Hemostatic thermal sealer

Information

  • Patent Grant
  • 12023082
  • Patent Number
    12,023,082
  • Date Filed
    Thursday, August 2, 2018
    6 years ago
  • Date Issued
    Tuesday, July 2, 2024
    4 months ago
Abstract
A hemostatic sealer includes a handle having a switch to activate a source of thermal energy and a thermal assembly coupled to the handle. The thermal assembly includes an electrically resistive material disposed on an electrically insulative substrate. The resistive material is coupled to the switch to receive the source of thermal energy.
Description
BACKGROUND

This disclosure relates generally to the field of medical devices, systems and methods for use in surgical procedures. More specifically, this disclosure relates to surgical devices, units, systems and methods that can provide for hemostasis or sealing of bodily tissues including bone.


The management and control of intraoperative bleeding can include the techniques of coagulation, hemostasis, or sealing of tissues and are often performed with the aid of electrodes energized from a suitable power source. Typical electrosurgical devices apply an electrical potential difference or signal between an active electrode and a return electrode on a patient's grounded body or between an active electrode and a return electrode on the device to deliver electrical energy to the area where tissue is to be affected. Electrosurgical devices pass electrical energy through tissue between the electrodes to provide coagulation to control bleeding and hemostasis to seal tissue. The electrosurgical devices are usually held by the surgeon and connected to the power source, such as an electrosurgical unit having a power generator, via cabling.


Dry-tip electrosurgical devices can adversely affect tissue and surgical procedures by desiccating or perforating tissue, causing tissue to stick to the electrodes, burning or charring tissue, and generating smoke at the surgical site. More recently, fluid-assisted electrosurgical devices have been developed that use saline to inhibit such undesirable effects as well as to control the temperature of the tissue being treated and to electrically couple the device to the tissue. Fluid-assisted electrosurgical devices have been developed which, when used in conjunction with an electrically conductive fluid such as saline, may be moved along a tissue surface without cutting the tissue to seal tissue to inhibit blood and other fluid loss during surgery.


Fluid-assisted electrosurgical devices apply radiofrequency (RF) electrical energy and electrically conductive fluid to provide for sealing of soft tissues and bone in applications of orthopedics (such as total hip arthroplasty, or THA, and total knee arthroplasty, or TKA), spinal oncology, neurosurgery, thoracic surgery, and cardiac implantable electronic devices as well as others such as general surgery within the human body. The combination of RF energy and the electrically conductive fluid permits the electrosurgical device to operate at approximately 100 degrees Celsius, which is nearly 200 degrees Celsius less than traditional electrosurgical devices. Typically, hemostasis is performed with fluid-assisted devices having electrodes in the bipolar arrangement that are referred to as bipolar sealers. By controlling bleeding, bipolar sealers have been demonstrated to reduce the incidence of hematoma and transfusions, help maintain hemoglobin levels, and reduce surgical time in a number of procedures, and may reduce the use of hemostatic agents.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description.


An aspect of the present disclosure includes a surgical system, method, and surgical devices that can provide the therapeutic analog of traditional electrosurgical hemostatic sealing without dispersing or constantly dispersing fluid such as saline or deionized water at the surgical site. The use of the surgical device as a hemostatic sealer simplifies surgical preparation and procedures as it reduces the use of suction, and can eliminate hot saline at the surgical site. Further, the surgical device provides precise temperature control in various conditions and targeted treatment. The surgical device can be more ergonomic via a lighter attached cable, such as a cable without a saline tube, or a cordless handpiece.


In one aspect, the disclosure is directed to a surgical device configured as a hemostatic sealer. The hemostatic sealer includes a handle having a switch to activate a source of thermal energy and a thermal assembly coupled to the handle. The thermal assembly includes an electrically resistive material disposed on an electrically insulative substrate. The resistive material is coupled to the switch to receive the source of thermal energy.


In another aspect, the disclosure is directed to a surgical device configured as a hemostatic sealer. The surgical device includes a handle having a switch, a shaft extending distally from the handle, and a thermal assembly operably coupled to the distal end of the shaft. The thermal assembly includes a heating element and an electrically insulative substrate. The substrate provides a shape of the thermal assembly. The heating element includes an electrically resistive material electrically coupled to the switch and disposed on the substrate.


The surgical device includes a thermal assembly that provides even thermal therapy and bleeding management with precise temperature control that will interface with tissue. Activation of the thermal assembly quickly heats a heating element into the temperature range of about 80 degrees Celsius to 110 degrees Celsius, i.e., the known temperature range for good hemostasis, and will quickly reduce heat at deactivation of the thermal assembly to avoid inadvertent thermal damage to tissue, the surgical drape, or other surgical equipment. In one example, the thermal assembly heats to the selected thermal range upon one second of activation and cools to a safe temperature within one second of deactivation.


Precise temperature control is provided with two features. First, the heating assembly includes a heating element formed of a thin electrically resistive material on a thermally insulative and durable substrate. The heating element is coupled to a source of electrical energy, which is not limited to the RF range. In one example, the heating element includes a thin nickel-chrome plating in the range of 0.001 to 0.005 inches thick on a ceramic substrate. Second, the resistance or impedance of the heating element changes with temperature, and the resistance or impedance is monitored with a controller. The controller maintains the target temperature in the thermal assembly via selective operation of the source of electrical energy. In one example, the source of electrical energy and the controller can be included within a handheld surgical device.


The surface of the thermal assembly is smooth and slides along the tissue without saline. In one example, the surface of the thermal assembly includes a lubricious or non-stick coating to improve lubricity.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view illustrating a surgical system of the disclosure.



FIG. 2 is a schematic view illustrating an example architecture of the surgical system of FIG. 1.



FIG. 3 is a perspective view illustrating an example of a surgical device of the system of FIG. 1 including a thermal assembly.



FIG. 4 is a schematic view illustrating example features of the thermal assembly of the surgical device of FIG. 3.



FIGS. 5A and 5B are perspective views of an example heating assembly suitable for use with surgical device of FIG. 3.



FIGS. 6A and 6B are perspective views of another example heating assembly suitable for use with surgical device of FIG. 3.





DETAILED DESCRIPTION

Throughout the description, like reference numerals and letters indicate corresponding structure throughout the several views. Also, any particular features(s) of a particular exemplary embodiment may be equally applied to any other exemplary embodiment(s) of this specification as suitable. That is, features between the various exemplary embodiments described herein are interchangeable as suitable and may not be exclusive. From the specification, it should be clear that the terms “distal” and “proximal” are made in reference to a user of the device.



FIG. 1 illustrates a surgical system 10 that can include a handheld surgical device to deliver thermal energy to provide hemostasis or sealing of body tissues including bone without the use or fluid or without the constant dispersal of fluid. In one example, the system 10 can be included within a handheld surgical device. In still another example, the system 10 can include a selectively dispersed fluid, e.g. a fluid can be dispersed at the discretion of the operator of the system 10 rather than constantly dispersed while the device is activated.


The system 10 includes a source of thermal energy 12 coupled to a heating element 14. In one example, the source of thermal energy 12 includes a source of electrical energy electrically coupled to the heating element 14. The heating element 14 can be configured as part of heating assembly on a distal tip of a surgical device. The heating element 14 can include a resistive material that is configured to rise in temperature when an electrical current is passed through the heating element 14. The source of thermal energy 12 can be selectively activated via a switch to apply the electrical current to the heating element 14. Activation of the thermal assembly quickly heats the heating element 14 into the temperature range of about 80 degrees Celsius to 110 degrees Celsius, such as to a preselected temperature within that range. In one example, the heating element include a low thermal mass or heat capacity so that the heating element 14 heats to the preselected temperature or temperature range upon one second of activation and cools to a safe temperature within one second of deactivation.


The system 10 includes a temperature detection mechanism 16 operably coupled to detect the temperature of the heating element 14. The temperature detection mechanism 16 can directly or inferentially determine temperature of the heating element 14. In one example, the temperature detection mechanism includes a thermocouple. In another example, the resistance or impedance of the heating element 14 changes with temperature, and the resistance or impedance of the heating element 14 is detected with the temperature detection mechanism 16. The temperature detection mechanism 16 is operably coupled to a controller 18 to monitor the temperature of the heating element 14. The controller 18 can include a processor and memory to execute a set of instructions in an application to monitor and control the temperature of the heating element 14 with the source of thermal energy 12. In some examples, the system 10 can include a display or a data output couplable to an external monitor to provide graphical or indications of temperature or other information as determined by the controller 18.


In some examples, the system 10 may provide for a selective application of fluid if desired by a surgeon. Fluid may be provided from a fluid source that can include a bag of fluid through a drip chamber to delivery tubing and to a handheld surgical device. In one example, the fluid includes saline and can include physiologic saline such as sodium chloride (NaCl) 0.9% weight/volume solution. Saline is an electrically conductive fluid, and other suitable electrically conductive fluids can be used. In other examples, the fluid may include a nonconductive fluid, such as deionized water.



FIG. 2 illustrates an example system architecture 40, which can correspond with the surgical system 10. System architecture 40 includes a power source 42 operably coupled to a voltage regulator 44. The voltage regulator 44 can be coupled to a temperature sensing module 46, a controller such as microcontroller unit 48, a potentiometer 50 and current source 52. The current source 52 receives a signal from the voltage regulator 44 and power source 42 to provide an electrical signal to a thermal assembly 54 including a heating element. In one example, the current source 52 can include a low-dropout, or LDO, regulator, which is a direct current (DC) linear voltage regulator that can regulate an output voltage even when a supply voltage is very close to the output voltage. The electrical signal heats the thermal assembly 54 to a preselected temperature or to a temperature within a selected temperature range. The temperature sensing module 46 detects the temperature of the thermal assembly 54 and provides the microcontroller unit 48 an output of representative of the detected temperature. The microcontroller unit 48 can monitor the temperature and selectively adjust the temperature of the thermal assembly 54 such as by adjusting the potentiometer 50 to control the current source 52.



FIG. 3 illustrates an example of a surgical device 100 having thermal assembly 102 that can be used in conjunction with system 10. Thermal assembly 102 includes an exposed conductive surface configured to be electrically coupled to a source of electrical energy supplied from a power source that is not necessarily in the RF range. Thermal assembly 102 can be configured to provide for a robust electrode/tissue interface. The thermal assembly 102 may be formed to optimize hemostatic sealing of bone and tissue or coagulation without fluid, in conjunction with selected delivery of fluid, or for a particular application or anatomical geometry, or to perform other functions such as blunt dissection.


Another example of a surgical device can include a thermal assembly mounted on jaws or clamps that are movable with respect to each other. For example, jaws or clamps can selectively pinch tissue with a thermal assembly. Other examples are contemplated.


Surgical device 100 extending along longitudinal axis A includes a handpiece 104. Handpiece 104 includes a handle 106 that can include a finger grip portion with ridges (not shown) on the lower surface or bottom B of the device 100 and intended to be held in the surgeon's hand. In the illustrated example, the device 100 is cordless and includes the features of a thermal control system within the handpiece 104. The handpiece 104 includes a proximal end 108 for balance and, in one example, can include an electrical connector for electrically coupling a cable to the device 100 to supply power. Handpiece 104 may be configured to enable a user of device 100 to hold and manipulate device 100 between the thumb and index finger like a writing instrument or an electrosurgical pen. Handpiece 104 may comprise a sterilizable, rigid, electrically insulative material, such as a synthetic polymer (e.g., polycarbonate, acrylonitrile-butadiene-styrene).


The handle 106 can include an upper surface, or top T, that is opposite bottom B. A controller 110, such as a set of one or more switches 112 coupled to circuitry such as on a printed circuit board, in the example is disposed on top T and configured to be operated by the user's thumb or index finger to control one or more functions of the device 100. In the example, the switch can provide binary activation (on/off) control for each function and can be configured as a pushbutton. For example, switch 112 can be pushed to activate the thermal assembly 102 and released to deactivate the thermal assembly 102. Another switch (not shown) can be used selectively activate fluid dispersal. Other functions of the device are contemplated.


The surgical device 100 can include a probe assembly 120 extending distally from the handpiece 104. The probe assembly 120 in the example includes a shaft 122. The shaft 122, or other portions of device 100 may include one or more elements forming a subassembly to be generally one or more of rigid, bendable, fixed-length, variable-length (including telescoping or having an axially-extendable or axially-retractable length) or other configuration.


In one example, the handle 106 and shaft 122 can be formed from an electrically or thermally insulative material such as a high temperature micromolded polymer. Example insulative materials can include polytetrafluoroethylene (PTFE), polycarbonate (PC), polyoxymethylene (POM or acetal), or polyether ether ketone (PEEK).


The shaft 122 is configured to communicate a source of thermal energy to the thermal assembly 102. The shaft 122 carries one or more electrical conductors to a distal end 124 including the thermal assembly 102. Electrical pathways of the handpiece 104 and probe assembly 120 can be formed as conductive arms, wires, traces, other conductive elements, and other electrical pathways formed from electrically conductive material such as metal and may comprise stainless steel, titanium, gold, silver, platinum or any other suitable material.


In examples of the device 100 that can selectively disperse fluid, the shaft 122 includes a fluid lumen extending into the handpiece 104 for fluidly coupling to delivery tubing in a cable extending from proximal end 108. The fluid lumen includes can an outlet port disposed on or proximate the thermal assembly 102 for selectively dispersing fluid in the surgical site. In one example, fluid lumen can be included in a hypotube configured to mate with delivery tubing to supply fluid to thermal assembly 102. Hypotube can be constructed from non-conductive commonly used flexible tubing, such as polyvinyl chloride (PVC), PEEK, or a thermoplastic elastomer (TPE). In one example, the TPE is a polyether block amide (PEBA) available under the trade designation PEBAX from Arkema of Colombes, France.



FIG. 4 illustrates an example thermal assembly 140, which can correspond with thermal assembly 102. Thermal assembly 140 includes a heating element 142 disposed on a substrate 144. The heating element 142 can include a set of tabs 146 that are configured to be communicatively coupled to a source of thermal energy. The thermal energy can be passed through the heating element 142 between the tabs 146. Various configurations and shapes of the thermal assembly 140 are contemplated, and this disclosure includes some examples of the configurations and shapes.


In one example, the source of thermal energy is an electrical current. The heating element 142 is formed of an electrically resistive material. The tabs 146 are couplable to electrical conductors in the shaft 122 and in electrical communication with the heating element 142. The electrical current is passed through the heating element 142 between the tabs 146 to heat the thermal assembly 140. In this example, electrically resistive material has a low thermal mass, or heat capacity, and can change temperature quickly depending on whether a current is applied. Additionally, the electrically resistive material can change resistance or impedance based on its temperature. In one example, the temperature of the heating element 142 can be monitored inferentially by detecting resistance or impedance of the heating element 142.


In one example, the heating element 142 is constructed from a material, such as an alloy, having a high resistivity. An example of an alloy having a high resistivity includes a nickel chrome, or nichrome, alloy. Other examples are contemplated. In one example, the heating element 142 is configured as a plating on the substrate 144. In other examples, the heating element 142 can be configured as a wire. An example thickness of a nichrome plating may be in a range of 0.001 to 0.005 inches. Other features of the heating element besides resistivity can include temperature coefficient of resistivity and corrosion resistance.


The substrate 144 in the example can be selected as having high thermal insulative properties as well as electrically insulative properties and durability. Examples of substrate 144 can include ceramics, glass, and plastics that are suitable for receiving a plating of resistive material. The substrate can be configured in a shape that is suited for the particular application of the surgical device 100. In some examples of a surgical device 100 in which fluid is selectively provided to the surgical site, the substrate may include an outlet port in fluid communication with the fluid lumen to disperse fluid from the heating assembly 102.


Portions of the thermal assembly 140 that interface with tissue are made smooth to improve lubricity so the thermal assembly 140 may slide along tissue without sticking. In one example, the surface of the thermal assembly 140 can include a lubricious coating 148 such as PTFE to further improve lubricity. The thermal assembly 140 is configured to slide smoothly along tissue without the use of saline.



FIGS. 5A and 5B illustrate an example of a thermal assembly 160 that can correspond with thermal assemblies 140 and 102. The thermal assembly 160 includes a general shape of a blunted rectangular prism having a distal tip 170 and a proximal end 172. The thermal assembly 160 includes a blunted substrate 162 formed from a thermally insulative, electrically insulative, and durable material such as a ceramic, glass, plastic, or other material. A heating element 164 is plated over the distal tip 170 of the substrate 162 and can be made of a resistive material such as thin nichrome. The heating element 164 can be electrically coupled to an electrical signal, such as a current source, via tabs 166 on opposite sides of the substrate 162 proximate the proximal end 172.



FIGS. 6A and 6B illustrate another example of a thermal assembly 180 that can correspond with thermal assemblies 140 and 102. The thermal assembly 180 includes a general shape of a blunted ogive or paraboloid having a distal tip 190 and a generally circular proximal end 192. The thermal assembly 180 includes a blunted substrate 182 formed from a thermally insulative, electrically insulative, and durable material such as a ceramic, glass, plastic, or other material. A heating element 184 is plated as a single electrical path configured as double helical trace over the distal tip 190 of the substrate 182 and can be made of a resistive material such as thin nichrome. The heating element 184 can be electrically coupled to an electrical signal, such as a current source, via tabs 186 on opposite sides of the substrate 182 proximate the proximal end 192. The tabs 186 in the example generally correspond with ends of the helical trace.


In one example, thermal assemblies 160, 180 can be attached to a shaft, such as shaft 122, and heating elements 164, 184 can be electrically coupled to electrical pathways within the shaft 122. Thermal assemblies 160, 180 can include lubricious coatings (not shown) such as PTFE over the heating elements 164, 184 to improve lubricity. Lubricious coatings may also cover the substrates 162, 182.


Although the present disclosure has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A surgical device, comprising: a cordless handpiece having a handle, a rigid shaft, and a fluidless thermal assembly including a heating element and an electrically insulative and thermally insulative substrate, the thermal assembly comprising a blunted rectangular prism having a top generally planar face and an opposing bottom generally planar face,the handle including a switch;the rigid shaft extending axially and distally from the handle, the shaft including a distal end; andthe thermal assembly operably coupled to the distal end of the shaft via a first tab projecting proximally from the top face, and a second tab projecting proximally from the bottom face, wherein the first and second tabs are couplable to electrical conductors within the shaft such that electrical current is passed through the heating element between the first and second tabs to heat the thermal assembly,wherein the substrate provides a smooth and blunted shape along a length of the thermal assembly and the heating element includes an electrically resistive material electrically coupled to the switch and plated as a smooth plating surface extending from the width of the substrate, the resistive material is 0.001 to 0.005 inches thick on the substrate, the surgical device not including a fluid outlet port such that the thermal assembly is configured to provide hemostatic sealing of bone or tissue without application of fluid.
  • 2. The surgical device of claim 1 including a controller to monitor and adjust temperature of the thermal assembly.
  • 3. The surgical device of claim 2 wherein the heating element provides a temperature in a temperature range of 80 degree Celsius and 110 degrees Celsius when activated.
  • 4. The surgical device of claim 1 wherein the resistive material is a nickel chrome alloy.
  • 5. The surgical device of claim 1 wherein the thermal insulator is ceramic.
  • 6. The surgical device of claim 1 wherein the thermal assembly includes a lubricious coating.
  • 7. The surgical device of claim 6 wherein the lubricious coating includes PTFE.
  • 8. The surgical device of claim 1, wherein the thermal assembly extends axially and distally from the shaft.
  • 9. The surgical device of claim 1, wherein the set of tabs are included on opposite sides of the substrate.
  • 10. The surgical device of claim 1, wherein the set of tabs are included with the heating element.
  • 11. A hemostatic sealer, comprising: a cordless handpiece having a source of energy, a handle, and a thermal assembly including: an electrically insulative and thermally insulative smooth and blunted substrate, andan electrically resistive material plated as a smooth exposed plating surface along a length of the substrate,the thermal assembly comprising a blunted rectangular prism having a top generally planar face and an opposing bottom generally planar face;the handle having a binary activation switch to activate the source of energy, the handle configured to be held in a user's hand and operated to control one function of the hemostatic sealera rigid shaft extending axially and distally from the handle, the shaft including a distal end; andthe thermal assembly coupled to the distal end of the rigid shaft via a first tab projecting proximally from the top face, and a second tab projecting proximally from the bottom face, wherein the first and second tabs are couplable to electrical conductors within the rigid shaft such that electrical current is passed through the resistive material between the first and second tabs to heat the thermal assembly, the thermal assembly having a length from the distal end, the substrate having a width, the resistive material operably extending from the width of the substrate and coupled to the switch to receive energy from the source of energy, the hemostatic sealer not including a fluid outlet port such that the thermal assembly is configured to provide hemostatic sealing of bone or tissue without application of fluid.
  • 12. The hemostatic sealer of claim 11 wherein the source of energy is included in the handle.
  • 13. The hemostatic sealer of claim 11, wherein the thermal assembly extends axially and distally from the shaft.
  • 14. The hemostatic sealer of claim 11, wherein the set of tabs are included on opposite sides of the substrate.
  • 15. The hemostatic sealer of claim 11, wherein the set of tabs are included with the resistive material.
CROSS REFERENCE TO RELATED APPLICATION

This Non-Provisional Utility application claims benefit to U.S. Provisional Application No. 62/568,953, filed Oct. 6, 2017, titled “HEMOSTATIC SURGICAL SEALER,” the entirety of which incorporated herein by reference.

US Referenced Citations (592)
Number Name Date Kind
2888928 Seiger Apr 1957 A
3223088 Barber et al. Dec 1965 A
3682130 Jeffers Aug 1972 A
3750650 Ruttgers Aug 1973 A
3955284 Balson May 1976 A
4014342 Staub et al. Mar 1977 A
4195637 Gruntzig et al. Apr 1980 A
4207897 Loyd et al. Jun 1980 A
4244371 Farin Jan 1981 A
4248224 Jones Feb 1981 A
4275734 Mitchiner Jun 1981 A
4276874 Wolvek et al. Jul 1981 A
4278090 Van Gerven Jul 1981 A
4321931 Hon Mar 1982 A
4342218 Fox Aug 1982 A
4355642 Alfemess Oct 1982 A
4377168 Rzasa et al. Mar 1983 A
4381007 Doss Apr 1983 A
4519389 Gudkin et al. May 1985 A
4598698 Siegmund Jul 1986 A
4601290 Effron et al. Jul 1986 A
4664110 Schanzlin May 1987 A
4671274 Scrochenko Jun 1987 A
4708126 Toda et al. Nov 1987 A
4736749 Lundback Apr 1988 A
4779611 Grooters et al. Oct 1988 A
4802475 Weshahy Feb 1989 A
4823791 D'Amelio Apr 1989 A
4878493 Pasternak et al. Nov 1989 A
4919129 Weber et al. Apr 1990 A
4931047 Broadwin et al. Jun 1990 A
4932952 Wojciechowicz, Jr. Jun 1990 A
4943290 Rexroth et al. Jul 1990 A
4950232 Ruzicka et al. Aug 1990 A
4985030 Melzer et al. Jan 1991 A
4998933 Eggers et al. Mar 1991 A
5112299 Pascaloff May 1992 A
5167659 Ohtomo et al. Dec 1992 A
5190541 Abele et al. Mar 1993 A
5195959 Smith Mar 1993 A
5230704 Moberg et al. Jul 1993 A
5234428 Kaufman Aug 1993 A
5254117 Rigby et al. Oct 1993 A
5275609 Pingleton et al. Jan 1994 A
5281215 Midler Jan 1994 A
5309896 Moll et al. May 1994 A
5316000 Chapelon et al. May 1994 A
5317878 Bradshaw et al. Jun 1994 A
5318525 West et al. Jun 1994 A
5322520 Milder Jun 1994 A
5323781 Ideker et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5324284 Imran Jun 1994 A
5324286 Fowle Jun 1994 A
5330521 Cohen Jul 1994 A
5334181 Rubinsky et al. Aug 1994 A
5334193 Nardella Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5348554 Imran et al. Sep 1994 A
5352222 Rydell et al. Oct 1994 A
5353783 Nakao et al. Oct 1994 A
5354258 Dory Oct 1994 A
5361752 Moll et al. Nov 1994 A
5376078 Dinger et al. Dec 1994 A
5383874 Jackson et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5395312 Desai Mar 1995 A
5396887 Imran Mar 1995 A
5397304 Truckai Mar 1995 A
5400770 Nakao et al. Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403309 Coleman et al. Apr 1995 A
5403311 Abele et al. Apr 1995 A
5405348 Anspach et al. Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5413556 Whittingham May 1995 A
5417709 Slater May 1995 A
5423807 Mlilder Jun 1995 A
5423811 Imran et al. Jun 1995 A
5427119 Swartz et al. Jun 1995 A
5431168 Webster, Jr. Jul 1995 A
5431649 Mulier et al. Jul 1995 A
5433708 Nichols et al. Jul 1995 A
5435308 Gallup et al. Jul 1995 A
5437651 Todd et al. Aug 1995 A
5441503 Considine et al. Aug 1995 A
5443463 Stem et al. Aug 1995 A
5443470 Stem et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5450843 Moll et al. Sep 1995 A
5452582 Longsworth Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5460629 Shlain et al. Oct 1995 A
5462545 Wang et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5469853 Law et al. Nov 1995 A
5472876 Fahy Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478330 Imran et al. Dec 1995 A
5486193 Bourne et al. Jan 1996 A
5487385 Avitall Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5492527 Glowa et al. Feb 1996 A
5496271 Burton et al. Mar 1996 A
5496312 Klicek Mar 1996 A
5497774 Swartz et al. Mar 1996 A
5498248 Milder Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5505500 Webb et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5516505 McDow May 1996 A
5520682 Baust et al. May 1996 A
5522870 Ben-Zion Jun 1996 A
5536267 Edwards et al. Jul 1996 A
5540562 Giter Jul 1996 A
5540708 Lim et al. Jul 1996 A
5542196 Hirsch et al. Aug 1996 A
5542945 Fritzsch Aug 1996 A
5545195 Lennox et al. Aug 1996 A
5545200 West et al. Aug 1996 A
5549661 Kordis et al. Aug 1996 A
5555883 Avitall Sep 1996 A
5556397 Long et al. Sep 1996 A
5558671 Yates Sep 1996 A
5560362 Silwa, Jr. et al. Oct 1996 A
5560373 DeSantis Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5562720 Stem et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5569254 Carlson et al. Oct 1996 A
5571088 Lennox et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573532 Chang et al. Nov 1996 A
5575766 Swartz et al. Nov 1996 A
5575788 Baker et al. Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5578007 Imran Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5590657 Cain et al. Jan 1997 A
5595183 Swanson et al. Jan 1997 A
5599346 Edwards et al. Feb 1997 A
5605539 Buelna et al. Feb 1997 A
5607462 Imran Mar 1997 A
5609573 Sandock Mar 1997 A
5617854 Munsif Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5630837 Crowley May 1997 A
5643197 Brucker et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5656029 Imran et al. Aug 1997 A
5658278 Imran et al. Aug 1997 A
5637090 McGee et al. Sep 1997 A
5671747 Connor Sep 1997 A
5673695 McGee et al. Oct 1997 A
5676662 Fleischhacker et al. Oct 1997 A
5676692 Sanghvi et al. Oct 1997 A
5676693 Lafontaine Oct 1997 A
5678550 Bassen et al. Oct 1997 A
5680860 Imran Oct 1997 A
5681278 Igo et al. Oct 1997 A
5681294 Osborne et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5687737 Branham et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5690611 Swartz et al. Nov 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697925 Taylor Dec 1997 A
5697927 Imran et al. Dec 1997 A
5697928 Walcott et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5712543 Sjostrom Jan 1998 A
5713942 Stem Feb 1998 A
5716389 Walinsky et al. Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5718701 Shai et al. Feb 1998 A
5720775 Lanard Feb 1998 A
5722402 Swanson et al. Mar 1998 A
5730074 Peter Mar 1998 A
5730127 Avitall Mar 1998 A
5730704 Avitall Mar 1998 A
5733280 Avitall Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5743903 Stem et al. Apr 1998 A
5755760 Maguire et al. May 1998 A
5766167 Eggers et al. Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5782828 Chen et al. Jul 1998 A
5785706 Bednarek Jul 1998 A
5788636 Curley Aug 1998 A
5792140 Tu et al. Aug 1998 A
5792167 Kablik et al. Aug 1998 A
5797905 Fleischman et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5735290 Nelson et al. Sep 1998 A
5800428 Nelson et al. Sep 1998 A
5800482 Pomeranz et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810809 Rydell Sep 1998 A
5814044 Hooven Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836947 Fleischman et al. Nov 1998 A
5840030 Ferek-Petric et al. Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843152 Tu et al. Dec 1998 A
5844349 Oakley et al. Dec 1998 A
5846187 Wells et al. Dec 1998 A
5846191 Wells et al. Dec 1998 A
5849023 Mericle Dec 1998 A
5849028 Chen Dec 1998 A
5861021 Thome et al. Jan 1999 A
5871523 Fleischman et al. Feb 1999 A
5871525 Edwards et al. Feb 1999 A
5873845 Cline et al. Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5873886 Larsen et al. Feb 1999 A
5876399 Chia et al. Mar 1999 A
5879295 Li et al. Mar 1999 A
5879296 Ockuly et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5881732 Sung et al. Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5885278 Fleischman Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5895355 Schaer Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5897553 Mulier Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899898 Arless et al. May 1999 A
5899899 Arless et al. May 1999 A
5899915 Saadat May 1999 A
5902289 Swartz et al. May 1999 A
5904681 West, Jr. May 1999 A
5904711 Flom et al. May 1999 A
5906580 Kline-Schoder et al. May 1999 A
5906587 Zimmon May 1999 A
5906606 Chee et al. May 1999 A
5908029 Knudson et al. Jun 1999 A
5913854 Maguire et al. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5916214 Cosio et al. Jun 1999 A
5921924 Avitall Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5925045 Reimels et al. Jul 1999 A
5927284 Borst et al. Jul 1999 A
5931810 Grabek Aug 1999 A
5931848 Saadat Aug 1999 A
5935123 Edwards et al. Aug 1999 A
5944715 Goble et al. Aug 1999 A
5928191 Houser et al. Sep 1999 A
5954661 Greenspon et al. Sep 1999 A
5975919 Laufer Sep 1999 A
5971980 Sherman Oct 1999 A
5971983 Lesh Oct 1999 A
5980516 Mulier et al. Nov 1999 A
5989248 Tu et al. Nov 1999 A
5993412 Deily et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
6004316 Laufer Dec 1999 A
6004319 Goble et al. Dec 1999 A
6007499 Martin Dec 1999 A
6010500 Sherman et al. Jan 2000 A
6012457 Lesh Jan 2000 A
6015391 Rishton et al. Jan 2000 A
6016811 Knopp et al. Jan 2000 A
6018676 Davis et al. Jan 2000 A
6019757 Scheldrup Feb 2000 A
6024733 Eggers et al. Feb 2000 A
6030381 Jones et al. Feb 2000 A
6036687 Laufer et al. Mar 2000 A
6042556 Beach et al. Mar 2000 A
6042593 Storz et al. Mar 2000 A
6048333 Lennox et al. Apr 2000 A
6053923 Veca et al. Apr 2000 A
6056744 Edwards May 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble May 2000 A
6056747 Saadat et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068653 LaFontaine May 2000 A
6083237 Huitema et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6113596 Hooven et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6120496 Whayne et al. Sep 2000 A
6141576 Littmann et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6161543 Cox et al. Dec 2000 A
6165174 Jacobs et al. Dec 2000 A
6190384 Ouchi Feb 2001 B1
6193716 Shannon, Jr. Feb 2001 B1
6210406 Webster Apr 2001 B1
6210410 Farin et al. Apr 2001 B1
6210411 Hofmann et al. Apr 2001 B1
6212426 Swanson Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6231518 Grabek et al. May 2001 B1
6231591 Desai May 2001 B1
6235020 Cheng et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238347 Nix et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238393 Mulier May 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245064 Lesh et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6296638 Davison et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6311692 Vaska et al. Nov 2001 B1
6312383 Lizzi et al. Nov 2001 B1
6314962 Vaska et al. Nov 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6328735 Curley et al. Dec 2001 B1
6328736 Mulier Dec 2001 B1
6332881 Carner et al. Dec 2001 B1
6352533 Ellman et al. Mar 2002 B1
6358248 Mulier Mar 2002 B1
6361531 Hissong Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6371955 Fuimaono et al. Apr 2002 B1
6371956 Wilson et al. Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6385472 Hall et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6409722 Hoey Jun 2002 B1
6413254 Hissong et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6430426 Avitall Aug 2002 B2
6440130 Mulier Aug 2002 B1
6443952 Mulier Sep 2002 B1
6447507 Bednarek et al. Sep 2002 B1
6461314 Pant et al. Oct 2002 B1
6461956 Patterson Oct 2002 B1
6464700 Koblish et al. Oct 2002 B1
6471697 Lesh Oct 2002 B1
6471698 Edwards et al. Oct 2002 B1
6474340 Vaska et al. Nov 2002 B1
6475216 Mulier Nov 2002 B2
6477396 Mest et al. Nov 2002 B1
6478793 Cosman et al. Nov 2002 B1
6484727 Vaska et al. Nov 2002 B1
6488678 Sherman Dec 2002 B2
6488680 Francischelli Dec 2002 B1
6494892 Ireland et al. Dec 2002 B1
6497704 Ein-Gal Dec 2002 B2
6502575 Jacobs et al. Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6517536 Hooven et al. Feb 2003 B2
6537248 Mulier Mar 2003 B2
6537272 Hoey Mar 2003 B2
6558382 Jahns May 2003 B2
6558385 Bloom et al. May 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6579288 Swanson et al. Jun 2003 B1
6585732 Mulier Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6603988 Dowlatshahi Aug 2003 B2
6610055 Swanson et al. Aug 2003 B1
6610060 Mulier Aug 2003 B2
6613048 Mulier Sep 2003 B2
6635034 Cosmescu Oct 2003 B1
6645199 Jenkins et al. Nov 2003 B1
6645202 Pless et al. Nov 2003 B1
6648883 Francischelli Nov 2003 B2
6656175 Francischelli Dec 2003 B2
6663627 Francischelli Dec 2003 B2
6666862 Jain et al. Dec 2003 B2
6679882 Komerup Jan 2004 B1
6682501 Nelson Jan 2004 B1
6689131 McClurken Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6706038 Francischelli Mar 2004 B2
6706039 Mulier Mar 2004 B2
6716211 Mulier Apr 2004 B2
6716215 David et al. Apr 2004 B1
6736810 Hoey May 2004 B2
6752816 Culp et al. Jun 2004 B2
6755827 Mulier Jun 2004 B2
6764487 Mulier Jul 2004 B2
6766817 da Silva Jul 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier Aug 2004 B2
6786906 Cobb Sep 2004 B1
6807968 Francischelli Oct 2004 B2
6827713 Bek et al. Dec 2004 B2
6827715 Francischelli Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6849073 Hoey Feb 2005 B2
6858028 Mulier Feb 2005 B2
6887238 Jahns May 2005 B2
6899711 Stewart et al. May 2005 B2
6911019 Mulier Jun 2005 B2
6915806 Pacek et al. Jul 2005 B2
6916318 Francischelli Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
6936046 Hissong Aug 2005 B2
6942661 Swanson Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949098 Mulier Sep 2005 B2
6953461 Bloom et al. Oct 2005 B2
6960205 Jahns Nov 2005 B2
6962589 Mulier Nov 2005 B2
6979332 Adams Dec 2005 B2
7018241 Caveney et al. Mar 2006 B2
7048687 Reuss et al. May 2006 B1
7066586 da Silva Jun 2006 B2
7156845 Mulier et al. Jan 2007 B2
7166106 Bartel et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7237990 Deng Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7261711 Mulier et al. Aug 2007 B2
7276074 Adams et al. Oct 2007 B2
7309325 Mulier et al. Dec 2007 B2
7311708 McClurken Dec 2007 B2
7322974 Swoyer et al. Jan 2008 B2
7361175 Suslov Apr 2008 B2
7364579 Mulier et al. Apr 2008 B2
7445436 Mittelstein et al. Nov 2008 B2
7537595 McClurken May 2009 B2
7604635 Bloom et al. Oct 2009 B2
7645277 Bloom et al. Jan 2010 B2
7651494 Bloom et al. Jan 2010 B2
7736361 Palanker Jun 2010 B2
7776014 Visconti et al. Aug 2010 B2
7815634 Bloom et al. Oct 2010 B2
7909820 Lipson et al. Mar 2011 B2
7918852 Tullis et al. Apr 2011 B2
7942872 Ein-Gal May 2011 B2
7976544 McClurken et al. Jul 2011 B2
7993337 Lesh Aug 2011 B2
7997278 Utley et al. Aug 2011 B2
7998140 McClurken Aug 2011 B2
8034071 Scribner et al. Oct 2011 B2
8038670 McClurken Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8083736 Bloom et al. Dec 2011 B2
8109956 Shadeck Feb 2012 B2
8172828 Chang et al. Apr 2012 B2
8177783 Davison et al. May 2012 B2
8202288 Adams et al. Jun 2012 B2
8216233 McClurken et al. Jul 2012 B2
8323276 Palanker et al. Dec 2012 B2
8348946 McClurken et al. Jan 2013 B2
8361068 McClurken Jan 2013 B2
8388642 Muni et al. Mar 2013 B2
8414572 Davison et al. Apr 2013 B2
8475455 McClurken et al. Jul 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8568409 O'Brien et al. Oct 2013 B2
8632533 Greeley et al. Jan 2014 B2
8882756 Greeley et al. Nov 2014 B2
8906012 Conley et al. Dec 2014 B2
8920417 Conley et al. Dec 2014 B2
8979842 McNall, III et al. Mar 2015 B2
20010032002 McClurken et al. Oct 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020038129 Peters et al. Mar 2002 A1
20020049483 Knowlton Apr 2002 A1
20020062131 Gallo, Sr. May 2002 A1
20020082643 Kammerer et al. Jun 2002 A1
20020165541 Whitman Nov 2002 A1
20020198519 Qin et al. Dec 2002 A1
20030014050 Sharkey et al. Jan 2003 A1
20030032954 Carranza et al. Feb 2003 A1
20030045872 Jacobs Mar 2003 A1
20030073993 Ciarrocca Apr 2003 A1
20030097129 Davison et al. May 2003 A1
20030144656 Ocel Jul 2003 A1
20030191462 Jacobs Oct 2003 A1
20030204185 Sherman et al. Oct 2003 A1
20030216724 Jahns Nov 2003 A1
20040015106 Coleman Jan 2004 A1
20040015219 Francischelli Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040044340 Francischelli Mar 2004 A1
20040049179 Francischelli Mar 2004 A1
20040078069 Francischelli Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040087940 Jahns May 2004 A1
20040111136 Sharkey et al. Jun 2004 A1
20040111137 Sharkey et al. Jun 2004 A1
20040116923 Desinger Jun 2004 A1
20040138621 Jahns Jul 2004 A1
20040138656 Francischelli Jul 2004 A1
20040143260 Francischelli Jul 2004 A1
20040186465 Francischelli Sep 2004 A1
20040193151 To Sep 2004 A1
20040204679 Visconti et al. Oct 2004 A1
20040215183 Hoey Oct 2004 A1
20040220560 Briscoe Nov 2004 A1
20040236322 Mulier Nov 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040267326 Ocel Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050037672 Caveney et al. Feb 2005 A1
20050069437 Mittelstein et al. Mar 2005 A1
20050090815 Francischelli Apr 2005 A1
20050090816 McClurken et al. Apr 2005 A1
20050143729 Francischelli Jun 2005 A1
20050171525 Rioux et al. Aug 2005 A1
20050209564 Bonner Sep 2005 A1
20050222566 Nahahira Oct 2005 A1
20050267454 Hissong Dec 2005 A1
20050277970 Norman et al. Dec 2005 A1
20060009756 Francischelli Jan 2006 A1
20060009759 Christian Jan 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060106375 Werneth et al. May 2006 A1
20060149225 McClurken Jul 2006 A1
20070016185 Tullis et al. Jan 2007 A1
20070049920 Bloom et al. Mar 2007 A1
20070049999 Esch Mar 2007 A1
20070093808 Mulier et al. Apr 2007 A1
20070112343 Mische et al. May 2007 A1
20070118114 Miller et al. May 2007 A1
20070149965 Gallo, Sr. et al. Jun 2007 A1
20070208332 Mulier et al. Sep 2007 A1
20080004656 Livneh Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080058796 O'Brien et al. Mar 2008 A1
20080071270 Desinger et al. Mar 2008 A1
20080103494 Rioux et al. May 2008 A1
20080207208 Schutz Aug 2008 A1
20080208189 Van Wyk Aug 2008 A1
20080262489 Steinke Oct 2008 A1
20090222001 Greeley et al. Sep 2009 A1
20090264879 Bloom et al. Oct 2009 A1
20090270896 Sullivan et al. Oct 2009 A1
20090306655 Stangenes Dec 2009 A1
20100069904 Cunningham Mar 2010 A1
20100100095 Bloom et al. Apr 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168743 Stone et al. Jul 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100241178 Tilson et al. Sep 2010 A1
20100298763 Adams et al. Nov 2010 A1
20110009856 Jorgensen et al. Jan 2011 A1
20110028965 McClurken Feb 2011 A1
20110137298 Nguyen et al. Jun 2011 A1
20110178515 Bloom et al. Jul 2011 A1
20110196367 Gallo Aug 2011 A1
20110270250 Horner Nov 2011 A1
20110295249 Bloom et al. Dec 2011 A1
20110301578 Muniz-Medina et al. Dec 2011 A1
20110319889 Conley et al. Dec 2011 A1
20120004657 Conley et al. Jan 2012 A1
20120221035 Harvey Feb 2012 A1
20120071712 Manwaring et al. Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101496 McClurken et al. Apr 2012 A1
20120116397 Rencher et al. May 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120151165 Conley et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120184983 Chang et al. Jul 2012 A1
20120191084 Davison et al. Jul 2012 A1
20120191117 Palmer et al. Jul 2012 A1
20120253343 McClurken et al. Oct 2012 A1
20130066310 Manwaring et al. Mar 2013 A1
20130158535 Denis et al. Jun 2013 A1
20130197502 Manwaring et al. Aug 2013 A1
20140005667 Stulen Jan 2014 A1
20140188105 Conley et al. Jul 2014 A1
Related Publications (1)
Number Date Country
20190105095 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
62568953 Oct 2017 US