Heparin prodrugs and drug delivery stents formed therefrom

Information

  • Patent Grant
  • 7396541
  • Patent Number
    7,396,541
  • Date Filed
    Thursday, September 15, 2005
    19 years ago
  • Date Issued
    Tuesday, July 8, 2008
    16 years ago
Abstract
A prodrug comprising a heparin and a drug is provided. The prodrug can be used to form a coating on a medical device. The prodrug can also be used with a polymeric material to form a coating on a medical device. The polymeric material can be a hydrophobic polymer, a hydrophilic polymer, a non-fouling polymer, or combinations thereof. The medical device can be implanted in a human being for the treatment of a disease such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention generally relates to a prodrug formed of heparin and a drug and drug-delivery stents formed from a material having the prodrug.


2. Description of the Background


Blood has a property of being coagulated by the action of various components in blood when it has come into contact with foreign matter. Hence, there is a need for a high anticoagulant property in component materials for medical articles or instruments used on the part coming into contact with blood, as exemplified by artificial hearts, artificial cardiac valves, artificial blood vessels, blood vessel catheters, cannulas, pump-oxygenators, blood vessel by-pass tubes, intraaortic balloon pumps, transfusion instruments and extracorporeal circulation circuits.


Heparin has been commonly used to impart anticoagulant properties to the medical devices, but a systemic use of heparin may undesirably lead to the formation of a large number of bleeding nests. Methods have been developed to minimize side effects associated with the use of heparin with limited success (see, for example, U.S. Pat. Nos. 5,270,064 and 6,630,580). Meanwhile, problems associated with systemic administration of a drug have led to the development of methods for local delivery of the drug. Administration of a pharmacologically active drug directly to a patient may lead to some undesirable consequences because many therapeutic drugs have undesirable properties that may become pharmacological, pharmaceutical, or pharmacokinetic barriers in clinical drug applications.


Therefore, in the art of drug-delivery implantable medical devices, there is a need for minimizing the side effects associated with the use of heparin and a drug.


The present invention addresses such problems by providing a coating composition and a coating formed thereof including a prodrug formed of heparin and a drug.


SUMMARY OF THE INVENTION

Provided herein is a prodrug having heparin and a drug in which the drug and heparin form a hydrolytically or enzymatically unstable linkage. The prodrug can be an ester type prodrug in which the drug molecule and the heparin molecule can form an ester bond formed of the carboxyl group in the heparin molecule and hydroxyl group in the drug or vice versa. The prodrug can be a Schiff-base-type prodrug in which a drug having an amine group and heparin functionalized to have an aldehyde group form a Schiff base or vice versa. The prodrug can also be an acetal- or hemi-acetal-type prodrug in which hydroxyl groups on a drug and heparin functionalized to have an aldehyde group or vice versa form an acetal or hemi-acetal.


The prodrug molecule can be used to form a coating on an implantable device. The prodrug can also be attached to a polymer via the heparin molecule to form a polymer bearing the prodrug defined herein, which can then be coated onto an implantable device. Alternatively, the prodrug can be grafted onto a polymeric coating on an implantable device.


In one embodiment, the prodrug can be used alone to form a coating on a medical device. In another embodiment, the prodrug can be used with a polymeric material to form a coating on a medical device. The polymeric material can be a hydrophobic polymer, a hydrophilic polymer, a non-fouling polymer, or combinations thereof. The medical device can be implanted in a human being for the treatment of a disease such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows heparin's building blocks: glycosamine and iduronic acid.





DETAILED DESCRIPTION
Prodrugs Including Heparin

Many therapeutic drugs have undesirable properties that may become pharmacological, pharmaceutical, or pharmacokinetic barriers in clinical drug applications. Among the various approaches to minimize the undesirable drug properties while retaining the desirable therapeutic activity, a chemical approach using drug derivatization offers perhaps the highest flexibility and has been demonstrated as an important means of improving drug efficacy. The prodrug approach, a chemical approach using reversible derivatives, can be useful in the optimization of the clinical application of a drug. The prodrug approach gained attention as a technique for improving drug therapy in the early 1970s. Numerous prodrugs have been designed and developed since then to overcome pharmaceutical and pharmacokinetic barriers in clinical drug application, such as low oral drug absorption, lack of site specificity, chemical instability, toxicity, and poor patient acceptance (bad taste, odor, pain at injection site, etc.) (Stella V., Pro-drugs: an overview and definition. In: Higuchi T., Stella V., eds. Prodrugs As Novel Drug Delivery Systems. ACS Symposium Series. Washington, D.C.: American Chemical Society; 1975:1-115).


As used herein, the term “prodrug” refers to an agent rendered less active by a chemical or biological moiety, which metabolizes into or undergoes in vivo hydrolysis to form a drug or an active ingredient thereof. The term “prodrug” can be used interchangeably with terms such as “proagent”, “latentiated drugs,” “bioreversible derivatives,” and “congeners” (Harper N. J. Drug latentiation. Prog Drug Res. 1962; 4:221-294; Roche E B. Design of Biopharmaceutical Properties through Prodrugs and Analogs. Washington, D.C.: American Pharmaceutical Association; 1977; Sinkula A A, Yalkowsky S H. Rationale for design of biologically reversible drug derivatives: prodrugs. J Pharm Sci. 1975; 64:181-210). Usually, the use of the term implies a covalent link between a drug and a chemical moiety, though some authors also use it to characterize some forms of salts of the active drug molecule. Although there is no strict universal definition for a prodrug itself, and the definition may vary from author to author, generally prodrugs can be defined as pharmacologically inert chemical derivatives that can be converted in vivo, enzymatically or nonenzymatically, to the active drug molecules to exert a therapeutic effect (Sinkula A A, Yalkowsky S H. Rationale for design of biologically reversible drug derivatives: prodrugs. J Pharm Sci. 1975; 64:181-210; Stella V J, Charman W N, Naringrekar V H. Prodrugs. Do they have advantages in clinical practice? Drugs. 29:455-473 (1985)).


In one embodiment, the prodrug described herein includes a drug and heparin that form a linkage that can be enzymatically or hydrolytically cleaved under in vivo conditions. In some embodiments, the linkage can be an ester group, a Schiff base, or an acetal or hemi-acetal.


In another embodiment, the prodrug described herein can include a drug, a polymer and heparin. Heparin is conjugated or linked to the polymer by a physical or chemical linkage. The drug can link or be attached to the heparin or the polymer. In some embodiments, the linkage between heparin and the polymer can be, for example, an ionic bond, hydrogen bonding, or a chemical bonding such as an ester group, a Schiff base, or an acetal or hemi-acetal. The linkage between the drug and the polymer can be, for example, an ester group, a Schiff base, or an acetal or hemi-acetal, and the linkage between the drug and heparin can be, for example, an ester group, a Schiff base, or an acetal or hemi-acetal.


Heparin

The term “heparin” refers to a heparin molecule, a heparin fragment such as a pentasaccharide, a heparin derivative or a heparin complex. Heparin derivatives can be any functional or structural variation of heparin. Representative variations include alkali metal or alkaline-earth metal salts of heparin, such as sodium heparin (e.g., hepsal or pularin), potassium heparin (e.g., clarin), lithium heparin, calcium heparin (e.g., calciparine), magnesium heparin (e.g., cutheparine), low molecular weight heparin (e.g., ardeparin sodium) with a molecular weight of from about 4,000 to about 5,000 Daltons and high affinity heparin (see, e.g., Scully, et al., Biochem. J. 262:651-658 (1989)). Other examples include heparin sulfate, heparinoids, heparin based compounds and heparin having a hydrophobic counter-ion such as tridodecylmethylammonium and benzalkonium.


Heparin contains both carboxyl groups and hydroxyl groups (FIG. 1). Carboxyl groups can form an ester linkage by reacting with hydroxyl reactive groups on a drug (see Scheme 1, below). Alternatively, the hydroxyl groups on heparin can also form an ester linkage by reacting with carboxyl groups on a drug (see Scheme 2, below).


In some other embodiments, the prodrug described herein can be formed of a functionalized heparin and a drug molecule. For example, Heparin-CHO can react with an amine group on a drug or vice versa to form a Schiff-base-type prodrug (see Scheme 3, below). Heparin-CHO can also react with hydroxyl groups on a drug or vice versa to form acetal or hemi-acetal type prodrugs (see Scheme 4, below).


Modification of Heparin

Heparin is a highly negatively charged molecule very soluble in water. It has some solubility in formamide, but is practically insoluble in other organic solvents. This lack of solubility in organic solvents limits its use in certain applications. The conventional method of improving the solubility of heparin in organic solvents can be achieved by complexing heparin with a positive charged organic moiety such as a quaternary ammonium salt, e.g. tridodecylmethylammoniumchloride and benzalkonium chloride. Some exemplary, useful hydrophobic quaternary ammonium compounds and methods of forming complexes of these compounds with heparin are described in U.S. Pat. Nos. 4,654,327, 4,871,357 and 5,047,020.


Heparin contains many reactive groups such as carboxyl, amine, and hydroxyl groups in its molecular structure. Partially oxidized heparin contains terminal aldehyde groups. Prior to or subsequent to forming the prodrug described above, in some embodiments, heparin can be physically or chemically (e.g. covalently) attached to hydrophilic and hydrophobic polymers by chemical reactions between the functional groups on heparin and the polymer. Heparin can also be copolymerized with other monomer(s) to form a polymer containing heparin. In some other embodiments, attachment of heparin can be accomplished by chemically (e.g. covalently) or physically coupling heparin onto a polymer-coated surface. Physical coupling includes, for example, ionic interaction or hydrogen bonding.


As used herein, the term “hydrophobic” refers to an attribute of a material that defines the degree of water affinity of the molecules of the material. Hydrophobicity and hydrophilicity are relative terms. Generally, hydrophobicity and hydrophilicity of a polymer can be gauged using the Hildebrand solubility parameter δ. The term “Hildebrand solubility parameter” refers to a parameter indicating the cohesive energy density of a substance. The δ parameter is determined as follows:

δ=(ΔE/V)1/2

where δ is the solubility parameter, (cal/cm3)1/2;

  • ΔE is the energy of vaporization, cal/mole; and
  • V is the molar volume, cm3/mole.


If a blend of hydrophobic and hydrophilic polymer(s) is used, whichever polymer in the blend has a lower δ value compared to the δ value of the other polymer in the blend is designated as a hydrophobic polymer, and the polymer with a higher δ value is designated as a hydrophilic polymer. If more than two polymers are used in the blend, then each can be ranked in order of its δ value. In some embodiments, the defining boundary between hydrophobic and hydrophilic can be set at 10.5, (cal/cm3)1/2.


Any biocompatible polymer can be used to modify the hydrophilicity of heparin. Representative hydrophobic polymers include, but are not limited to, poly(ester amide), polystyrene-polyisobutylene-polystyrene block copolymer (SIS), polystyrene, polyisobutylene, polycaprolactone (PCL), poly(L-lactide), poly(D,L-lactide), poly(lactides), polylactic acid (PLA), poly(lactide-co-glycolide), poly(glycolide), polyalkylene, polyfluoroalkylene, polyhydroxyalkanoate, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(4-hyroxyhexanoate), mid-chain polyhydroxyalkanoate, poly (trimethylene carbonate), poly (ortho ester), polyphosphazenes, poly (phosphoester), poly(tyrosine derived arylates), poly(tyrosine derived carbonates), polydimethyloxanone (PDMS), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (HFP), polydimethylsiloxane, poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE), poly(methacrylates) such as poly(butyl methacrylate) (PBMA) or poly(methyl methacrylate) (PMMA), poly(vinyl acetate), poly(ethylene-co-vinyl acetate), poly(ethylene-co-vinyl alcohol), poly(ester urethanes), poly(ether-urethanes), poly(carbonate-urethanes), poly(silicone-urethanes), poly(urea-urethanes) or a combination thereof. Methods of derivatizing heparin with hydrophobic materials or polymers are described in, for example, U.S. Pat. Nos. 4,331,697; 5,069,899; 5,236,570; 5,270,046; 5,453,171; 5,741,881; 5,770,563; 5,855,618; 6,589,943 and 6,630,580.


Any hydrophobic counter ion can be used to modify the hydrophilicity of heparin. For example, hydrophobic quaternary ammonium compounds have been commonly used to form complexes with heparin that are soluble in organic solvents. Some exemplary useful hydrophobic quaternary ammonium compounds and methods of forming complexes of these compounds with heparin are described in U.S. Pat. Nos. 4,654,327, 4,871,357 and 5,047,020.


In some other embodiments, a hydrophilic polymer and/or a non-fouling polymer can be used to modify the hydrophilicity of heparin. Non-fouling or anti-fouling is defined as preventing, delaying or reducing the amount of formation of protein build-up caused by the body's reaction to foreign material. Representative hydrophilic polymers include, but are not limited to, polymers and co-polymers of PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), hydroxyl bearing monomers such as HEMA, hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(ethylene glycol) (PEG), poly(propylene glycol), SIS-PEG, polystyrene-PEG, polyisobutylene-PEG, PCL-PEG, PLA-PEG, PMMA-PEG, PDMS-PEG, PVDF-PEG, PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), poly(L-lysine-ethylene glycol) (PLL-g-PEG), poly(L-g-lysine-hyaluronic acid) (PLL-g-HA), poly(L-lysine-g-phosphoryl choline) (PLL-g-PC), poly(L-lysine-g-vinylpyrrolidone) (PLL-g-PVP), poly(ethylimine-g-ethylene glycol) (PEI-g-PEG), poly(ethylimine-g-hyaluronic acid) (PEI-g-HA), poly(ethylimine-g-phosphoryl choline) (PEI-g-PC), and poly(ethylimine-g-vinylpyrrolidone) (PEI-g-PVP), PLL-co-HA, PLL-co-PC, PLL-co-PVP, PEI-co-PEG, PEI-co-HA, PEI-co-PC, and PEI-co-PVP, hydroxy functional poly(vinyl pyrrolidone), polyalkylene oxide, dextran, dextrin, sodium hyaluronate, hyaluronic acid, elastin, chitosan, acrylic sulfate, acrylic sulfonate, acrylic sulfamate, methacrylic sulfate, methacrylic sulfonate, methacrylic sulfamate and combination thereof. The non-fouling polymer can be, for example, poly(ethylene glycol), poly(alkylene oxide), hydroxyethylmethacrylate (HEMA) polymer and copolymers, poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, phosphoryl choline, choline, or combinations thereof.


The heparin can be readily attached to a polymer or polymeric surface by forming a Schiff base between an amino group and an aldehyde group that heparin and the polymer may have, by forming an amide group between an amine group on a polymer and the carboxyl group on heparin via NHS(N-hydroxysuccinimide) activation (see, e.g., Staros, et al., Anal. Biochem. 156:220-222 (1986)), EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) activation (see, e.g., J. M. Tedder, A. Nechvatal, A. W. Murray, et al. Amino-acids and proteins. In: Basic organic chemistry. London: John Wiley & Sons, Chapter 6, pp. 305-342 (1972); D. Sehgal, I. K. Vijay, Anal. Biochem. 218:87 (1994)) or aziridine chemistry. Some representative methods of attaching heparin to a polymer or polymeric surface are described in U.S. application Ser. No. 10/857,141, filed on May 27, 2004, the teachings of which are incorporated herein by reference.


In a further embodiment, heparin can be derivatized with an unsaturated group such as acrylate, e.g., methacrylate, or vinyl alcohol using the chemistry described above. The heparin functionalized with an unsaturated group can be used in a free radical polymerization to graft or crosslink to a substrate or another formulation component such as a polymer.


Drugs

The drug can be any agent which is biologically active and capable of forming an ester bond with the carboxyl group or hydroxyl group of the heparin molecule or capable of forming a Schiff base or acetal or hemi-acetal with heparin functionalized to have an aldehyde group. In the alternative, the drug can have an aldehyde so as to react with the amino group of heparin-NH2 to form a Schiff base prodrug or an aldehyde or keto group so as to react with the hydroxyl group or groups on heparin to acetal or hemi-acetal prodrug. Most drugs have one of hydroxyl, carboxyl, amino, keto or aldehyde groups and thus can form the prodrugs described herein.


The drug can be, for example, a therapeutic, prophylactic, or diagnostic agent. As used herein, the drug includes a bioactive moiety, derivative, or metabolite of the drug.


Examples of suitable therapeutic and prophylactic agents capable of forming the prodrugs described herein include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Other examples of drugs include antibodies, receptor ligands, and enzymes, adhesion peptides, oligosaccharides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy,


In one embodiment, the drug can be a drug for inhibiting the activity of vascular smooth muscle cells. More specifically, the drug can be aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells for the inhibition of restenosis. The drug can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. For example, the drug can be a prohealing drug that imparts a benign neointimal response characterized by controlled proliferation of smooth muscle cells and controlled deposition of extracellular matrix with complete luminal coverage by phenotypically functional (similar to uninjured, healthy intima) and morphologically normal (similar to uninjured, healthy intima) endothelial cells. The drug can also fall under the genus of antineoplastic, cytostatic or anti-proliferative, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S. A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. Other drugs include calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium.


Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, antibodies such as CD-34 antibody, abciximab (REOPRO), and progenitor cell capturing antibody, prohealing drugs that promotes controlled proliferation of muscle cells with a normal and physiologically benign composition and synthesis products, enzymes, anti-inflammatory agents, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, estradiol, steroidal anti-inflammatory agents, non-steroidal anti-inflammatory, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, ABT-578, clobetasol, cytostatic agents, aspirin, and a combination thereof.


The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.


The dosage or concentration of the drug required to produce a favorable therapeutic effect should be less than the level at which the drug produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the drug can depend upon factors such as the particular circumstances of the patient, the nature of the trauma, the nature of the therapy desired, the time over which the ingredient administered resides at the vascular site, and, if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.


Method of Forming a Prodrug

The carboxylic acid group of the heparin molecule can form an ester bond with a drug molecule via an established procedure in the art of organic synthesis (see, for example, Larock, Comprehensive Organic Transformations: A Guide to Functional Group Preparations, John Wiley & Sons, Inc., Copyright 1999). Generally, the prodrug described herein can be prepared according to Scheme 1, as described below.




embedded image



In Scheme 1, R represents a drug molecule or a derivative thereof. Heparin represents a heparin molecule or a moiety or derivative thereof. X represents a leaving group attached to the drug molecule. For example, X can be OH, a halo group, mesylate or tosyl group, and any other groups capable of leaving the drug molecule in forming the drug/heparin ester bond.


Alternatively, the prodrug can be made via a hydroxyl group in the heparin molecule and a carboxylic acid, as shown in Scheme 2.




embedded image



In Scheme 2, R represents a drug molecule or a derivative thereof. Heparin represents a heparin molecule or a moiety or derivative thereof. X represents a leaving group attached to the carboxyl group of the drug molecule. For example, X can be H, a halo group, a carboxylate, mesylate or tosyl group, or any other group capable of leaving the drug molecule in forming the drug/heparin ester bond.


In some other embodiments, the prodrug described herein can be formed via an imine Schiff base by Heparin-CHO with an amine-containing drug (Scheme 3) or vice versa (Scheme 4). As shown in Scheme 3, the aldehyde group of Heparin-CHO can react with the amine group of an amine-containing drug to form an imine Schiff base, which is hydrolytically unstable and can release the amine-containing drug under in vivo conditions. Scheme 4 shows an alternative strategy for forming the prodrug by the reaction of the amino group of Heparin-NH2 with a keto group on the drug molecule to form an imine Schiff base linkage.




embedded image




embedded image


In still some other embodiments, the prodrug described herein can be formed via an acetal or hemi-acetal by heparin-CHO with a hydroxyl group or hydroxyl groups on a drug (Scheme 5) or vice versa (Scheme 6). The acetal or hemi-acetal can undergo hydrolysis under in vivo conditions to release the drug. As shown in Scheme 5, the aldehyde group of heparin-CHO can react with the hydroxyl group or groups on a drug to form a prodrug with an acetal linkage or hemi-acetal linkage (Scheme 5). Alternatively, the hydroxyl group or groups can react with an aldehyde or keto group on a drug to form a prodrug with an acetal linkage or hemi-acetal linkage (Scheme 6).




embedded image




embedded image


In one embodiment, the hydroxyl group on the C40 position of everolimus can react with the carboxyl group on heparin to form an ester bond so as to form an everolimus/heparin prodrug.


In another embodiment, a drug can form a prodrug with heparin attached to a polymer such as poly(L-lysine-g-ethylene glycol) (PLL-PEG), which can be PLL-g-PEG or PLL-co-PEG. In this embodiment, the amino group in the PLL-PEG can react with a carboxyl group in heparin to form an amide bond via EDC activation and/or NHS activation, as described above. Alternatively, the amino group in the PLL-PEG can react with heparin-CHO to form a Schiff base. A drug such as paclitaxel, docetaxel, or everolimus can then be attached or linked to the heparin via one of the functionalities, such as an amino group, an aldehyde group, a carboxyl group or a hydroxyl group to form a prodrug as per the above description. In addition to heparin, the point of attachment for the drug can also be the PLL backbone via NH2 groups on PLL or PEG via a terminal hydroxyl group, an amino group or an aldehyde group of PEG. Using the same strategy, in some other embodiments, prodrugs can be formed by a drug and a polymer such as poly(L-lysine-hyaluronic acid) (PLL-HA), poly(L-lysine-phosphoryl choline) (PLL-PC), poly(L-lysine-vinylpyrrolidone) (PLL-PVP), poly(ethylimine-ethylene glycol) (PEI-PEG), poly(ethylimine-hyaluronic acid) (PEI-HA), poly(ethylimine-phosphoryl choline) (PEI-PC), and poly(ethylimine-vinylpyrrolidone) (PEI-PVP). These PLL or PEI based copolymers can be graft or block copolymers, e.g., PLL-g-PEG, PLL-g-HA, PLL-g-PC, PLL-g-PVP, PEI-g-PEG, PEI-g-HA, PEI-g-PC, PEI-g-PVP, PLL-co-HA, PLL-co-PC, PLL-co-PVP, PEI-co-PEG, PEI-co-HA, PEI-co-PC, and PEI-co-PVP. Note, in still some other embodiments, the primary amine —NH2 groups in PLL or PEI can be converted to NH3+ ions on the polymer under an acidic pH to bind or link with heparin.


Coatings Having a Prodrug

The prodrug can be used to form a coating on an implantable device. The prodrug can also be attached to a polymer via the heparin molecule to form a polymer bearing the prodrug defined herein, which can then be coated onto an implantable device. Alternatively, the prodrug can be attached or grafted onto a polymeric coating on an implantable device.


The prodrug provided herein can be used alone to form a coating on a medical device. The prodrug can also be used in combination with a polymeric material. The prodrug can be blended with a polymeric coating material or deposited as a coating on top of a polymeric coating which itself may optionally include a drug. The polymeric material can be any biocompatible polymer such as a hydrophobic polymer, a hydrophilic polymer, a non-fouling polymer, or a combination thereof. The polymeric material can be biodegradable, bioerodable, bioabsorable or biodurable.


In one embodiment, the coating material is a hydrophobic polymer. Representative hydrophobic polymers include, but are not limited to, polystyrene-polyisobutylene-polystyrene block copolymer (SIS), polystyrene, polyisobutylene, polycaprolactone (PCL), poly(L-lactide), poly(D,L-lactide), poly(lactides), polylactic acid (PLA), poly(lactide-co-glycolide), poly(glycolide), polyalkylene, polyfluoroalkylene, polyhydroxyalkanoate, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(4-hyroxyhexanoate), mid-chain polyhydroxyalkanoate, poly (trimethylene carbonate), poly (ortho ester), polyphosphazenes, poly (phosphoester), poly(tyrosine derived arylates), poly(tyrosine derived carbonates), polydimethyloxanone (PDMS), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (HFP), polydimethylsiloxane, poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE), poly(butyl methacrylate), poly(methyl methacrylate), poly(methacrylates), poly(vinyl acetate), poly(ethylene-co-vinyl acetate), poly(ethylene-co-vinyl alcohol), poly(ester urethanes), poly(ether-urethanes), poly(carbonate-urethanes), poly(silicone-urethanes), poly(2-hydroxyethyl methacrylate), poly(urea-urethanes) and a combination thereof.


In one embodiment, the coating material is a hydrophilic polymer, such as those previously described. In some embodiments, hydrophilic polymers include, but are not limited to, polymers and co-polymers of PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), hydroxyl bearing monomers such as HEMA, hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(ethylene glycol) (PEG), poly(propylene glycol), SIS-PEG, polystyrene-PEG, polyisobutylene-PEG, PCL-PEG, PLA-PEG, PMMA-PEG, PDMS-PEG, PVDF-PEG, PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), polyalkylene oxide, dextran, dextrin, sodium hyaluronate, hyaluronic acid, elastin, chitosan, acrylic sulfate, acrylic sulfonate, acrylic sulfamate, methacrylic sulfate, methacrylic sulfonate, methacrylic sulfamate or combination thereof.


In another embodiment, the coating material is a non-fouling polymer such as, for example, poly(ethylene glycol), poly(alkylene oxide), hydroxyethylmethacrylate (HEMA) polymer and copolymers, poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid (HA), poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, phospholipids such as phosphoryl choline (PC) and choline, or combinations thereof.


Examples of Implantable Device

As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chronie alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.


Method of Use

In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will remain on the medical device such as a stent during delivery and expansion of the device, and be released at a desired rate and for a predetermined duration of time at the site of implantation. Preferably, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.


For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A medical device comprising as a coating a prodrug, the prodrug comprising a drug, heparin, and a polymer, wherein the heparin is linked to the polymer;wherein the drug is linked to the heparin or the polymer; andwherein the polymer is poly(L-lysine-co-ethylene glycol) (PLL-co-PEG), poly(L-lysine-co-hyaluronic acid) (PLL-co-HA), poly(L-lysine-co-phosphoryl choline) (PLL-co-PC), poly(L-lysine-co-PVP), poly(ethylimine-co-ethylene glycol) (PEI-co-PEG), poly(ethylimine-co-hyaluronic acid) (PEI-co-HA), poly(ethylimine-co-phosphoryl choline) (PEI-co-PC), poly(ethylimine-co-vinylpyrrolidone) (PEI-co-PVP), poly(L-lysine-g-ethylene glycol) (PLL-g-PEG), poly(L-lysine-g-hyaluronic acid) (PLL-g-HA), poly(L-lysine-g-phosphoryl choline) (PLL-g-PC), poly(L-lysine-g-PVP), poly(ethylimine-g-ethylene glycol) (PEI-g-PEG), poly(ethylimine-g-hyaluronic acid) (PEI-g-HA), poly(ethylimine-g-phosphoryl choline) (PEI-g-PC), and poly(ethylimine-g-vinylpyrrolidone) (PEI-g-PVP).
  • 2. The medical device of claim 1, wherein the drug is selected from the group consisting of antiproliferative, antineoplastic, anti-inflammatory, steroidal anti-inflammatory, non-steroidal anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic, antioxidant substances, super oxide dismutases, super oxide dismutases mimics, nitric oxide donors, cytostatic agents, antibodies, progenitor cell capturing antibody, enzymes, prohealing drugs and combinations thereof.
  • 3. The medical device of claim 1, wherein the drug is selected from the group consisting of paclitaxel, docetaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, aspirin, and a combination thereof.
  • 4. The medical device of claim 1, wherein the heparin is a molecular heparin, a heparin fragment, a heparin derivative or a heparin complex.
  • 5. The medical device of claim 1, wherein the heparin is a pentasaccharide.
  • 6. A medical device comprising as a coating a prodrug, the prodrug comprising: a drug, heparin, and a polymer,wherein the heparin is linked to the polymer; andwherein the drug is linked to the heparin.
  • 7. The medical device of claim 6, wherein the drug is selected from the group consisting of antiproliferative, antineoplastic, anti-inflammatory, steroidal anti-inflammatory, non-steroidal anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic, antioxidant substances, super oxide dismutases, super oxide dismutases mimics, nitric oxide donors, cytostatic agents, antibodies, progenitor cell capturing antibody, enzymes, prohealing drugs and combinations thereof.
  • 8. The medical device of claim 6, wherein the drug is selected from the group consisting of paclitaxel, docetaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, aspirin, and a combination thereof.
  • 9. The medical device of claim 6, wherein the heparin is a molecular heparin, a heparin fragment, a heparin derivative or a heparin complex.
  • 10. The medical device of claim 6, wherein the heparin is a pentasaccharide.
  • 11. A medical device comprising as a coating a prodrug, the prodrug comprising a drug, heparin, and a polymer, wherein the heparin is linked to the polymer;wherein the drug is linked to the heparin or the polymer; andwherein the heparin is modified by a hydrophobic counter-ion.
  • 12. The medical device of claim 11, wherein the drug is selected from the group consisting of antiproliferative, antineoplastic, anti-inflammatory, steroidal anti-inflammatory, non-steroidal anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic, antioxidant substances, super oxide dismutases, super oxide dismutases mimics, nitric oxide donors, cytostatic agents, antibodies, progenitor cell capturing antibody, enzymes, prohealing drugs and combinations thereof.
  • 13. The medical device of claim 11, wherein the drug is selected from the group consisting of paclitaxel, docetaxel, estradiol, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, aspirin, and a combination thereof.
  • 14. The medical device of claim 11, wherein the heparin is a molecular heparin, a heparin fragment, a heparin derivative or a heparin complex.
  • 15. The medical device of claim 11, wherein the heparin is a pentasaccharide.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. application Ser. No. 10/871,658 filed on Jun. 18, 2004.

US Referenced Citations (316)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
3773737 Goodman et al. Nov 1973 A
3849514 Gray Jr. et al. Nov 1974 A
4226243 Shalaby et al. Oct 1980 A
4329383 Joh May 1982 A
4331697 Kudo et al. May 1982 A
4343931 Barrows Aug 1982 A
4529792 Barrows Jul 1985 A
4611051 Hayes et al. Sep 1986 A
4654327 Teng Mar 1987 A
4656242 Swan et al. Apr 1987 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4871357 Hsu et al. Oct 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4931287 Bae et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5019096 Fox, Jr. et al. May 1991 A
5047020 Hsu Sep 1991 A
5069899 Whitbourne et al. Dec 1991 A
5100992 Cohn et al. Mar 1992 A
5112457 Marchant May 1992 A
5133742 Pinchuk Jul 1992 A
5163952 Froix Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5219980 Swidler Jun 1993 A
5236570 Ma et al. Aug 1993 A
5258020 Froix Nov 1993 A
5270046 Sakamoto et al. Dec 1993 A
5270064 Shultz Dec 1993 A
5272012 Opolski Dec 1993 A
5288711 Mitchell et al. Feb 1994 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5453171 Ma et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5485496 Lee et al. Jan 1996 A
5516881 Lee et al. May 1996 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5584877 Miyake et al. Dec 1996 A
5605696 Eury et al. Feb 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5644020 Timmermann et al. Jul 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5711958 Cohn et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5723219 Kolluri et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5741881 Patnaik Apr 1998 A
5746998 Torchilin et al. May 1998 A
5759205 Valentini Jun 1998 A
5770563 Roberts et al. Jun 1998 A
5776184 Tuch Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5855618 Patnaik et al. Jan 1999 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5910564 Gruning et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5955509 Webber et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6033582 Lee et al. Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6080767 Klein et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6159978 Myers et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6172167 Stapert et al. Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6203551 Wu Mar 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387379 Goldberg et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6482834 Spada et al. Nov 2002 B2
6494862 Ray et al. Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6517858 Le Moel et al. Feb 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6534481 Driguez et al. Mar 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6589943 Byun et al. Jul 2003 B2
6605154 Villareal Aug 2003 B1
6616765 Hossaony et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6630580 Tsang et al. Oct 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6666880 Chiu et al. Dec 2003 B1
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6695920 Pacetti et al. Feb 2004 B1
6706013 Bhat et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6749626 Bhat et al. Jun 2004 B1
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
7160867 Abel et al. Jan 2007 B2
20010007083 Roorda Jul 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010018469 Chen et al. Aug 2001 A1
20010020011 Mathiowitz et al. Sep 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20010051608 Mathiowitz et al. Dec 2001 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020032414 Ragheb et al. Mar 2002 A1
20020032434 Chudzik et al. Mar 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020071822 Uhrich Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020094440 Llanos et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020120326 Michal Aug 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020142039 Claude Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031780 Chudzik et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040712 Ray et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030105518 Dutta Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030130206 Koziak et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20030229390 Ashton et al. Dec 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040037886 Li-Chien Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040087543 Shriver et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098117 Hossainy et al. May 2004 A1
Foreign Referenced Citations (70)
Number Date Country
42 24 401 Jan 1994 DE
0 301 856 Feb 1989 EP
0 396 429 Nov 1990 EP
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
2001-190687 Jul 2001 JP
872531 Oct 1981 SU
876663 Oct 1981 SU
905228 Feb 1982 SU
790725 Feb 1983 SU
1016314 May 1983 SU
811750 Sep 1983 SU
1293518 Feb 1987 SU
WO 9112846 Sep 1991 WO
WO 9409760 May 1994 WO
WO 9510989 Apr 1995 WO
WO 9524929 Sep 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9938546 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 2004000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
Related Publications (1)
Number Date Country
20060014720 A1 Jan 2006 US
Divisions (1)
Number Date Country
Parent 10871658 Jun 2004 US
Child 11228420 US