010 | A1 |
20110009856 | Jorgensen et al. | Jan 2011 | A1 |
20110028965 | McClurken | Feb 2011 | A1 |
20110137298 | Nguyen et al. | Jun 2011 | A1 |
20110178515 | Bloom et al. | Jul 2011 | A1 |
20110196367 | Gallo | Aug 2011 | A1 |
20110270250 | Horner | Nov 2011 | A1 |
20110295249 | Bloom et al. | Dec 2011 | A1 |
20110301578 | Muniz-Medina et al. | Dec 2011 | A1 |
20110319889 | Conley et al. | Dec 2011 | A1 |
20120004657 | Conley et al. | Jan 2012 | A1 |
20120221035 | Harvey | Feb 2012 | A1 |
20120071712 | Manwaring et al. | Mar 2012 | A1 |
20120095461 | Herscher et al. | Apr 2012 | A1 |
20120101496 | McClurken et al. | Apr 2012 | A1 |
20120116397 | Rencher et al. | May 2012 | A1 |
20120143293 | Mauch et al. | Jun 2012 | A1 |
20120151165 | Conley et al. | Jun 2012 | A1 |
20120157989 | Stone et al. | Jun 2012 | A1 |
20120184983 | Chang et al. | Jul 2012 | A1 |
20120191084 | Davison et al. | Jul 2012 | A1 |
20120191117 | Palmer et al. | Jul 2012 | A1 |
20120253343 | McClurken et al. | Oct 2012 | A1 |
20130066310 | Manwaring et al. | Mar 2013 | A1 |
20130158535 | Denis et al. | Jun 2013 | A1 |
20130197502 | Manwaring et al. | Aug 2013 | A1 |
20140005667 | Stulen | Jan 2014 | A1 |
20140188105 | Conley et al. | Jul 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20190105095 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
62568953 | Oct 2017 | US |