The invention relates to the technical field of crop protection compositions that can be used to counter unwanted plant growth on cultivated land, for preparation of seed or in plant crops, and comprise a combination of at least one safener (A) and at least one herbicide (B), where the safener (A) is one or more substituted [(1,5-diphenyl-1H-1,2,4-triazol-3-yl)oxy]acetic acids of the general formula (I) and/or agrochemically compatible salts thereof (=component (A)).
The efficacy of known herbicides against harmful plants is at a high level, but generally depends on the application rate, the form of the respective preparation, the spectrum of harmful plants, the harmful plants to be controlled in each case, climate and soil conditions, etc., but in particular also on crop plant compatibility.
One way of improving the application profile of a herbicide may be to combine a safener with one or more active herbicidal ingredients which contribute the desired additional properties. However, in the case of combined application of two or more active ingredients, it is not uncommon for there to be phenomena of physical and biological incompatibility, for example lack of stability in a coformulation, decomposition of an active ingredient and/or antagonism of the active ingredients, or else the safeners have a limited scope of action that protects the crop plant only against one herbicide but not with respect to all components in the case of combined applications of two or more herbicides.
Safeners, also called antidotes, of different chemical structures have been known for about 70 years. It is likewise known that they differ significantly with regard to their protective functions, meaning that the use thereof is limited to selected herbicides and/or the crop plants to be protected. An additional requirement is for a selected herbicide/safener combination not to adversely affect herbicidal efficacy based on the harmful plants to be controlled.
[(1,5-Diphenyl-1H-1,2,4-triazol-3-yl)oxy]acetic acid derivatives and salts thereof are known from the PCT application with application number PCT/EP2020/083167 (WO2021/105101).
It has now been found that compounds from the class of the substituted [(1,5-diphenyl-1H-1,2,4-triazol-3-yl)oxy]acetic acids can indeed be used effectively for protection of different crop plants on application of one or more herbicides [component (B)] of different chemical structures.
The herbicide/safener combinations of the invention interact in a particularly favorable manner, for example when they are used to control unwanted plant growth in crop plants such as wheat (hard and soft wheat), maize, soya, sugarbeet, sugarcane, cotton, rice, beans (for example, bush beans and broad beans), flax, barley, oats, rye, triticale, potato and millet/sorghum.
The present invention thus provides combinations comprising one or more component(s) (A) that are active as safeners and one or more herbicidally active compound(s) as component (B) where (A) represents one or more compounds of the general formula (I) or agrochemically acceptable salts thereof
and in which
and (R2)m-phenyl represents the Q-2.1 to Q-2.53 groups
The common name of the herbicides listed above is supplemented by the “CAS RN” (Chemical Abstracts Service Registry Number) (“CAS” for short) between parentheses. The CAS RN is a widely used reference number that enables unambiguous assignment of the substances in question since the “CAS RN” distinguishes inter alia between isomers, including stereoisomers, and salts and esters. For active ingredients that exist in various forms, the name of the neutral compound is given in each case in the above list. The CAS given between parentheses are directed to these and to all further known forms of the active ingredient, for example salts or adducts. Non-limiting examples include: 2,4-D-ammonium; 2,4-D-choline (the choline salt of 2,4-D); 2,4-D-BAPMA (N,N-bis-(3-aminopropyl)methylamine salt of 2,4-D); 2,4-D-diethylammonium; 2,4-D-dimethylammonium; 2,4-D-dodecylammonium; 2,4-D-heptylammonium; 2,4-D-isopropylammonium; 2,4-D-lithium; 2,4-D-potassium; 2,4-D-sodium; 2,4-D-tetradecylammonium; 2,4-D-triethylammonium; 2,4-D-tris(2-hydroxypropyl)ammonium; 2,4-D-monoethanolammonium (the monoethanolamine salt of 2,4-D); 2,4-D-diethanolammonium (the diethanolamine salt of 2,4-D or 2,4-D-diolamin); 2,4-D-triethanolammonium (the triethanolamine salt of 2,4-D or 2,4-D-triolamine); the tetrabutylamine salt of dicamba; the dimethylamine salt of dicamba; the isopropylamine salt of dicamba; the diglycolamine salt of dicamba; the N,N-bis(3-aminopropyl)methylamine salt of dicamba; the choline salt of dicamba; the monoethanolamine salt of dicamba; the diethanolamine salt of dicamba; the triethanolamine salt of dicamba; the potassium salt of dicamba; the sodium salt of dicamba; glyphosate-diammonium; glyphosate-dimethylammonium; glyphosate-isopropylammonium; glyphosate-monoammonium; glyphosate-potassium; glyphosate-dipotassium; glyphosate-sesquisodium (N-(phosphonomethyl)glycine sodium salt (2:3)); the trimethylsulfonium salt of glyphosate (glyphosate-trimesium); the triethanolamine salt of glyphosate; the diethanolamine salt of glyphosate; and the monoethanolamine salt of glyphosate.
Only the neutral compound is ever mentioned hereinafter, and hence encompasses all existing forms as listed, unless a specific form of the active ingredient is relevant in a particular context, for example in table examples below for biological efficacy.
The herbicide/safener combinations of the invention may contain further components, for example other active ingredients to counter harmful organisms such as harmful plants, plant-damaging animals or plant-damaging fungi, especially active ingredients from the group of the herbicides other than the herbicides mentioned under B1-B11, fungicides, insecticides, acaricides, nematicides and miticides, and related substances, or else other kinds of active ingredients for crop protection (e.g. resistance inductors), crop plant-protecting active ingredients (safeners, antidotes, other than component (A)), plant growth regulators, and/or additions and/or formulation auxiliaries that are customary in crop protection.
The components may be formulated together here (ready-to-use formulation) and employed as such, or they may be formulated separately and employed together, for example in a tankmix or in sequential application.
The individual safeners of the general formula (I) present as component (A) are also referred to hereinafter as compounds (A), active ingredients (A), components (A) or safeners (A). Correspondingly, the individual active herbicidal ingredients present as component (B) are also referred to hereinafter as compounds (B), active ingredients (B), components (B) or herbicides (B).
An advantageous property of the inventive combination of safeners (A) and herbicides (B) is found to be that safeners (A) and herbicides (B) are compatible with one another, meaning that they can be employed together without occurrence of significant chemical incompatibility between the safeners (A) and/or herbicides (B) that leads to destruction of the safener (A) or the herbicide(s) (B).
This favorable compatibility also extends to the biological properties of the active ingredients on combined use. For instance, antagonistic effects are generally not observed in the case of control of harmful plants with the herbicide/safener combinations of the invention.
In the formula (I) for compounds of the safeners (A) and all the formulae that follow, the following definitions are applicable:
According to the nature of the substituents and the way in which they are joined, the compounds of the formula (I) may be present as stereoisomers. If, for example, there are one or more asymmetrically substituted carbon atoms and/or sulfoxides, it is possible for enantiomers and diastereomers to occur. Stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods, for example by chromatographic separation processes. It is likewise possible to selectively prepare stereoisomers by using stereoselective reactions with use of optically active starting materials and/or auxiliaries.
The invention also relates to all stereoisomers and mixtures thereof which are encompassed by the formula (I) but not defined specifically. For the sake of simplicity, however, reference will always be made hereinafter to compounds of the formula (I), even though this means not only the pure compounds but also, if appropriate, mixtures with different proportions of isomeric compounds.
According to the nature of the substituents defined above, the compounds of the formula (I) have acidic properties and can form salts, and if appropriate also internal salts or adducts with inorganic or organic bases or with metal ions. If the compounds of the formula (I) bear hydroxyl, carboxyl or other groups which induce acidic properties, these compounds can be reacted with bases to give salts. Suitable bases are, for example, hydroxides, carbonates, hydrogencarbonates of the alkali metals and alkaline earth metals, especially those of sodium, potassium, magnesium and calcium, and also ammonia, primary, secondary and tertiary amines having (C1-C4)-alkyl groups, mono-, di- and trialkanolamines of (C1-C4)-alkanols, choline and chlorocholine, and organic amines, such as trialkylamines, morpholine, piperidine or pyridine. These salts are compounds in which the acidic hydrogen is replaced by an agriculturally suitable cation, for example metal salts, especially alkali metal salts or alkaline earth metal salts, especially sodium and potassium salts, or else ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NRR′R″R′″]+ in which R to R′″ are each independently an organic radical, especially alkyl, aryl, aralkyl or alkylaryl. Also useful are alkylsulfonium and alkylsulfoxonium salts, such as (C1-C4)-trialkylsulfonium and (C1-C4)-trialkylsulfoxonium salts.
The compounds of the formula (I) can form salts by addition of a suitable inorganic or organic acid, for example mineral acids, for example HCl, HBr, H2SO4, H3PO4 or HNO3, or organic acids, for example carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid, lactic acid or salicylic acid or sulfonic acids, for example p-toluenesulfonic acid, onto a basic group, for example amino, alkylamino, dialkylamino, piperidino, morpholino or pyridino. These salts then contain the conjugate base of the acid as anion.
Suitable substituents present in deprotonated form, for example sulfonic acids or carboxylic acids, are capable of forming inner salts with groups, such as amino groups, which can be protonated for their part.
If a group is polysubstituted by radicals, this means that this group is substituted by one or more identical or different radicals from those mentioned.
There follows a description of preferred, particularly preferred and very particularly preferred definitions of each of the individual safeners (A) and the herbicides (B).
If the compounds can form, through a hydrogen shift, tautomers whose structure would not formally be covered by the general formula (A), these tautomers are nevertheless encompassed by the definition of the inventive compounds of the general formula (A), unless a particular tautomer is under consideration. For example, many carbonyl compounds may be present both in the keto form and in the enol form, both forms being encompassed by the definition of the compound of the general formula (A). Depending on the nature of the substituents and the manner in which they are attached, the compounds of the general formula (I) may be present as stereoisomers. The possible stereoisomers defined by the specific three-dimensional form thereof, such as enantiomers, diastereomers, Z and E isomers, are all encompassed by the general formula (I). If, for example, one or more alkenyl groups are present, diastereomers (Z and E isomers) may occur. If, for example, one or more asymmetric carbon atoms are present, enantiomers and diastereomers may occur. Stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods. The chromatographic separation can be effected either on the analytical scale to find the enantiomeric excess or the diastereomeric excess, or else on the preparative scale to produce test specimens for biological testing. It is likewise possible to selectively prepare stereoisomers by using stereoselective reactions with use of optically active starting materials and/or auxiliaries. The invention thus also relates to all stereoisomers which are embraced by the general formula (I) but are not shown in their specific stereomeric form, and to mixtures thereof.
If the compounds are obtained as solids, the purification can also be carried out by recrystallization or digestion. If individual compounds of the general formula (I) cannot be obtained in a satisfactory manner by the routes described below, they can be prepared by derivatization of other compounds of the general formula (I).
Suitable isolation methods, purification methods and methods for separating stereoisomers of compounds of the general formula (I) are methods generally known to the person skilled in the art from analogous cases, for example by physical processes such as crystallization, chromatographic methods, in particular column chromatography and HPLC (high pressure liquid chromatography), distillation, optionally under reduced pressure, extraction and other methods, any mixtures that remain can generally be separated by chromatographic separation, for example on chiral solid phases. Suitable for preparative amounts or on an industrial scale are processes such as crystallization, for example of diastereomeric salts which can be obtained from the diastereomer mixtures using optically active acids and, if appropriate, provided that acidic groups are present, using optically active bases.
In a first embodiment of the present invention, the herbicide/safener combination of the invention, as well as at least one component (B) as defined above, preferably comprises a compound [component A] of the general formula (I) or the agronomically compatible salts thereof [safener (A)] according to table 1.
The compounds of the formula (I) are known from the international application with application number PCT/EP2020/083167 (WO2021/105101) and can be prepared by the processes described therein.
The application rates of the herbicides (B) are in the range from 1 to 4000 g of active substance per hectare (g a.i./ha hereinafter), preferably 2 to 4000 g a.i./ha, especially 5 to 4000 g a.i./ha, and that of the safeners (A) in the range from 1 to 1000 g a.i./ha, preferably 10 to 500 g a.i./ha, especially of 20 to 200 g a.i./ha, of active substance.
Particularly preferred safeners (A) in the context of the present invention are the compounds numbered A1, A3 and A5, according to the above table 1.
Suitable combination partners (B) [=component (B) or herbicides (B)] are in principle all active ingredients from subgroups (B1) to (B11), where the herbicidal active ingredients are largely named by the common name (in the English notation) according to the reference “The Pesticide Manual” 14th Ed., British Crop Protection Council 2006, abbreviated to “PM”, or the chemical name according to the standard nomenclatures (IUPAC or Chemical Abstracts).
However, some herbicides (B) have surprisingly been found to be particularly good combination partners for the safeners (A). The preferred and more preferred herbicides (B) are listed hereinafter as further embodiments of the present invention.
In a second embodiment of the present invention, the active herbicidal ingredients (B1) are preferably:
Particularly preferred active herbicidal ingredients from group B1 are
In a third embodiment of the present invention, the active herbicidal ingredients (B2) are preferably:
Particularly preferred active herbicidal ingredients from group B2 are
In a fourth embodiment of the present invention, the active herbicidal ingredients (B3) are preferably:
In a fifth embodiment of the present invention, the active herbicidal ingredients (B4) are preferably:
Particularly preferred active herbicidal ingredients from group B4 are
In a sixth embodiment of the present invention, the active herbicidal ingredients (B5) are preferably:
Particularly preferred active herbicidal ingredients from group B5 are
In a seventh embodiment of the present invention, the active herbicidal ingredients (B6) are preferably:
A particularly preferred active herbicidal ingredient from group B6 is
In an eighth embodiment of the present invention, the active herbicidal ingredients (B7) are preferably:
Particularly preferred active herbicidal ingredients from group B7 are
In a ninth embodiment of the present invention, the active herbicidal ingredients (B8) are preferably:
Particularly preferred active herbicidal ingredients from group B8 are
In a tenth embodiment of the present invention, the active herbicidal ingredients (B9) are preferably:
Particularly preferred active herbicidal ingredients from group B9 are
In an eleventh embodiment of the present invention, the active herbicidal ingredients (B10) are preferably:
Particularly preferred active herbicidal ingredients from group B10 are
In a twelfth embodiment of the present invention, the active herbicidal ingredients (B11) are preferably:
Particularly preferred active herbicidal ingredients from group B11 are
In the context of the present invention, it is possible to combine the individual preferred and more preferred embodiments with one another as desired. This means that herbicidal compositions comprising safeners (A) one or more compounds of the general formula (I) or agrochemically acceptable salts thereof [component (A)] and (B) one or more herbicides [component (B)] selected from the group of the active herbicidal ingredients (B1) to (B11) are encompassed by the present invention, in which any desired preferred and more preferred embodiments disclosed can be combined with one another as detailed above.
Some binary combinations comprising a compound (A) of the general formula (I), or agrochemically compatible salts thereof, which acts as safener [safener (A)], and a herbicide (B) have been found to be particularly advantageous in a manner that was surprising at the filing date.
These are shown in table 1 below.
The following binary herbicide/safener combinations may thus be specified as being advantageous:
Higher-order herbicide/safener combinations composed of the aforementioned binary combinations are likewise possible in accordance with the invention, for example by use of the same safener and the blending of two binary combinations mentioned hereinafter in association with that particular safener, for example A3+B2.81+B2.68, or A3+B2.81+B2.68+B9.10.
Furthermore, the herbicide/safener combinations of the invention can be used together with other active ingredients such as fungicides, insecticides, acaricides etc. and/or plant growth regulators or auxiliaries from the group of additives customary in crop protection, such as adjuvants and formulation aids. Their use forms such as formulations or tankmixes are herbicidal products (compositions).
The invention therefore also provides the herbicide/safener combinations comprising the additives customary in crop protection, such as adjuvants and formulation aids, and optionally further active crop protection ingredients.
The invention also provides for the use of, or the application method using, the herbicide/safener combinations of the invention as herbicides and plant growth regulators, preferably as herbicides and plant growth regulators having a synergistically active content of the respective herbicide combination present.
For the active ingredients from group (B1), the application rate is preferably in the range of 5 to 250 g a.i./ha, especially in the range of 5 to 150 g/ha and most preferably in the range of 5 to 60 g a.i./ha.
For the active ingredients from group (B2), the application rate is preferably in the range of 1 to 4000 g a.i./ha, especially in the range of 1 to 2000 g a.i./ha and most preferably in the range of 1 to 400 g a.i./ha.
For the active ingredient from group (B3), the application rate is preferably in the range of 10 to 1000 g a.i./ha, especially in the range of 10 to 500 g a.i./ha and most preferably in the range of 10 to 300 g a.i./ha.
For the active ingredient from group (B4), the application rate is preferably in the range of 1 to 700 g a.i./ha, especially in the range of 1 to 400 g a.i./ha and most preferably in the range of 1 to 200 g a.i./ha.
For the active ingredient from group (B5), excluding pelargonic acid (B5.38), the application rate is preferably in the range of 1 to 2400 g a.i./ha, especially in the range of 1 to 1200 g a.i./ha and most preferably in the range of 1 to 400 g a.i./ha. For pelargonic acid (B5.38), the application rate is preferably 1 to 100 000 g a.i./ha, more preferably 1 to 40 000 g a.i./ha and especially in the range from 1 to 30 000 g a.i./ha.
For the active ingredient from group (B6), the application rate is preferably in the range of 10 to 1000 g a.i./ha, especially in the range of 10 to 600 g a.i./ha.
For the active ingredient from group (B7), the application rate is preferably in the range of 20 to 3500 g a.i./ha, especially in the range of 20 to 2500 g a.i./ha and most preferably in the range of 20 to 2000 g a.i./ha.
For the active ingredient from group (B8), the application rate is preferably in the range of 5 to 1500 g a.i./ha, especially in the range of 5 to 1000 g a.i./ha and most preferably in the range of 5 to 900 g a.i./ha.
For the active ingredient from group (B9), the application rate is preferably in the range of 2 to 2000 g a.i./ha, especially in the range of 2 to 1000 g a.i./ha, more preferably in the range of 2 to 200 g a.i./ha and most preferably in the range of 2 to 50 g a.i./ha.
For the active ingredient from group (B10), the application rate is preferably in the range of 20 to 3500 g a.i./ha, especially in the range of 20 to 2000 g a.i./ha.
For the active ingredient from group (B11), the application rate is preferably in the range of 25 to 3000 g a.i./ha, especially in the range of 25 to 2500 g a.i./ha and most preferably in the range of 25 to 2000 g a.i./ha.
The ratios of (A):(B) based on weight, depending on the effective application rates, are generally in the range of 1:400 to 500:1, preferably in the range from 1:100 to 100:1, more preferably in the range of 1:40 to 20:1.
The stated amounts are application rates (g a.i./ha=grams of active substance per hectare) and hence also define the ratios in a co-formulation, a premix, a tankmix or a sequential application of the combined active ingredients.
The herbicide/safener combinations of the invention may comprise further components, for example other active ingredients against harmful organisms such as harmful plants, plant-damaging animals or plant-damaging fungi, in this case especially active ingredients from the group of the fungicides, insecticides, acaricides, nematicides, miticides and related substances.
Fungicidally active compounds that can be used in conjunction with the herbicide/safener combinations of the invention are preferably standard commercial active ingredients, for example (analogously to the herbicides, the compounds are generally named by their common names):
1) Inhibitors of ergosterol biosynthesis, for example cyproconazole, difenoconazole, epoxiconazole, fenhexamid, fenpropidin, fenpropimorph, fenpyrazamin, fluquinconazole, flutriafol, imazalil, imazalil sulfate, ipconazole, metconazole, myclobutanil, paclobutrazole, prochloraz, propiconazole, prothioconazole, pyrisoxazole, spiroxamine, tebuconazole, tetraconazole, triadimenol, tridemorph, triticonazole, (1R,2S,5S)-5-(4-chlorobenzyl)-2-(chloromethyl)-2-methyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol, (1S,2R,5R)-5-(4-chlorobenzyl)-2-(chloromethyl)-2-methyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol, (2R)-2-(1-chlorocyclopropyl)-4-[(1R)-2,2-dichlorcyclopropyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (2R)-2-(1-chlorocyclopropyl)-4-[(1S)-2,2-dichlorcyclopropyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (2R)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)propan-2-ol, (2S)-2-(1-chlorocyclopropyl)-4-[(1R)-2,2-dichlorcyclopropyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (2S)-2-(1-chlorocyclopropyl)-4-[(1S)-2,2-dichlorcyclopropyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, (2S)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)propan-2-ol, (R)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol, (S)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol, [3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1,2-oxazol-4-yl](pyridin-3-yl)methanol, 1-({(2R,4S)-2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole, 1-({(2S,4S)-2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole, 1-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate, 1-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate, 1-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazol-5-yl thiocyanate, 2-[(2R,4R,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[(2R,4R,5S)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[(2R,4S,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[(2R,4S,5S)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[(2S,4R,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[(2S,4R,5S)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[(2S,4S,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[(2S,4S,5S)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-[2-chloro-4-(2,4-dichlorophenoxy)phenyl]-1-(1H-1,2,4-triazol-1-yl)propan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)-phenyl]-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)pentan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1H-1,2,4-triazol-1-yl)propan-2-ol, 2-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, 2-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione, 5-(4-chlorobenzyl)-2-(chloromethyl)-2-methyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol, 5-(allylsulfanyl)-1-{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazole, 5-(allylsulfanyl)-1-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazole, 5-(allylsulfanyl)-1-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1H-1,2,4-triazole, N′-(2,5-dimethyl-4-{[3-(1,1,2,2-tetrafluoroethoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamide, N′-(2,5-dimethyl-4-{[3-(2,2,2-trifluoroethoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamide, N′-(2,5-dimethyl-4-{[3-(2,2,3,3-tetrafluoropropoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamide, N′-(2,5-dimethyl-4-{[3-(pentafluoroethoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamide, N′-(2,5-dimethyl-4-{3-[(1,1,2,2-tetrafluoroethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamide, N′-(2,5-dimethyl-4-{3-[(2,2,2-trifluoroethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamide, N′-(2,5-dimethyl-4-{3-[(2,2,3,3-tetrafluoropropyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamide, N′-(2,5-dimethyl-4-{3-[(pentafluoroethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamide, N′-(2,5-dimethyl-4-phenoxyphenyl)-N-ethyl-N-methylimidoformamide, N′-(4-{[3-(difluoromethoxy)phenyl]sulfanyl}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformamide, N′-(4-{3-[(difluoromethyl)sulfanyl]phenoxy}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformamide, N′-[5-bromo-6-(2,3-dihydro-1H-inden-2-yloxy)-2-methylpyridin-3-yl]-N-ethyl-N-methylimidoformamide, N′-{4-[(4,5-dichloro-1,3-thiazol-2-yl)oxy]-2,5-dimethylphenyl}-N-ethyl-N-methylimidoformamide, N′-{5-bromo-6-[(1R)-1-(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, N′-{5-bromo-6-[(1S)-1-(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, N′-{5-bromo-6-[(cis-4-isopropylcyclohexyl)oxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, N′-{5-bromo-6-[(trans-4-isopropylcyclohexyl)oxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, N′-{5-bromo-6-[1-(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, mefentrifluconazole, ipfentrifluconazole.
2) Respiratory chain inhibitors acting on complex I or II, for example benzovindiflupyr, bixafen, boscalid, carboxin, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam (anti-epimeric enantiomer 1R,4S,9S), isopyrazam (anti-epimeric enantiomer 1S,4R,9R), isopyrazam (anti-epimeric racemate 1RS,4SR,9SR), isopyrazam (mixture of the syn-epimeric racemate 1RS,4SR,9RS and the anti-epimeric racemate 1RS,4SR,9SR), isopyrazam (syn-epimeric enantiomer 1R,4S,9R), isopyrazam (syn-epimeric enantiomer 1S,4R,9S), isopyrazam (syn-epimeric racemate 1RS,4SR,9RS), penflufen, penthiopyrad, pydiflumetofen, pyraziflumid, sedaxane, 1,3-dimethyl-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, 1,3-dimethyl-N-[(3R)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, 1,3-dimethyl-N-[(3S)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, 1-methyl-3-(trifluoromethyl)-N-[2′-(trifluoromethyl)biphenyl-2-yl]-1H-pyrazole-4-carboxamide, 2-fluoro-6-(trifluoromethyl)-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)benzamide, 3-(difluoromethyl)-1-methyl-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-[(3R)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-[(3S)-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-N-(7-fluoro-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)-1-methyl-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-N-[(3R)-7-fluoro-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1-methyl-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-N-[(3S)-7-fluoro-1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl]-1-methyl-1H-pyrazole-4-carboxamide, 5,8-difluoro-N-[2-(2-fluoro-4-{[4-(trifluoromethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazolin-4-amine, N-(2-cyclopentyl-5-fluorobenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-(2-tert-butyl-5-methylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-(2-tert-butylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-(5-chloro-2-ethylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-(5-chloro-2-isopropylbenzyl)-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-[(1R,4S)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, N-[(1S,4R)-9-(dichloromethylene)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, N-[1-(2,4-dichlorophenyl)-1-methoxypropan-2-yl]-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, N-[2-chloro-6-(trifluoromethyl)benzyl]-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-[3-chloro-2-fluoro-6-(trifluoromethyl)benzyl]-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-[5-chloro-2-(trifluoromethyl)benzyl]-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-N-[5-methyl-2-(trifluoromethyl)benzyl]-1H-pyrazole-4-carboxamide, N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(2-fluoro-6-isopropylbenzyl)-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(2-isopropyl-5-methylbenzyl)-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(2-isopropylbenzyl)-1-methyl-1H-pyrazole-4-carbothioamide, N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(2-isopropylbenzyl)-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-3-(difluoromethyl)-5-fluoro-N-(5-fluoro-2-isopropylbenzyl)-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-3-(difluoromethyl)-N-(2-ethyl-4,5-dimethylbenzyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-3-(difluoromethyl)-N-(2-ethyl-5-fluorobenzyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-3-(difluoromethyl)-N-(2-ethyl-5-methylbenzyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-N-(2-cyclopropyl-5-fluorobenzyl)-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-N-(2-cyclopropyl-5-methylbenzyl)-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide, N-cyclopropyl-N-(2-cyclopropylbenzyl)-3-(difluoromethyl)-5-fluoro-1-methyl-1H-pyrazole-4-carboxamide.
3) Respiratory chain inhibitors acting on complex III, for example ametoctradin, amisulbrom, azoxystrobin, coumethoxystrobin, coumoxystrobin, cyazofamid, dimoxystrobin, enoxastrobin, famoxadon, fenamidon, flufenoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, trifloxystrobin (3.021), (2E)-2-{2-[{{[(1E)-1-(3-{[(E)-1-fluoro-2-phenylvinyl]oxy}phenyl)ethylidene]amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylacetamide, (2E,3Z)-5-{[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxy}-2-(methoxyimino)-N,3-dimethylpent-3-enamide, (2R)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide, (2S)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide, (3S,6S,7R,8R)-8-benzyl-3-[({3-[(isobutyryloxy)methoxy]-4-methoxypyridin-2-yl}carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl 2-methylpropanoate, 2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamide, N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-formamido-2-hydroxybenzamide, (2E,3Z)-5-{[1-(4-chloro-2-fluorophenyl)-1H-pyrazol-3-yl]oxy}-2-(methoxyimino)-N,3-dimethylpent-3-enamide, methyl {5-[3-(2,4-dimethylphenyl)-1H-pyrazol-1-yl]-2-methylbenzyl}carbamate.
4) Mitosis and cell division inhibitors, for example carbendazim, diethofencarb, ethaboxam, fluopicolid, pencycuron, thiabendazole, thiophanate-methyl, zoxamide, 3-chloro-4-(2,6-difluorophenyl)-6-methyl-5-phenylpyridazine, 3-chloro-5-(4-chlorophenyl)-4-(2,6-difluorophenyl)-6-methylpyridazine, 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6-trifluorophenyl)pyridazine, 4-(2-bromo-4-fluorophenyl)-N-(2,6-difluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(2-bromo-4-fluorophenyl)-N-(2-bromo-6-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(2-bromo-4-fluorophenyl)-N-(2-bromophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(2-bromo-4-fluorophenyl)-N-(2-chloro-6-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, (4.016) 4-(2-bromo-4-fluorophenyl)-N-(2-chlorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(2-bromo-4-fluorophenyl)-N-(2-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(2-chloro-4-fluorophenyl)-N-(2,6-difluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(2-chloro-4-fluorophenyl)-N-(2-chloro-6-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(2-chloro-4-fluorophenyl)-N-(2-chlorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(2-chloro-4-fluorophenyl)-N-(2-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, 4-(4-chlorophenyl)-5-(2,6-difluorophenyl)-3,6-dimethylpyridazine, N-(2-bromo-6-fluorophenyl)-4-(2-chloro-4-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, N-(2-bromophenyl)-4-(2-chloro-4-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine, N-(4-chloro-2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-1,3-dimethyl-1H-pyrazol-5-amine.
5) Compounds with multisite activity, for example Bordeaux mixture, captafol, captan, chlorthalonil, copper hydroxide, copper naphthenate, copper oxide, copper oxychloride, copper(2+) sulfate, dithianon, dodine, folpet, mancozeb, maneb, metiram, zinc metiram, copper oxine, propineb, sulfur and sulfur preparations including calcium polysulfide, thiram, zineb, ziram, 6-ethyl-5,7-dioxo-6,7-dihydro-5H-pyrrolo[3′,4′:5,6][1,4]dithiino[2,3-c][1,2]thiazole-3-carbonitrile.
6) Compounds capable of triggering host defence, for example acibenzolar-S-methyl, isotianil, probenazole, tiadinil.
7) Amino acid and/or protein biosynthesis inhibitors, for example cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, oxytetracycline, pyrimethanil, 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline.
8) ATP production inhibitors, for example silthiofam.
9) Cell wall synthesis inhibitors, for example benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamid, pyrimorph, valifenalate, (2E)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one, (2Z)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one.
10) Lipid and membrane synthesis inhibitors, for example propamocarb, propamocarb hydrochloride, tolclofos-methyl.
11) Melanin biosynthesis inhibitors, for example tricyclazole, 2,2,2-trifluoroethyl-{3-methyl-1-[(4-methylbenzoyl)amino]butan-2-yl}carbamate.
12) Nucleic acid synthesis inhibitors, for example benalaxyl, benalaxyl-M (kiralaxyl), metalaxyl, metalaxyl-M (mefenoxam).
13) Signal transduction inhibitors, for example fludioxonil, iprodione, procymidone, proquinazid, quinoxyfen, vinclozolin.
14) Compounds that can act as decouplers, for example fluazinam, meptyldinocap.
15) Further compounds, for example abscisic acid, benthiazole, bethoxazin, capsimycin, carvone, chinomethionat, cufraneb, cyflufenamid, cymoxanil, cyprosulfamide, flutianil, fosetyl-aluminium, fosetyl-calcium, fosetyl-sodium, methyl isothiocyanate, metrafenon, mildiomycin, natamycin, nickel dimethyldithiocarbamate, nitrothal-isopropyl, oxamocarb, oxathiapiprolin, oxyfenthiin, pentachlorophenol and salts, phosphonic acid and salts thereof, propamocarb-fosetylate, pyriofenone (chlazafenone), tebufloquin, tecloftalam, tolnifanide, 1-(4-{4-[(5R)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, 1-(4-{4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro-1,2-oxazol-3-yl]-1,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]ethanone, 2-(6-benzylpyridin-2-yl)quinazoline, 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetrone, 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-chloro-6-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-fluoro-6-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, 2-[6-(3-fluoro-4-methoxyphenyl)-5-methylpyridin-2-yl]quinazoline, 2-{(5R)-3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate, 2-{(5S)-3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate, 2-{2-[(7,8-difluoro-2-methylquinolin-3-yl)oxy]-6-fluorophenyl}propan-2-ol, 2-{2-fluoro-6-[(8-fluoro-2-methylquinolin-3-yl)oxy phenyl}propan-2-ol, 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate, 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}phenyl methanesulfonate, 2-phenylphenol and salts thereof, 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, 4-amino-5-fluoropyrimidin-2-ol (tautomeric form: 4-amino-5-fluoropyrimidin-2(1H)-one), 4-oxo-4-[(2-phenylethyl)amino]butyric acid, 5-amino-1,3,4-thiadiazole-2-thiol, 5-chloro-N′-phenyl-N′-(prop-2-yn-1-yl)thiophene 2-sulfonohydrazide, 5-fluoro-2-[(4-fluorobenzyl)oxy]pyrimidin-4-amine, 5-fluoro-2-[(4-methylbenzyl)oxy]pyrimidin-4-amine, 9-fluoro-2,2-dimethyl-5-(quinolin-3-yl)-2,3-dihydro-1,4-benzoxazepine, but-3-yn-1-yl {6-[{{[(Z)-(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate, ethyl (2Z)-3-amino-2-cyano-3-phenylacrylate, phenazine-1-carboxylic acid, propyl 3,4,5-trihydroxybenzoate, quinolin-8-ol, quinolin-8-ol sulfate (2:1), tert-butyl {6-[({[(1-methyl-1H-tetrazol-5-yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate, 5-fluoro-4-imino-3-methyl-1)sulfonyl]-3,4-dihydropyrimidin-2(1H)-one.
Preferred fungicides are selected from the group consisting of benalaxyl, bitertanol, bromuconazole, captafol, carbendazim, carpropamid, cyazofamid, cyproconazole, diethofencarb, edifenphos, fenpropimorph, fentine, fluquinconazole, fosetyl, fluoroimide, folpet, iminoctadine, iprodionem, iprovalicarb, kasugamycin, maneb, nabam, pencycuron, prochloraz, propamocarb, propineb, pyrimethanil, spiroxamine, quintozene, tebuconazole, tolylfluanid, triadimefon, triadimenol, trifloxystrobin, zineb.
Insecticidal, acaricidal, nematicidal, miticidal and related active ingredients are, for example (analogously to the herbicides and fungicides, the compounds are, if possible, referred to by their common names):
(1) Acetylcholinesterase (AChE) inhibitors, preferably carbamates selected from alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb; or organophosphates selected from acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothiophosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos-methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, triclorfon and vamidothion.
(2) GABA-gated chloride channel blockers, preferably cyclodiene-organochlorines selected from chlordane and endosulfan, or phenylpyrazoles (fiproles) selected from ethiprole and fipronil.
(3) Sodium channel modulators, preferably pyrethroids selected from acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(1R)-trans isomer], deltamethrin, empenthrin [(EZ)-(1R) isomer], esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, imiprothrin, kadethrin, momfluorothrin, permethrin, phenothrin [(1R)-trans isomer], prallethrin, pyrethrins (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethrin, tetramethrin [(1R) isomer], tralomethrin and transfluthrin or DDT or methoxychlor.
(4) Nicotinic acetylcholine receptor (nAChR) competitive modulators, preferably neonicotinoids selected from acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam, or nicotine, or sulfoximines selected from sulfoxaflor, or butenolides selected from flupyradifurone.
(5) Allosteric modulators of the nicotinic acetylcholine receptor (nAChR), preferably spinosyns selected from spinetoram and spinosad.
(6) Allosteric modulators of the glutamate-gated chloride channel (GluCI), preferably avermectins/milbemycins selected from abamectin, emamectin benzoate, lepimectin and milbemectin.
(7) Juvenile hormone mimics, preferably juvenile hormone analogs selected from hydroprene, kinoprene and methoprene, or fenoxycarb or pyriproxyfen.
(8) Miscellaneous nonspecific (multi-site) inhibitors, preferably alkyl halides selected from methyl bromide and other alkyl halides; or chloropicrin or sulfuryl fluoride or borax or tartar emetic or methyl isocyanate generators selected from diazomet and metam.
(9) Chordotonal organ TRPV channel modulators selected from pymetrozine and pyrifluquinazon.
(10) Mite growth inhibitors selected from clofentezine, hexythiazox, diflovidazin and etoxazole.
(11) Microbial disruptors of insect midgut membranes selected from Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and B.t. plant proteins selected from Cry1Ab, Cry1Ac, Cry1Fa, Cry1A.105, Cry2Ab, VIP3A, mCry3A, Cry3Ab, Cry3Bb and Cry34Ab1/35Ab1.
(12) Inhibitors of mitochondrial ATP synthase, preferably ATP disruptors selected from diafenthiuron, or organotin compounds selected from azocyclotin, cyhexatin and fenbutatin oxide, or propargite or tetradifon.
(13) Uncouplers of oxidative phosphorylation via disruption of the proton gradient, selected from chlorfenapyr, DNOC and sulfluramid.
(14) Nicotinic acetylcholine receptor channel blockers selected from bensultap, cartap hydrochloride, thiocyclam, and thiosultap-sodium.
(15) Inhibitors of chitin biosynthesis, type 0, selected from bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
(16) Inhibitors of chitin biosynthesis, type 1, selected from buprofezin.
(17) Molting disruptors (especially in the case of Diptera) selected from cyromazine.
(18) Ecdysone receptor agonists selected from chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
(19) Octopamine receptor agonists selected from amitraz.
(20) Mitochondrial complex III electron transport inhibitors selected from hydramethylnon, acequinocyl and fluacrypyrim.
(21) Mitochondrial complex I electron transport inhibitors, preferably METI acaricides selected from fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad and tolfenpyrad, or rotenone (Derris).
(22) Voltage-dependent sodium channel blockers selected from indoxacarb and metaflumizone.
(23) Inhibitors of acetyl-CoA carboxylase, preferably tetronic and tetramic acid derivatives selected from spirodiclofen, spiromesifen and spirotetramat.
(24) Mitochondrial complex IV electron transport inhibitors, preferably phosphines selected from aluminium phosphide, calcium phosphide, phosphine and zinc phosphide, or cyanides selected from calcium cyanide, potassium cyanide and sodium cyanide.
(25) Mitochondrial complex II electron transport inhibitors, preferably beta-ketonitrile derivatives selected from cyenopyrafen and cyflumetofen, or carboxanilides selected from pyflubumide.
(28) Ryanodine receptor modulators, preferably diamides selected from chlorantraniliprole, cyantraniliprole and flubendiamide.
(29) Chordotonal organ modulators (with undefined target structure) selected from flonicamid.
(30) Further active ingredients selected from acynonapyr, afidopyropen, afoxolaner, azadirachtin, benclothiaz, benzoximate, benzpyrimoxan, bifenazate, broflanilide, bromopropylate, chinomethionat, chloroprallethrin, cryolite, cyclaniliprole, cycloxaprid, cyhalodiamide, dicloromezotiaz, dicofol, epsilon metofluthrin, epsilon momfluthrin, flometoquin, fluazaindolizine, fluensulfone, flufenerim, flufenoxystrobin, flufiprole, fluhexafon, fluopyram, flupyrimin, fluralaner, fluxametamide, fufenozide, guadipyr, heptafluthrin, imidaclothiz, iprodione, kappa bifenthrin, kappa tefluthrin, lotilaner, meperfluthrin, oxazosulfyl, paichongding, pyridalyl, pyrifluquinazon, pyriminostrobin, spirobudiclofen, spiropidion, tetramethylfluthrin, tetraniliprole, tetrachlorantraniliprole, tigolaner, tioxazafen, thiofluoximate, triflumezopyrim and iodomethane; additionally preparations based on Bacillus firmus (I-1582, BioNeem, Votivo), and the following compounds: 1-{2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl}-3-(trifluoromethyl)-1H-1,2,4-triazole-5-amine (known from WO2006/043635) (CAS 885026-50-6), {1′-[(2E)-3-(4-chlorophenyl)prop-2-en-1-yl]-5-fluorospiro[indole-3,4′-piperidine]-1(2H)-yl}(2-chloropyridin-4-yl)methanone (known from WO2003/106457) (CAS 637360-23-7), 2-chloro-N-[2-{1-[(2E)-3-(4-chlorophenyl)prop-2-en-1-yl]piperidin-4-yl}-4-(trifluoromethyl)phenyl]isonicotinamide (known from WO2006/003494) (CAS 872999-66-1), 3-(4-chloro-2,6-dimethylphenyl)-4-hydroxy-8-methoxy-1,8-diazaspiro[4.5]dec-3-en-2-one (known from WO 2010052161) (CAS 1225292-17-0), 3-(4-chloro-2,6-dimethylphenyl)-8-methoxy-2-oxo-1,8-diazaspiro[4.5]dec-3-en-4-yl ethylcarbonate (known from EP 2647626) (CAS-1440516-42-6), 4-(but-2-yn-1-yloxy)-6-(3,5-dimethylpiperidin-1-yl)-5-fluoropyrimidine (known from WO2004/099160) (CAS 792914-58-0), PF1364 (known from JP2010/018586) (CAS Reg. No. 1204776-60-2), (3E)-3-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-1,1,1-trifluoropropan-2-one (known from WO2013/144213) (CAS 1461743-15-6), N-[3-(benzylcarbamoyl)-4-chlorophenyl]-1-methyl-3-(pentafluoroethyl)-4-(trifluoromethyl)-1H-pyrazole-5-carboxamide (known from WO2010/051926) (CAS 1226889-14-0), 5-bromo-4-chloro-N-[4-chloro-2-methyl-6-(methylcarbamoyl)phenyl]-2-(3-chloro-2-pyridyl)pyrazole-3-carboxamide (known from CN103232431) (CAS 1449220-44-3), 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-2-methyl-N-(cis-1-oxido-3-thietanyl)benzamide, 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-2-methyl-N-(trans-1-oxido-3-thietanyl)benzamide and 4-[(5S)-5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-2-methyl-N-(cis-1-oxido-3-thietanyl)benzamide (known from WO 2013/050317 A1) (CAS 1332628-83-7), N-[3-chloro-1-(3-pyridinyl)-1H-pyrazol-4-yl]-N-ethyl-3-[(3,3,3-trifluoropropyl)sulfinyl]propanamide, (+)-N-[3-chloro-1-(3-pyridinyl)-1H-pyrazol-4-yl]-N-ethyl-3-[(3,3,3-trifluoropropyl)sulfinyl]propanamide and (−)-N-[3-chloro-1-(3-pyridinyl)-1H-pyrazol-4-yl]-N-ethyl-3-[(3,3,3-trifluoropropyl)sulfinyl]propanamide (known from WO 2013/162715 A2, WO 2013/162716 A2, US 2014/0213448 A1) (CAS 1477923-37-7), 5-[[(2E)-3-chloro-2-propen-1-yl]amino]-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile (known from CN 101337937 A) (CAS 1105672-77-2), 3-bromo-N-[4-chloro-2-methyl-6-[(methylamino)thioxomethyl]phenyl]-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide (Liudaibenjiaxuanan, known from CN 103109816 A) (CAS 1232543-85-9); N-[4-chloro-2-[[(1,1-dimethylethyl)amino]carbonyl]-6-methylphenyl]-1-(3-chloro-2-pyridinyl)-3-(fluoromethoxy)-1H-pyrazole-5-carboxamide (known from WO 2012/034403 A1) (CAS 1268277-22-0), N-[2-(5-amino-1,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide (known from WO 2011/085575 A1) (CAS 1233882-22-8), 4-[3-[2,6-dichloro-4-[(3,3-dichloro-2-propen-1-yl)oxy]phenoxy]propoxy]-2-methoxy-6-(trifluoromethyl)pyrimidine (known from CN 101337940 A) (CAS 1108184-52-6); (2E)- and 2(Z)-2-[2-(4-cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]-N-[4-(difluoromethoxy)phenyl]hydrazinecarboxamide (known from CN 101715774 A) (CAS 1232543-85-9); cyclopropanecarboxylic acid 3-(2,2-dichloroethenyl)-2,2-dimethyl-4-(1H-benzimidazol-2-yl)phenyl ester (known from CN 103524422 A) (CAS 1542271-46-4); (4aS)-7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4-[(trifluoromethyl)thio]phenyl]amino]carbonyl]indeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylic acid methyl ester (known from CN 102391261 A) (CAS 1370358-69-2); 6-deoxy-3-O-ethyl-2,4-di-O-methyl-1-[N-[4-[1-[4-(1,1,2,2,2-pentafluoroethoxy)phenyl]-1H-1,2,4-triazol-3-yl]phenyl]carbamate]-α-L-mannopyranose (known from US 2014/0275503 A1) (CAS 1181213-14-8); 8-(2-cyclopropylmethoxy-4-trifluoromethylphenoxy)-3-(6-trifluoromethylpyridazin-3-yl)-3-azabicyclo[3.2.1]octane (CAS 1253850-56-4), (8-anti)-8-(2-cyclopropylmethoxy-4-trifluoromethylphenoxy)-3-(6-trifluoromethylpyridazin-3-yl)-3-azabicyclo[3.2.1]octane (CAS 933798-27-7), (8-syn)-8-(2-cyclopropylmethoxy-4-trifluoromethylphenoxy)-3-(6-trifluoromethylpyridazin-3-yl)-3-azabicyclo[3.2.1]octane (known from WO 2007040280 A1, WO 2007040282 A1) (CAS 934001-66-8), N-[3-chloro-1-(3-pyridinyl)-1H-pyrazol-4-yl]-N-ethyl-3-[(3,3,3-trifluoropropyl)thio]propanamide (known from WO 2015/058021 A1, WO 2015/058028 A1) (CAS 1477919-27-9) and N-[4-(aminothioxomethyl)-2-methyl-6-[(methylamino)carbonyl]phenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide (known from CN 103265527 A) (CAS 1452877-50-7), 5-(1,3-dioxan-2-yl)-4-[[4-(trifluoromethyl)phenyl]methoxy]pyrimidine (known from WO 2013/115391 A1) (CAS 1449021-97-9), 3-(4-chloro-2,6-dimethylphenyl)-8-methoxy-1-methyl-1,8-diazaspiro[4.5]decane-2,4-dione (known from WO 2014/187846 A1) (CAS 1638765-58-8), ethyl 3-(4-chloro-2,6-dimethylphenyl)-8-methoxy-1-methyl-2-oxo-1,8-diazaspiro[4.5]dec-3-en-4-ylcarboxylate (known from WO 2010/066780 A1, WO 2011151146 A1) (CAS 1229023-00-0), 4-[(5S)-5-(3,5-dichloro-4-fluorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-N-[(4R)-2-ethyl-3-oxo-4-isoxazolidinyl]-2-methylbenzamide (known from WO 2011/067272, WO2013/050302) (CAS 1309959-62-3).
Insecticides that can be used with preference together with the herbicide/safener combinations of the invention are, for example, as follows:
The herbicide/safener combinations of the invention are preferentially suitable for control of unwanted plant growth in economically important crop plants such as wheat (hard and soft wheat), maize, soya, sugarbeet, sugarcane, cotton, rice, beans (for example, bush beans and broad beans), flax, barley, oats, rye, triticale, potato and millet/sorghum.
For application, the herbicide/safener combinations of the invention can be deployed together or separately onto the plants (e.g. harmful plants such as mono- or dicotyledonous weeds or unwanted crop plants), the seed (e.g. grains, seeds or vegetative propagation organs such as tubers or parts of shoots having buds), or the area in which the plants grow (e.g. the growing area).
The herbicidal/safener combinations can be deployed prior to sowing (if appropriate also by incorporation into the soil), prior to emergence or after emergence. Preference is given to use by the early post-seeding pre-emergence method or by the post-emergence method against harmful plants that have not yet emerged or have already emerged. The application can also be integrated into weed management systems with divided repeated applications (sequentials).
Specific examples of some representatives of the monocotyledonous and dicotyledonous weed flora which can be controlled by the herbicide/safener combinations of the invention are mentioned by way of example, though the enumeration is not intended to impose a restriction to particular species. Among the monocotyledonous weed species, for example, Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachicaria, Bromus, Cynodon, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Imperata, Ischaemum, Heteranthera, Imperata, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum, Sphenoclea and Cyperus species are covered by the annual group.
In the case of dicotyledonous weed species, the spectrum of action extends to species such as, for example, Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erodium, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Geranium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.
If the herbicide/safener combinations of the invention are applied to the soil surface before germination, either the emergence of the weed seedlings is prevented completely or the weeds grow until they have reached the cotyledon stage, but then they stop growing and ultimately die completely after three to four weeks have passed.
If the herbicide/safener combinations are applied post-emergence to the green parts of the plants, growth stops after the treatment, and the harmful plants remain at the growth stage at the time of application, or they die completely after a certain time, and so this eliminates competition by the weeds, which is harmful to the crop plants, very early and in a sustained manner. The development of the crop plants, by contrast, is affected only slightly, if at all, by the use of the herbicide/safener combination.
The herbicide/safener combinations of the invention are notable for a rapidly commencing and long-lasting herbicidal action. In general, the rainfastness of the active ingredients in the combinations of the invention is favorable. A particular advantage is that the effective dosages of components (A) and (B) that are used in the herbicide/safener combinations can be adjusted to such a low level that their soil action is optimally low. Therefore, the use thereof in sensitive crops is not just enabled, but groundwater contamination is also virtually prevented.
Economically important crops for the applications of the herbicide/safener combinations of the invention are, for example, dicotyledonous crops from the genera of Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous crops from the genera of Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, Triticale, Triticum and Zea.
The herbicide/safener combinations of the invention can preferably also be used in transgenic crops which are resistant to growth regulators or to herbicides which inhibit essential plant enzymes, for example acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS), protoporphyrinogen IX oxidase (PPO), or hydroxyphenylpyruvate dioxygenases (HPPD), or to herbicides from the group of the sulfonylureas, the glyphosates, glufosinates or benzoylisoxazoles and analogous active ingredients.
The herbicide/safener combinations of the invention may either take the form of mixed formulations of components (A) and (B) and, if appropriate, with further active ingredients, additives and/or customary formulation auxiliaries, which are then applied in a customary manner diluted with water, or can be prepared as what are called tankmixes by joint dilution of the separately formulated or partially separately formulated components with water.
The herbicide/safener combinations of the invention can be formulated in various ways, according to the biological and/or physicochemical parameters required. Examples of general formulation options are: wettable powders (WP), water-soluble powders (SP), emulsifiable concentrates (EC), water-soluble concentrates, aqueous solutions (SL), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions or emulsions, dispersions based on oil or water, oil dispersions (OD), suspoemulsions, suspension concentrates (SC), oil-miscible solutions, capsule suspensions (CS), dusting products (DP), dressings, granules for soil application or scattering, granules (GR) in the form of microgranules, spray granules, absorption and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules or waxes.
The invention therefore also provides herbicidal and plant growth-regulating compositions comprising the herbicide/safener combinations of the invention.
The individual formulation types are known in principle and are described, for example, in: Winnacker-Küchler, “Chemische Technologie” [Chemical Technology], Volume 7, C. Hanser Verlag Munich, 4th ed. 1986; van Valkenburg, “Pesticide Formulations”, Marcel Dekker, N.Y., 1973, K. Martens, “Spray Drying” Handbook”, 3rd ed. 1979, G. Goodwin Ltd. London.
The necessary formulation auxiliaries, such as inert materials, surfactants, solvents and further additives, are likewise known and are described, for example, in: Watkins, “Handbook of Insecticide Dust Diluents and Carriers”, 2nd ed., Darland Books, Caldwell N.J.; H.v. Olphen, “Introduction to Clay Colloid Chemistry”, 2nd ed., J. Wiley & Sons, N.Y., Marsden, “Solvents Guide”, 2nd ed., Interscience, N.Y. 1963, Mccutcheon's “Detergents and Emulsifiers Annual”, MC Publ. Corp., Ridgewood N.J., Sisley and Wood, “Encyclopedia of Surface Active Agents”, Chem. Publ. Co. Inc., N.Y. 1964, Schönfeldt, “Grenzflächenaktive Äthylenoxidaddukte” [Interface-active Ethylene Oxide Adducts], Wiss. Verlagsgesellschaft, Stuttgart 1976, Winnacker-Küchler, “Chemische Technologie”, Volume 7, C. Hanser Verlag Munich, 4th ed. 1986.
On the basis of these formulations, it is also possible to produce combinations with other pesticidally active substances, such as other herbicides, fungicides, insecticides or other pesticides (for example acaricides, nematicides, molluscicides, rodenticides, aphicides, avicides, larvicides, ovicides, bactericides, viricides etc.), and also with further safeners, fertilizers and/or growth regulators, for example in the form of a finished formulation or as a tankmix.
Wettable powders are preparations which can be dispersed uniformly in water and, in addition to the active ingredient, apart from a diluent or inert substance, also comprise surfactants of the ionic and/or nonionic type (wetting agents, dispersants), for example polyoxyethylated alkylphenols, polyoxyethylated fatty alcohols, polyoxyethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkanesulfonates, alkylbenzenesulfonates, sodium lignosulfonate, sodium 2,2′-dinaphthylmethane-6,6′-disulfonate, sodium dibutylnaphthalenesulfonate or else sodium oleoylmethyltaurate. To produce the wettable powders, the active herbicidal ingredients are finely ground, for example in customary apparatuses such as hammer mills, blower mills and air-jet mills, and simultaneously or subsequently mixed with the formulation auxiliaries.
Emulsifiable concentrates are produced by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene, or else relatively high-boiling aromatics or hydrocarbons or mixtures of the organic solvents, with addition of one or more ionic and/or nonionic surfactants (emulsifiers). Examples of emulsifiers which may be used are: calcium alkylarylsulfonate salts, such as calcium dodecylbenzenesulfonate, or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters, for example sorbitan fatty acid esters, or for example polyoxyethylene sorbitan fatty acid esters.
Dusting products are obtained by grinding the active ingredient with finely distributed solids, for example talc, natural clays, such as kaolin, bentonite and pyrophyllite, or diatomaceous earth. Suspension concentrates may be water- or oil-based. They may be produced, for example, by wet-grinding by means of commercial bead mills and optional addition of surfactants as already listed above, for example, for the other formulation types.
Emulsions, for example oil-in-water emulsions (EW), can be produced, for example, by means of stirrers, colloid mills and/or static mixers using aqueous organic solvents and optionally surfactants as already listed above, for example, for the other formulation types.
Granules can be produced either by spraying the active ingredient onto granular inert material capable of adsorption or by applying active ingredient concentrates to the surface of carrier substances, such as sand, kaolinites or granular inert material, by means of adhesives, for example polyvinyl alcohol, sodium polyacrylate or else mineral oils. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules—if desired as a mixture with fertilizers.
Water-dispersible granules are produced generally by processes such as spray-drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion without solid inert material.
The agrochemical preparations generally contain 0.1 to 99 percent by weight, especially 0.2% to 95% by weight, of active ingredients of components (A) and/or (B), the following concentrations being customary, depending on the type of formulation:
In wettable powders, the active ingredient concentration is, for example, about 10% to 95% by weight, the remainder to 100% by weight consisting of customary formulation constituents. In the case of emulsifiable concentrates, the active ingredient concentration may be about 1% to 90% by weight, preferably 5 to 80 percent by weight.
Formulations in the form of dusts usually contain 5% to 20% by weight of active ingredient; sprayable solutions contain about 0.05 to 80, preferably 2 to 50, percent by weight (% by weight) of active ingredient.
In the case of granules such as dispersible granules, the active ingredient content depends partly on whether the active ingredient is in liquid or solid form and on which granulation auxiliaries and fillers are used. In general, the content in the water-dispersible granules is between 1% and 95% by weight, preferably between 10% and 80% by weight.
In addition, the active ingredient formulations mentioned optionally comprise the respectively customary adhesives, wetting agents, dispersants, emulsifiers, penetrants, preservatives, antifreeze agents and solvents, fillers, colorants and carriers, antifoams, evaporation inhibitors and pH- or viscosity-modifying agents.
For application, the formulations in the commercial form are diluted if appropriate in a customary manner, for example with water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Dust-type preparations, granules for soil application or broadcasting and sprayable solutions are not normally diluted further with other inert substances prior to application.
The herbicide/safener combinations of the invention can be deployed onto the plants, plant parts, plant seeds or the area under cultivation (soil), preferably on the green plants and plant parts, and optionally additionally onto the soil.
One possible use is the joint deployment of the herbicide/safener combinations in the form of tankmixes, where the optimally formulated concentrated formulations of the individual active ingredients together are mixed in a tank with water, and the spray liquor obtained is deployed.
A joint formulation of the herbicide/safener combinations of the invention has the advantage that it can be applied more easily since the quantities of the components are already adjusted to the correct ratio. Moreover, the auxiliaries in the formulation can be adjusted optimally to one another, whereas a tankmix of different formulations may result in unwanted combinations of auxiliaries.
a) A dusting product is obtained by mixing 10 parts by weight of a component (A) or (B) or a component mixture (A)+(B) (and optionally further components) and/or salts thereof and 90 parts by weight of talc as inert substance, and comminuting in a beater mill.
b) A wettable powder which is readily dispersible in water is obtained by mixing 25 parts by weight of a component/component mixture, 64 parts by weight of kaolin-containing quartz as inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurate as wetting agent and dispersant, and grinding the mixture in a pinned-disk mill.
c) A dispersion concentrate which is readily dispersible in water is obtained by mixing 20 parts by weight of a component/component mixture with 6 parts by weight of alkylphenol polyglycol ether (Triton® X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight of paraffinic mineral oil (boiling range for example approximately 255 to 277° C.) and grinding the mixture in a friction ball mill to a fineness of below 5 microns.
d) An emulsifiable concentrate is obtained from 15 parts by weight of a component/component mixture, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of oxyethylated nonylphenol as emulsifier.
e) Water-dispersible granules are obtained by mixing
f) Water-dispersible granules are also obtained by homogenizing and precomminuting, in a colloid mill,
The seeds of the crop plants to be treated are laid out in soil in woodfiber pots (diameter ˜ 7 cm), covered with soil and grown in a greenhouse under good conditions for germination and growth. The trial plants were treated at the early leaf stage (BBCH10-BBCH12).
The herbicides used (component B) were used in the following formulations:
The dose of the respective herbicides was chosen here such that it causes an average degree of visually apparent damage (min. 20%, max. 75%) compared to untreated crop plants at the evaluation time on a control group of crop plants without safener treatment that were included in the same trial.
In the respective herbicide/safener combinations, the safeners (component A) in the form of wettable powders (WP) were added in the dose specified; in these cases, herbicide and safener are thus applied as a mixture.
Application was effected in each case on to the above-ground parts of the plant, at a water application rate corresponding to 300 l/ha and with addition of wetting agent (Mero, 1.5 l/h a).
In the applications that contained pinoxaden, bicyclopyrone or topramezone, the herbicidal effect was enhanced by additionally adding ammonium sulfate (2 kg/ha).
After application, the plants were cultivated under good growth conditions in a greenhouse. On account of the different mechanisms of action of the herbicides used, the damaging effect of the herbicides was fully manifested at different times depending on the herbicide, and this in turn forms the basis for assessment of the safener action in the mixtures. Therefore, the damage was scored visually, depending on the herbicide/mixture, between 11 and 21 days after application.
The damage effect was assessed visually on a scale of 0-100% by comparison with untreated control plants, and averaged over 2 repeats per treatment.
The experiments show that damage to the summer wheat crop plant (TRZAS; cv. Triso) caused by the respective herbicide (component (B)) (=herbicide damage without compound of the formula (I) in table 2 below) is significantly reduced by adding a safener (component (A)).
The seeds of the crop plants to be treated are laid out in soil in woodfiber pots (diameter ˜ 7 cm), covered with soil and grown in a greenhouse under good conditions for germination and growth. The trial plants were treated at the early leaf stage (BBCH10-BBCH12).
The herbicides used (component B) were used in the following formulations:
The dose of the respective herbicides was chosen here such that it causes an average degree of visually apparent damage (min. 20%, max. 75%) compared to untreated crop plants at the evaluation time on a control group of crop plants without safener treatment that were included in the same trial.
In the respective herbicide/safener combinations, the safeners (component A) in the form of wettable powders (WP) were added in the dose specified; in these cases, herbicide and safener are thus applied as a mixture.
Application was effected in each case on to the above-ground parts of the plant, at a water application rate corresponding to 300 l/ha and with addition of wetting agent (Mero, 1.5 l/h a).
In the applications that contained pinoxaden or topramezone, the herbicidal effect was enhanced by additionally adding ammonium sulfate (2 kg/ha).
After application, the plants were cultivated under good growth conditions in a greenhouse. On account of the different mechanisms of action of the herbicides used, the damaging effect of the herbicides was fully manifested at different times depending on the herbicide, and this in turn forms the basis for assessment of the safener action in the mixtures. Therefore, the damage was scored visually, depending on the herbicide/mixture, between 11 and 21 days after application.
The damage effect was assessed visually on a scale of 0-100% by comparison with untreated control plants, and averaged over 2 repeats per treatment.
The experiments show that damage to the summer barley crop plant (HORVS: cv. Quench) caused by the respective herbicide (component B) (=herbicide damage without compound of the formula (I) in table 3 below) is significantly reduced by adding a safener (component A).
Number | Date | Country | Kind |
---|---|---|---|
21172971.0 | May 2021 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/061959 | 5/4/2022 | WO |