HERITABLE EPIGENETIC MODIFICATIONS AS MARKERS OF CHEMOTHERAPY EXPOSURE

Information

  • Patent Application
  • 20170253927
  • Publication Number
    20170253927
  • Date Filed
    March 01, 2017
    7 years ago
  • Date Published
    September 07, 2017
    7 years ago
Abstract
Provided herein are epigenetic modifications that are associated with prior exposure to chemotherapy agents. In particular, differential DNA methylation regions (DMRs) that are characteristic of, and can thus be used to identify and/or treat, a male subject who has undergone chemotherapy are provided. The DMRs are used to screen for pregnancy complications, infertility, and passage of heritable mutations to an infant.
Description
LENGTHY TABLE

This application includes Table 10 the complete contents of the accompanying text file “Table10.txt”, created Feb. 15, 2017, containing 369 kilobytes, hereby incorporated by reference.









LENGTHY TABLES




The patent application contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).






BACKGROUND OF THE INVENTION
Field of the Invention

The invention generally relates to the identification of epigenetic modifications that are associated with prior exposure to chemotherapy agents. In particular, the invention provides differential DNA methylation regions (DMRs) that are characteristic of, and can thus be used to identify and/or treat, a male subject who has undergone chemotherapy. The DMRs are used to screen for pregnancy complications, infertility, and passage of heritable mutations to an infant.


Background of the Invention

The current paradigm for the etiology of heritable diseases, including those caused by environmental insult, is based primarily on mechanisms of genetic alterations such as DNA sequence mutations. However, the majority of inherited diseases have not been linked to specific genetic abnormalities or changes in DNA sequence. In addition, the majority of environmental factors known to cause or influence the development of disease—including heritable diseases—do not have the capacity to alter DNA sequence. Therefore, additional molecular mechanisms need to be taken into account when attempting to clarify the etiology of diseases and to develop diagnostic tools and treatments.


A factor to consider in disease etiology is the importance of early life exposures and events that are critical in later adult onset disease. These developmental origins of disease require a molecular mechanism that does not involve the induction of genetic abnormalities or alterations in DNA sequence. A molecular mechanism that has been shown to mediate the actions of environmental factors on disease is epigenetics. Epigenetics is defined as molecular factors and processes around DNA that regulate genomic activity independent of DNA sequence, and that are mitotically stable. Epigenetic processes include DNA methylation, histone modifications, chromatin structure changes, and some small RNA's.


During migration of the primordial germ cell down the genital ridge the germ cell genome (DNA) becomes demethylated upon colonization of the embryonic gonad. At the onset of gonadal sex determination the germ line then is re-methylated in a sex specific manner. Therefore, the exposure of an environmental factor during this period has the ability to alter the germ line epigenome and if permanently modified can promote a transgenerational phenotype. Therefore, the basic molecular mechanism proposed for environmentally induced epigenetic transgenerational inheritance of adult onset disease involves: 1) environmental exposure during the gonadal sex determination period; 2) alteration in the epigenetic programming (DNA methylation) of the primordial germ cell; 3) permanent alteration in the male germ line epigenome with imprinted-like programming that escapes the de-methylation of DNA at fertilization and during early embryonic development; 4) transmission of the altered sperm epigenome (DNA methylation) to subsequent generations, similar to imprinted-like sites; 5) all cell types and tissues that develop from the sperm have an altered epigenome and transcriptome specific to the cell type or tissue; and 6) increased susceptibility to develop adult onset disease. The transmission of epigenetic information between generations in the absence of any direct environmental exposures is defined as epigenetic transgenerational inheritance.


Advances in chemotherapy-based curative therapy for childhood cancer have led to a significant improvement in outcome, such that long-term survival approaches 80% [1]. This has resulted in an increasing focus on the later life effects of chemotherapy and quality of life in the growing population of survivors of childhood, adolescent and young adult (AYA) cancer. The toxic effect of cancer chemotherapy on reproductive health is one of the most important challenges faced by male childhood and AYA cancer survivors and is a leading cause of decreased quality of life in this population [2-5]. The impact of chemotherapy on subsequent generations has not been previously considered outside the realm of induced genetic mutations. The availability of ancestral environmental epigenetic biomarkers would significantly facilitate the research and development of new screening methods for the identification of subjects whose fertility has been affected by chemotherapy treatment, thus informing future fertility decisions.


SUMMARY OF THE INVENTION

One aspect of the invention provides a method of determining if a male subject has been exposed to a chemotherapy agent comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject; identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one differential DNA methylation region (DMR) listed in Table 6 or Table 10; and determining that said subject has been exposed to a chemotherapy agent if said epigenetic modification is identified to be present in said at least one genomic DNA sequence.


In some embodiments, the epigenetic modification comprises a plurality of DMRs selected from the group listed in Table 6 or Table 10. In other embodiments, the epigenetic modification comprises each DMR listed in Table 6 or Table 10. In some embodiments, the chemotherapy agent is at least one of cisplatin and ifosfamide.


Another aspect of the invention provides a method of screening for pregnancy complications, infertility, and passage of heritable mutations to an infant attributable to a male subject that has previously undergone chemotherapy treatment comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject that has previously undergone chemotherapy treatment; identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one DMR listed in Table 6 or Table 10; and indicating that said subject is at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant if said epigenetic modification is identified to be present in said at least one genomic DNA sequence.


In some embodiments, the epigenetic modification comprises a plurality of DMRs selected from the group listed in Table 6 or Table 10. In other embodiments, the epigenetic modification comprises each DMR listed in Table 6 or Table 10. In some embodiments, the male subject underwent chemotherapy treatment for a period of time at an age prior to reproduction. In some embodiments, the male subject underwent chemotherapy treatment for a period of time at an age from 14 and 20 years old. In some embodiments, the chemotherapy treatment comprised at least one of cisplatin and ifosfamide.


A further aspect of the invention provides a method for the early intervention and treatment of a male subject who is suspected of or who has been exposed to chemotherapy treatment, comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject that has previously undergone chemotherapy treatment; identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one DMR listed in Table 6; indicating that said subject is at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant if said epigenetic modification is identified to be present in said at least one genomic DNA sequence; and administering an appropriate treatment protocol to said subject determined to be at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Human sperm chemotherapy-associated DMR chromosome location. The DMR locations on the individual chromosomes are presented as an arrowhead. Only DMR containing at least two significant sites at a p-value threshold of 1e-04 are shown. The box under the chromosome line represents statistically significant overrepresented clusters of DMR within the chromosomal size of the box.



FIG. 2. The human sperm chemotherapy-associated all site DMR locations on the individual chromosomes is presented. All site (single and multiple site) DMR are represented with an arrowhead and the DMR clusters with a box. All site DMRs at a p-value threshold of 1e-04 are shown.



FIG. 3A-B. Human sperm chemotherapy-associated DMR genomic feature and size. A) The CpG density of the DMR is presented as number of CpG/100bp with the corresponding number of DMR. B) The DMR length in kilobase pairs (kb) is presented with the corresponding DMR number. Only DMR containing multiple significant windows at a p-value threshold of 1e-04 are shown.



FIG. 4. The human sperm chemotherapy-associated DMR associated gene classifications (i.e. functional categories). The number of DMR associated genes for specific classification categories are presented.





DETAILED DESCRIPTION

Epigenetic transgenerational inheritance provides an alternative molecular mechanism for germ line transmission of environmentally induced phenotypic change compared to that of classic genetics. Most factors do not have the ability to modify DNA sequence, but environmental factors such as nutrition or various toxicants can influence epigenetic processes to mediate alterations in genome activity. Environmental epigenetics focuses on how a cell or organism responds to environmental factors or insults to create altered phenotypes or disease. Until the present invention, it was previously unknown how chemotherapy or radiotherapy treatment affected the epigenetic programming of a germ line and whether such impact could influence later life fertility and epigenetic inheritance.


Described herein are the altered DNA methylation profiles in the germ line (sperm) of male subjects after exposure to chemotherapy agents. In particular, Table 6 provides statistically significant epimutations, termed DMRs, that were identified in the germ line of male subjects who had undergone chemotherapy treatment. Due to the imprinted-like nature of the altered epigenetic DNA methylation sites, the germ line (sperm) transmit this epigenome phenotype to subsequent generations, which is termed epigenetic transgenerational inheritance. Without being bound by theory, the basic mechanism involves the ability of an environmental factor, such as a chemotherapeutic agent, to alter the germ line DNA methylation program to promote imprinted-like sites that then transmit an altered epigenome phenotype transgenerationally. In some cases, environmental exposures act on somatic cells at critical windows of development to influence phenotype and/or disease in the individual exposed, but this will not become transgenerational. In the event the critical window for the primordial germ cell is affected by environmental exposure, the altered germ line has the ability to promote a transgenerational phenotype for subsequent generations.


Epigenetic regulatory sites and epigenetic mutation sites (such as those involving differential DNA methylation) have profound regulatory effects on gene expression, cell function and the development of abnormal physiology and disease. The presence of such sites in the germline (e.g. sperm) can promote epigenetic transgenerational inheritance of, e.g. adult onset disease. Therefore, identification of these epimutations and/or epigenetic control regions (referred to collectively herein as “epigenetic control regions” or “ECRs”) is critical to understanding disease etiology and heritable conditions that do not follow classic Mendelian genetics, and to the diagnosis and treatment of such conditions.


Provided herein are DMRs which are useful for the identification of subjects who have undergone chemotherapy or radiotherapy treatment. In some embodiments, the methylation level is determined by a cytosine. In some embodiments, the DMRs are associated with certain genes in an individual. In some embodiments, the DMRs are associated with certain CpG loci. The CpG loci may be located in the promoter region of a gene, in an intron or exon of a gene or located near the gene in a patient's genomic DNA. In an alternate embodiment, the CpG may not be associated with any known gene or may be located in an intergenic region of a chromosome. In some embodiments, the CpG loci may be associated with one or more than one gene.


In some instances, the DMRs described herein are found in CpG desert regions of the genome, e.g. a CpG density of about 10% or less or a mean around two CpG per 100 base pairs. Due to the evolutionary conservations of CpG clusters in a CpG desert, these are likely epigenetic regulatory sites. Additional genomic features of characteristic of ECRs are described in U.S. Patent Publication 2013/0226468 incorporated herein by reference. Those of skill in the art will recognize that the “%” of a sequence of interest (e.g. CpG) means that the sequence occurs the indicated number of times per 100 base pairs analyzed, e.g. 15% or less CpG means that the dinucleotide sequence C followed by G occurs at most 15 times per 100 base pairs within a DNA segment that is analyzed. Analyses are usually carried out by iterative analysis of consecutively overlapping sequences within a large DNA molecule of interest, e.g. a chromosome, a section of a chromosome, etc.


The DMRs provided herein allow for determining if a male subject has been exposed to a chemotherapy agent comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject; identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one differential DNA methylation region (DMR) listed in Table 6; and determining that said subject has been exposed to a chemotherapy agent if said epigenetic modification is identified to be present in said at least one genomic DNA sequence.


In some embodiments, the epigenetic modification comprises a plurality of DMRs selected from the group listed in Table 6. In other embodiments, the epigenetic modification comprises all 135 DMRs listed in Table 6. In some embodiments, the epigenetic modification consists of all 135 DMRs listed in Table 6.In some embodiments, the chemotherapy agent is at least one of cisplatin and ifosfamide.


Contemplated herein is the use of one or more DMRs listed in Table 10. Table 10 includes human sperm DMR for all DMR sites, single and multiple, at a p-value threshold of 1e-04. The DMR name, chromosome location, start and stop base pair location, length in base pair (bp), number of significant windows (100 bp), p-value, number of CpG sites, CpG sites per 100 bp, and DMR associated gene symbol (annotation) are provided.


A “plurality” as used herein refers to two or more DMRs, for example, two, three, four, five, six, and every integer up to and including all 135 DMRs listed in Table 6. A plurality may also refer to two or more DMRs listed in Table 10 and every integer up to and including all DMRs listed in Table 10.


Another aspect of the invention provides a method of screening for pregnancy complications, infertility, and passage of heritable mutations to an infant attributable to a male subject that has previously undergone chemotherapy treatment comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject that has previously undergone chemotherapy treatment; identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one DMR listed in Table 6 or Table 10; and indicating that said subject is at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant if said epigenetic modification is identified to be present in said at least one genomic DNA sequence.


In some embodiments, the epigenetic modification comprises a plurality of DMRs selected from the group listed in Table 6 or Table 10. In other embodiments, the epigenetic modification comprises each DMR listed in Table 6 or Table 10. In some embodiments, the male subject underwent chemotherapy treatment for a period of time at an age prior to reproduction. In some embodiments, the male subject underwent chemotherapy treatment for a period of time at an age from 14 and 20 years old, e.g. at 14, 15, 16, 17, 18, 19, and 20 years old. In some embodiments, the subject was under 14 years old or above 20 years old at the time of treatment. In some embodiments, the chemotherapy treatment comprised at least one of cisplatin and ifosfamide.


“Epimutation” and “epigenetic modification” as used herein refer to modifications of cellular DNA that affect gene expression without altering the DNA sequence. The epigenetic modifications are both mitotically and meiotically stable, i.e. after the DNA in a cell (or cells) of an organism has been epigenetically modified, the pattern of modification persists throughout the lifetime of the cell and is passed to progeny cells via both mitosis and meiosis. Therefore, with the organism's lifetime, the pattern of DNA modification and consequences thereof, remain consistent in all cells derived from the parental cell that was originally modified. Further, if the epigenetically modified cell undergoes meiosis to generate gametes (e.g. sperm), the pattern of epigenetic modification is retained in the gametes and thus inherited by offspring. In other words, the patterns of epigenetic DNA modification are transgenerationally transmissible or inheritable, even though the DNA nucleotide sequence per se has not been altered or mutated. Without being bound by theory, it is believed that enzymes known as methyltransferases shepherd or guide the DNA through the various phases of mitosis or meiosis, reproducing epigenetic modification patterns on new DNA strands as the DNA is replicated. Exemplary epigenetic modifications include, but are not limited, to DNA methylation, histone modifications, chromatin structure modifications, and non-coding RNA modifications, etc.


Epigenetic modifications may be caused by exposure to any of a variety of factors, examples of which include but are not limited to: chemical compounds e.g. endocrine disruptors such as vinclozolin; chemicals such as those used in the manufacture of plastics e.g. bispheol A (BPA); bis(2-ethylhexyl)phthalate (DEHP); dibutyl phthalate (DBP); insect repellants such as N, N-diethyl-meta-toluamide (DEET); pyrethroids such as permethrin; various polychlorinated dibenzodioxins, known as PCDDs or dioxins e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); extreme conditions such as abnormal nutrition, starvation, etc. In preferred embodiments, the subject of the invention has been exposed to one or more chemotherapeutic agents which include alkylating agents such as ifosfamide and cyclophosphamide, anthracyclines such as daunorubicin and doxorubicine, taxanes such as paclitaxel and docetaxel, epothilones, histone deacetylase inhibitors, topoisomerase inhibitors, kinase inhibitors such as gefitinib, platinum-based agents such as cisplatin, retinoids, and vinca alkaloids, etc. These agents may be used to treat a variety of cancers, including but not limited to, an osteosarcoma, lymphoma, melanoma, etc.


Methods of identifying DMRs in genomic DNA are well known to one skilled in the art. For example, microarray based methylome profiling and bioinformatics data analysis may be used to analyze DNA methylation profiles. In some embodiments, the microarray chip is a tiling array chip. In some embodiments, Methylated DNA immunoprecipitation (MeDIP) followed by next generation sequencing (NGS) is used. In some embodiments, MeDIP-Chip is used. Additional methods for detecting methylation levels can involve genomic sequencing before and after treatment of the DNA with bisulfite. When sodium bisulfite is contacted to DNA, unmethylated cytosine is converted to uracil, while methylated cytosine is not modified. Bisulfite methods may also be used in conjunction with pyrosequencing and PCR. Computer executable algorithms and software programs for implementing the same are also encompassed by the invention. Such software programs generally contain instructions for causing a computer to carry out the steps of the methods disclosed herein. The computer program will be embedded in a non-transient medium such as a hard drive, DVD, CD, thumb drive, etc.


The invention also provides kits for the detection and/or quantification of the epigenetic modification described herein using the methods described herein. In some embodiments, the kit comprises at least one polynucleotide that hybridizes to one of the DMR loci identified in Table 6 or Table 10 (or a nucleic acid sequence at least 90% identical to the DMR loci of Table 6 or Table 10), or that hybridizes to a region of DNA flanking one of the DMR loci identified in Table 6 or Table 10, and at least one reagent for detection of gene methylation, Reagents for detection of methylation include, e.g., sodium bisulfite, polynucleotides designed to hybridize to sequence at or near the DMR loci of the invention if the sequence is not methylated, and/or a methylation-sensitive or methylation-dependent restriction enzyme. The kits can provide solid supports in the form of an assay apparatus that is adapted to use in the assay. The kit may further comprise detectable labels, optionally linked to a polynucleotide, e.g., a probe, in the kit. Other materials useful in the performance of the assays can also be included in the kit, including test tubes, transfer pipettes, and the like. The kit can also include written instructions for the use of one or more of these reagents in any of the assays described herein.


Selection and identification of a subject for analysis may be predicated on and/or influenced by any number of factors. For example, the subject or subjects may be known or suspected to be afflicted with a disease or condition associated with epigenetic mutations; or who have been or are suspected of having been exposed to an agent that causes, or is suspected of causing, epigenetic mutations; or who have inexplicably inherited a disease or disease condition from a parent for which no DNA sequence mutation has been identified, etc. Subjects whose DNA is analyzed may be of any age, and in any stage of development, so long as cells containing a DNA sequence of interest can be obtained from the subject. For example, the subject may be an adult, an adolescent, a laboratory animal, etc. The cells from which the DNA is obtained may be any suitable cell, including but not limited to gametes, cells from swabs such as buccal swabs, cells sloughed into amniotic fluid, etc.


The genomic features described herein may be used in a variety of applications. For example, the DMRs of the invention can be indicative of having, the risk of having, or the risk of developing infertility or a condition that could lead to pregnancy complications and/or passage of heritable mutations to an infant. Thus the methods of the invention may be used, for example, in an in vitro fertilization clinic setting to test sperm for epimutations and for the potential to pass epigenetic information to offspring. The methods of the invention are also useful for screening potential sperm donors at a donation center. Further applications include screening applicants for health insurance coverage.


The DMRs of the invention can serve as biomarkers to be used e.g. in disease diagnosis and/or to detect environmental exposures to agents or conditions that cause epimutations and/or to monitor therapeutic responsiveness to a medicament or treatment and/or used as prognostic indicators. The detection of epigenetic modifications at the regions described herein (i.e. a positive diagnostic result) will suggest or confirm that the subject has, indeed, likely been exposed to chemotherapy and/or radiotherapy treatments, and treatments suitable for said exposure, or the effects of said exposure, can be instituted. For example, chemotherapy exposure may result in a low sperm count in the male patient leading to infertility. Thus, an appropriate infertility treatment, such as surgical extraction of sperm, may be implemented. In some instances, a male subject may cryopreserve a sperm sample before or shortly after undergoing chemotherapy and/or radiotherapy treatment. In other instances, a male subject may decide to utilize a sperm donor due to the subject's infertility or to prevent the possibility of pregnancy complications and/or the passage of heritable mutations to an infant attributable to the male subject.


Information concerning the type and extent of epigenetic modification in a subject may be used in a variety of decision making processes undertaken by a subject that is tested. For example, depending on the severity of the symptoms caused by an epigenetic modification that is identified, a subject may decide to forego having children or to terminate a pregnancy in order to prevent transmission of the modification to offspring. Diagnostic tests based on the present invention can be included in prenatal testing.


Thus, an aspect of the invention provides a method for the early intervention and treatment of a male subject who is suspected of or who has been exposed to chemotherapy treatment, comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject that has previously undergone chemotherapy treatment; identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one DMR listed in Table 6 or Table 10; indicating that said subject is at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant if said epigenetic modification is identified to be present in said at least one genomic DNA sequence; and administering an appropriate treatment protocol to said subject determined to be at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant.


In contrast, a negative result (no epigenetic modification at the site) suggests that the subject has not been exposed to chemotherapy and/or radiotherapy treatments (or at least that the exposure did not result in damage). If it is known that exposure did occur, then prophylactic screening of a DNA sample from a patient can result in early identification of a risk of disease and lead to early therapeutic intervention. In addition, ongoing monitoring of the extent of epigenetic modification of a site can provide valuable information regarding the outcome of the administration of agents (e.g. drugs or other therapies) which are intended to treat or prevent a condition caused by epimutation, i.e. the therapeutic responsiveness of a patient. Those of skill in the art will recognize that such analyses are generally carried out by comparing the results obtained using an unknown or experimental sample with results obtained a using suitable negative or positive controls, or both.


Subjects whose DNA is analyzed may be suffering from any of a variety of disorders (diseases, conditions, etc.) including but not limited to: various known late or adult onset conditions, such as low sperm production, infertility, abnormalities of sexual organs, kidney abnormalities, prostate disease, immune abnormalities, behavioral effects, etc. In other embodiments, no symptoms are present but screening using the diagnostics is employed to rule out the presence of “silent” epigenetic mutations which could cause disease symptoms in the future, or which could be inherited and cause deleterious effects in offspring.


The DMRs described herein may also be used to screen and identify therapeutic modalities for the treatment of epigenetic mutations due to chemotherapy and/or radiotherapy exposure. Those of skill in the art will recognize that such methods of screening are typically carried out in vitro, e.g. using a DNA sequence that is immobilized in a vessel, or that is present in a cell. However, such tests may also be carried out in model laboratory animals. In one embodiment, candidate agents which reverse epigenetic modification are screened by analyzing the regions. In another embodiment, candidate agents which prevent epigenetic modifications are screened by analyzing the regions. In this way, the epigenetic biomarkers described herein can be used to facilitate, e.g. drug development and clinical trials patient stratification (i.e. pharmacoepigenomics).


Before exemplary embodiments of the present invention are described in greater detail, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.


All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.


The invention is further described by the following non-limiting example which further illustrates the invention, and is not intended, nor should it be interpreted to, limit the scope of the invention.


EXAMPLE
Differential DNA Methylation Regions in Adult Human Sperm following Adolescent Chemotherapy
Abstract

The potential that adolescent chemotherapy can impact the epigenetic programming of the germ line to influence later life adult fertility and promote epigenetic inheritance was investigated. Adult males approximately ten years after pubertal exposure to chemotherapy were compared to adult males with no previous exposure. Sperm were collected to examine differential DNA methylation regions (DMR) between the exposed and control populations. A signature of statistically significant DMRs was identified in the chemotherapy exposed male sperm. The DMRs, termed epimutations, were found in CpG desert regions of primarily 1 kilobase size. Gene associations and correlations to genetic mutations (copy number variation) were also investigated. Observations indicate adolescent chemotherapy exposure can promote epigenetic alterations that persist in later life. This is the first observation in humans that an early life chemical exposure can permanently reprogram the spermatogenic stem cell epigenome. The germline (i.e. sperm) epimutations identified suggest chemotherapy can promote epigenetic inheritance to the next generation.


Introduction

Previous studies have demonstrated transient early life toxicant exposures can influence later life health effects and epigenetic reprogramming of the germline in animal models [6-8]. Epigenetics is defined as “molecular factors or processes around DNA that regulate genome activity independent of DNA sequence and are mitotically stable” [6, 9]. The currently known epigenetic mechanisms include DNA methylation, histone modifications, selected non-coding RNA and chromatin structure [6]. Although the vast majority of environmental factors can not alter DNA sequence, most have the ability to alter epigenetic programming during development [6, 9]. Early developmental exposures have been shown to alter the epigenetic programming of cells associated with a number of adult onset diseases [6, 9-11]. Environmentally-induced DNA methylation changes in Sertoli or granulosa cells have been shown to associate with testis and ovarian disease in the adult [12, 13]. Environmental epigenetics provides a molecular mechanism for the developmental origins of disease [9]. In the event the altered epigenetic programming occurs in the germline (sperm or egg), the altered epigenetics (e.g. epimutations) have the potential to be transmitted between generations [6-8, 14]. A number of studies have demonstrated that environmental factors (e.g. toxicants and nutrients) following fetal exposure can alter the germline epigenome (e.g. DNA methylation) to then transmit epimutations to subsequent generations [8, 14].


When the germline transmission of epigenetic information occurs between multiple generations in the absence of continuous exposure this is considered to be environmentally-induced epigenetic transgenerational inheritance [6, 7]. This form of non-genetic inheritance is due to the germline transmission of epigenetic information. A number of studies have shown that numerous environmental toxicants such as fungicides [7], plastics [15], pesticides [7] and hydrocarbons [16] can promote the epigenetic transgenerational inheritance of disease [6]. The transgenerational disease observed includes testis, ovary, prostate, mammary, kidney and brain disease [17, 18]. The majority of these transgenerational studies have observed correlations between the phenotypes and differential DNA methylation alterations in the sperm [14]. Therefore, early life environmental exposures can influence the epigenetic programming of the sperm and have the ability to promote epigenetic inheritance to subsequent generations.


The generational impact of chemotherapy has not been thoroughly investigated. Therefore, the current study was designed to investigate the actions of chemotherapy on pubertal males that potentially promote an alteration in epigenetic programming that will result in adult male sperm having epimutations. This requires the spermatogonial stem cell population in the testis to be affected permanently to produce later life effects on the sperm epigenome. Osteosarcoma is one of the most common cancers in this population treated with agents such as cisplatin and ifosfamide. This population provides a useful model to investigate potential chemotherapy induced effects on later life reproductive health. Previous studies have demonstrated altered DNA methylation profiles in control versus infertile human male sperm [19]. The presence of sperm epimutations due to adolescent chemotherapy also would suggest for the first time the potential for epigenetic inheritance to the next generation.


Results

Characteristics of the chemotherapy-exposed patients and controls including age of semen collection, specific chemotherapy and sperm quality are presented in Tables 1 and 2. The age of exposure ranged 14 to 20 years and the chemotherapy was cisplatin with some also including ifosfamide. Upon collection the sperm numbers ranged from 7 to 518 million total with the control population mean of 280 million total per individual and the chemotherapy-exposed mean of 77.8 million total per individual. Therefore, there was a general reduction in sperm number in the chemotherapy-exposed population, as previously described [2, 3].









TABLE 1







Patient Information. Information for the chemotherapy treated


and control individuals with treatment age, sperm collection age,


chemotherapy used and total sperm number presented.













Collection
Sperm #



ID #
Chemotherapy
Age (yr)
(Total Millions)
Pool #














CIS-051
N/A
40
240.5
1


CIS-056
N/A
38
303.6
1


CIS-061
N/A
32
44.2
1


CIS-063
N/A
33
675
2


CIS-067
N/A
39
262
2


CIS-073
N/A
37
280.4
2


CIS-068
N/A
33
21
3


CIS-072
N/A
40
181.2
3


CIS-074
N/A
37
518
3


B006-249
Cisplatin/Ifosfamide
27
ND*
4


CIS-002
Cisplatin
24
100.2
4


CIS-025
Cisplatin
26
170.5
4


CIS-028
Cisplatin
26
178
5


CIS-034
Cisplatin
24
7.34
5


CIS-043
Cisplatin/Ifosfamide
30
42
5


CIS-033
Cisplatin
25
21
6


CIS-044
Cisplatin
19
49
6


CIS-046
Cisplatin
24
55
6





*ND indicates not determined













TABLE 2







Patient Information. Average and range for the chemotherapy treated


patients and controls presented for age at collection, age at treatment,


cisplatin dose (milligrams/meter squared), ifosfamide dose and


seminal fluid volume. Note that one patient that got 120 mg/m2


dose of cisplatin also got 800 mg/m2 of carboplatin which is in the


same class of drugs as cisplatin. The B006 chemotherapy case


sperm count was not determined (ND).










Chemotherapy Cases
Controls





Average (Mean) Age at
24.78
36.01


sample


Age Range at Sample
19.12 to 29.86
27.5 to 44.4


Average (Mean) Age at
16.3
NA


Treatment


Age Range at Treatment
14.47 to 19.63
NA


Average Cisplatin Dose
389.33 mg/m2
NA


mg/m2


Cisplatin Dose Range mg/m2
120* mg/m2 to 480 mg/m2
NA


Average Ifosfamide Dose
30.5 mg/m2
NA


mg/m2


Range Ifosfamide Dose
30.5 mg/m2 to 30.5 mg/m2
NA


mg/m2


Seminal Fluid Volume -
2.23 ml
2.41 ml


Average


Seminal Fluid Volume -
0.6 to 5.0
0.3 to 7.5


Range


# individuals with
6 out of 9
6 out of 9


Normal SF parameters





NA indicates not applicable






DNA from the semen samples was isolated and equal amounts of DNA from 3 individuals pooled to generate three different pools of control (no previous chemotherapy) and three different pools of adolescent chemotherapy exposed cancer survivors labeled human sperm pools (HS#) #1 through #6. The pooled DNA was immunoprecipitated with 5 methyl cytosine monoclonal antibody for a methylated DNA immunoprecipitation (MeDIP). The MeDIP DNA was used to generate libraries and bar coded (index primers) separately for analysis by next generation sequencing (MeDIPSeq).


A high read number and alignment proportion was obtained (Table 3). The differential DNA methylation regions (DMRs) were identified using the MEDIPS R package as outlined in the Methods. The DMRs include single sites as well as multiple sites. The DMRs for all sites and multiple sites are shown for a variety of statistical pvalue thresholds in Table 4. The p<10−4 was selected for further analysis and due to the potential for false positives in single sites the multiple site p<10−4 was used for subsequent analysis and discussion. The more variable single sites are likely important, but the more stringently selected multiple site DMRs are used to convey the general observations. Therefore, the 2831 single sites and 135 multiple sites are discussed. The distribution of the DMR according to number of multiple sites is presented in Table 5 and the list of DMRs is shown in Table 6. The majority were single site DMRs with the bulk of the multiple site DMR having two sites. Interestingly, one DMR (DMR3:198096901) had 73 multiple windows on chromosome 3, none of which were associated with a known gene (Table 6). Observations demonstrate the adolescent chemotherapy exposure induced reproducible human sperm epimutations.









TABLE 3







DMR number and characteristics. The number of reads present for each


sample pool (HS #) and overall alignment rate calculated by bowtie2.


Read number and alignment














HS1
HS2
HS3
HS4
HS5
HS6

















Read Number
127916479
116715381
60181475
67042941
78944306
126030851


Alignment %
97.90
97.77
97.77
97.92
96.19
97.19
















TABLE 4







DMR number and characteristics. The number of DMRs found using


different edgeR p-value cutoff thresholds.


DMR number









p-value
Total DMR
Multiple Site DMR












0.001
20526
1551


1.00E−04
2831
135


1.00E−05
463
24


1.00E−06
76
6


1.00E−07
15
2
















TABLE 5







DMR number and characteristics. The number of DMR with associated


specific number of significant sites at a p-value threshold of <10−4.


Site number associated with DMR















Number of Significant Sites
1
2
3
4
5
6
8
73





Number of DMR
2696
110
13
5
4
1
1
1
















TABLE 6







Human sperm chemotherapy-associated DMR list for multiple site DMR at p < 10−4. The DMR name,


chromosomal location, start site, length in base pair (bp), CpG density (CpG/100bp), and size


associated is listed. The absence (not applicable, NA) of one or more gene listed under “Gene


Association” indicates an intergenic DMR location.


Multiple Site DMR List






















CpG






Length

min P
CpG
Density
Gene


DMR Name
Chr
Start
(bp)
Windows
Value
#
(#/100bp)
Association


















DMR1:12173801
1
12173801
1400
2
4.08E−05
27
1.9
TNFRSF1B


DMR1:14192301
1
14192301
900
2
5.38E−05
6
0.6


DMR1:104846301
1
104846301
2500
2
5.56E−05
26
1


DMR1:154878801
1
154878801
700
2
1.08E−05
22
3.1


DMR1:175491101
1
175491101
3200
2
1.49E−05
47
1.4
TNR


DMR1:215393901
1
215393901
500
2
6.42E−05
26
5.2
RP11-199H2.2


DMR1:224010101
1
224010101
4700
2
9.49E−06
108
2.2
RP11-504P24.3


DMR1:238863501
1
238863501
2100
2
1.33E−07
8
0.3


DMR2:2189101
2
2189101
1100
4
6.30E−07
35
3.1
MYT1L


DMR2:35752601
2
35752601
4600
2
8.10E−06
24
0.5


DMR2:95550301
2
95550301
1300
2
3.14E−06
29
2.2


DMR2:144492201
2
144492201
1400
2
1.52E−06
11
0.7
ZEB2


DMR2:238198201
2
238198201
1100
2
3.28E−06
8
0.7
ILKAP


DMR3:44495901
3
44495901
1400
2
4.11E−05
21
1.5


DMR3:55470001
3
55470001
1000
2
7.95E−07
35
3.5
WNT5A


DMR3:113198301
3
113198301
200
2
4.33E−05
2
1


DMR3:198096901
3
198096901
10900
73
9.27E−30
397
3.6


DMR4:31437301
4
31437301
2600
2
9.28E−06
51
1.9


DMR4:146592201
4
146592201
400
2
1.71E−05
2
0.5


DMR4:186476501
4
186476501
1900
2
8.09E−06
17
0.8
F11-AS1;










RP11-215A19.text missing or illegible when filed


DMR4:188443001
4
188443001
6600
2
1.70E−06
99
1.5
LINC01060


DMR5:164501
5
164501
2200
3
8.79E−06
142
6.4
PLEKHG4B


DMR5:561701
5
561701
3900
3
1.46E−07
396
10


DMR5:3879101
5
3879101
2700
2
6.99E−05
32
1.1


DMR5:4311001
5
4311001
700
3
9.20E−06
19
2.7


DMR5:9122501
5
9122501
700
2
1.21E−05
27
3.8
SEMA5A


DMR5:23303701
5
23303701
1700
2
7.07E−05
44
2.5
CTD-2272G21.text missing or illegible when filed


DMR5:30068101
5
30068101
2900
2
1.28E−07
38
1.3


DMR5:55530601
5
55530601
500
2
2.89E−05
28
5.6
PPAP2A;










RNF138P1


DMR5:57549501
5
57549501
1400
2
1.42E−05
15
1


DMR5:77912901
5
77912901
1300
2
3.39E−05
24
1.8


DMR5:134314001
5
134314001
900
2
3.23E−05
10
1.1
CTD-2410N18.text missing or illegible when filed










CDKL3


DMR5:151531101
5
151531101
1000
3
2.76E−06
44
4.4
FAT2


DMR5:162993101
5
162993101
800
2
1.10E−06
10
1.2


DMR6:1514701
6
1514701
1100
2
1.70E−05
38
3.4
RP11-157J24.1


DMR6:5092901
6
5092901
300
2
4.79E−05
2
0.6


DMR6:5792601
6
5792601
2400
2
1.74E−05
23
0.9


DMR6:31326001
6
31326001
1000
2
3.38E−05
17
1.7
HLA-C


DMR6:31814701
6
31814701
3700
3
1.17E−05
217
5.8
HSPA1L;










HSPA1A


DMR6:31828001
6
31828001
1600
2
2.62E−05
130
8.1
HSPA1B


DMR6:58560701
6
58560701
2100
2
4.49E−06
37
1.7


DMR6:58593201
6
58593201
3200
2
6.04E−09
60
1.8


DMR6:59033701
6
59033701
600
2
3.44E−11
13
2.1


DMR6:59163101
6
59163101
1600
2
2.73E−06
34
2.1


DMR6:59274801
6
59274801
3200
2
1.30E−07
57
1.7


DMR6:59342901
6
59342901
1500
4
3.08E−06
36
2.4


DMR6:59565501
6
59565501
1000
2
5.85E−06
12
1.2


DMR6:59688201
6
59688201
200
2
7.98E−08
5
2.5


DMR6:116616001
6
116616001
300
2
3.05E−06
10
3.3


DMR6:167702601
6
167702601
2900
2
4.71E−05
70
2.4


DMR7:49018601
7
49018601
700
3
9.21E−07
14
2


DMR7:77441801
7
77441801
400
2
9.98E−07
6
1.5


DMR7:87205701
7
87205701
2300
2
3.39E−05
37
1.6
TMEM243


DMR7:101239401
7
101239401
1600
2
6.96E−06
66
4.1
FIS1


DMR7:109351301
7
109351301
400
2
1.94E−05
9
2.2


DMR7:158556901
7
158556901
1100
2
5.39E−06
65
5.9
PTPRN2


DMR8:7556101
8
7556101
500
2
8.30E−06
25
5


DMR8:27797501
8
27797501
500
2
5.39E−05
3
0.6
ESCO2


DMR8:44360401
8
44360401
300
2
3.67E−05
6
2


DMR8:45815901
8
45815901
300
2
9.64E−09
7
2.3


DMR8:45927501
8
45927501
6800
2
3.41E−06
122
1.7


DMR8:99694501
8
99694501
3100
3
5.63E−06
68
2.1
VPS13B;










AC018442.1


DMR8:126213701
8
126213701
300
2
1.09E−05
2
0.6


DMR8:142938801
8
142938801
1400
2
3.03E−05
55
3.9


DMR9:28333101
9
28333101
1100
2
3.09E−06
8
0.7
LINGO2


DMR9:40951901
9
40951901
500
2
4.31E−05
16
3.2


DMR9:41424201
9
41424201
600
2
7.72E−07
5
0.8


DMR9:95044801
9
95044801
1100
2
5.16E−07
50
4.5
NPEPO


DMR9:98644001
9
98644001
1100
2
1.78E−05
12
1
GABBR2


DMR10:1197701
10
1197701
3100
8
1.51E−09
70
2.2
ADARB2


DMR10:15012201
10
15012201
1700
2
8.22E−05
42
2.4


DMR10:30846501
10
30846501
2900
2
6.76E−05
40
1.3
ZNF438


DMR10:32731701
10
32731701
400
2
3.00E−05
14
3.5
CCDC7


DMR10:73117601
10
73117601
300
2
1.77E−05
1
0.3
NUDT13


DMR10:90990401
10
90990401
400
2
8.86E−05
4
1


DMR10:123691901
10
123691901
800
2
1.57E−05
4
0.5
GPR26


DMR10:127538001
10
127538001
1800
2
2.69E−05
28
1.5


DMR10:129343401
10
129343401
2100
3
6.38E−06
49
2.3


DMR10:130440901
10
130440901
1100
2
2.10E−05
29
2.6
RP11-540N6.1


DMR11:484301
11
484301
4300
2
2.10E−06
312
7.2
PTDSS2


DMR11:47036401
11
47036401
1700
2
8.45E−06
33
1.9
C11orf49


DMR11:95437501
11
95437501
400
2
1.72E−05
8
2


DMR12:81062701
12
81062701
400
2
4.28E−07
2
0.5
ACSS3


DMR12:95948901
12
95948901
300
2
1.85E−05
3
1
AMDHD1


DMR12:130657401
12
130657401
2600
2
1.48E−05
80
3
RP11-662M24.text missing or illegible when filed


DMR13:63935201
13
63935201
300
2
8.12E−05
3
1


DMR13:98815001
13
98815001
3000
2
6.61E−05
41
1.3
DOCK9


DMR13:104088001
13
104088001
500
2
2.27E−07
7
1.4


DMR14:19433401
14
19433401
3600
3
2.54E−06
137
3.8
POTEG


DMR14:38737701
14
38737701
300
2
1.02E−06
5
1.6


DMR14:46935601
14
46935601
300
2
5.76E−06
2
0.6
MDGA2


DMR14:62802301
14
62802301
500
2
1.46E−07
8
1.6
KCNH5


DMR15:20756701
15
20756701
2500
2
4.04E−05
46
1.8


DMR15:21172601
15
21172601
3800
4
4.00E−07
119
3.1


DMR15:21325001
15
21325001
5800
2
1.57E−06
135
2.3
RP11-32B5.7;










RP11-275E15.2


DMR15:73775201
15
73775201
300
2
3.11E−06
6
2


DMR15:88274701
15
88274701
300
2
7.18E−05
4
1.3


DMR15:88930701
15
88930701
400
3
9.67E−09
1
0.2


DMR16:2603101
16
2603101
1600
5
6.45E−07
77
4.8
AC141586.5;










PDPK1


DMR16:14910901
16
14910901
2800
5
9.51E−06
217
7.7
MIR3180-1;










NPIPA3


DMR16:61463701
16
61463701
1200
2
2.76E−06
2
0.1


DMR16:85972901
16
85972901
1200
2
3.25E−05
95
7.9


DMR17:121701
17
121701
6300
2
1.17E−05
115
1.8


DMR17:8836901
17
8836901
2500
2
3.82E−06
53
2.1
PIK3R6


DMR17:46382701
17
46382701
1600
2
1.94E−05
14
0.8
NSFP1


DMR17:68151901
17
68151901
900
2
4.81E−05
30
3.3
LRRC37A16P


DMR18:8634901
18
8634901
200
2
1.21E−05
1
0.5
RAB12


DMR18:14484901
18
14484901
5100
2
1.18E−05
181
3.5
GRAMD4P7;










CXADRP3


DMR18:46969701
18
46969701
200
2
2.87E−05
18
9
KATNAL2;










TCEB3CL


DMR18:59752001
18
59752001
300
2
1.46E−06
3
1


DMR18:65609101
18
65609101
600
2
2.08E−05
19
3.1
RP11-775G23.1


DMR18:70848101
18
70848101
900
2
1.62E−05
13
1.4


DMR18:76003301
18
76003301
2800
2
2.92E−07
39
1.3


DMR19:756801
19
756801
1600
2
3.50E−06
76
4.7
MISP


DMR19:37842601
19
37842601
2500
2
1.14E−05
36
1.4
AC016582.2


DMR19:43206901
19
43206901
400
2
2.88E−06
16
4
PSG4


DMR19:48181401
19
48181401
1600
2
7.54E−06
51
3.1
CARD8;










ZNF114; C19


DMR19:52916701
19
52916701
4200
5
3.66E−10
101
2.4
ZNF888


DMR19:54772001
19
54772001
6000
4
8.20E−06
62
1
KIR2DL1;










KIR3DL1: CTtext missing or illegible when filed


DMR20:2311001
20
2311001
800
2
7.56E−06
7
0.8
TGM3


DMR20:61964901
20
61964901
1500
2
8.95E−08
82
5.4
TAF4


DMR20:64131901
20
64131901
2700
3
1.68E−08
15
0.5


DMR21:7916001
21
7916001
26500
5
1.05E−06
710
2.6


DMR21:10652801
21
10652801
38000
3
9.10E−06
829
2.1


DMR21:42955701
21
42955701
200
2
2.98E−05
12
6


DMR21:44158201
21
44158201
1800
2
1.96E−05
51
2.8
AP001055.6


DMR22:11248401
22
11248401
8500
2
1.87E−05
383
4.5
5_8S_rRNA;










AC137488.1


DMR22:32203601
22
32203601
3800
2
3.66E−06
159
4.1
RP1-90G24.10


DMR22:48701801
22
48701801
3100
2
3.52E−05
92
2.9
FAM19A5


DMRX:666401
X
666401
1000
2
1.66E−05
18
1.8


DMRX:1041801
X
1041801
9200
4
1.75E−06
164
1.7


DMRX:1235401
X
1235401
1100
2
1.72E−05
98
8.9


DMRX:3865201
X
3865201
3100
2
8.41E−05
83
2.6
RP11-706O15.text missing or illegible when filed


DMRX:115191101
X
115191101
1500
6
5.42E−07
128
8.5
LRCH2;










RBMXL3


DMRY:11559901
Y
11559901
33000
3
9.16E−06
910
2.7






text missing or illegible when filed indicates data missing or illegible when filed







The chromosomal location of the sperm DMRs/epimutations is presented in FIG. 1. The DMRs were present on all chromosomes with a number of statistically over-represented clusters of DMRs indicated with the black box below the line. This epimutation signature was reproducible between the different human sperm pools. As a comparison the chromosomal plot of the single site DMRs is presented in FIG. 2. The single site DMR density was greater, but interestingly several regions in chromosome 1, 9, 13, 14, 15 were void of DMRs. In addition a larger number of DMR clusters were observed in all chromosomes (FIG. 2). The list of p<10−4 multiple site DMR is presented in Table 6. The current study demonstrates a signature of statistically significant epimutations that are present in the adolescent chemotherapy-exposure population. There may also be differential effects between different chemotherapies and periods of developmental exposure.


A genomic feature identified in all previously detected environmentally induced epimutations was a region of low density CpG content termed a CpG desert [20]. Analysis of the CpG content of the chemotherapy-associated human sperm epimutations identified between 1-3 CpG per 100 bp density with only one DMR having a greater than 10 CpG/100 bp (FIG. 3A and Table 6). Therefore, a CpG desert was a genomic feature of the chemotherapy-associated sperm DMRs. The epimutations were predominantly 1 kb in size with only a few greater than 6 kb in size (FIG. 3B and Table 6). Therefore, the genomic features of the human sperm epimutations identified were similar to those previously identified in other species [20].


The potential that molecular variation within each of the study populations may contribute to the DMR identified was investigated. Analysis of the internal population variation in the unexposed and exposed populations separately identified 114 and 50 single site DMR respectively. The three individual pools of each population were compared between each other to identify the internal population variation in DMR. The majority of internal population variation is anticipated to be hypervariable DMR, termed metastable epialleles [21], and none of these internal population DMR overlapped with the exposed versus unexposed DMR dataset. Therefore, internal population variation does not account for the chemotherapy associated DMR identified in sperm.


Analysis of a genetic mutation (copy number variation, CNV) was performed to determine the genetic CNV variation in the exposed versus unexposed comparison. Only 3 CNV were detected in the comparison. Although variable CNV were detected within the different pools of the populations, Table 7, comparison of the exposed versus unexposed populations identified minimal alterations present in all pool comparisons. None of the CNV were associated or overlapped with the DMR identified. Therefore, genetic CNV variation does not appear to be a cause for the epigenetic differences observed.









TABLE 7





CNV analysis summary for the human sperm. The nonexposed (HS1, HS2, HS3) control and chemotherapy exposed (HS4,


HS5, HS6) population pools are listed. Overlapping CNV between control and chemotherapy exposed population: 3 CNV.


CNV analysis summary for the human sperm







Read Mapping Summary














HS1
HS2
HS3
HS4
HS5
HS6





Read Number
32352587
27963740
32524539
22628164
30272531
36013163


Overall Alignment Rate
97.41%
78.89%
96.76%
93.03%
86.87%
94.47%










The number of reads present for each sample and the overall alignment rate calculated by bowtie2.







Overall CNV Numbers:

























1
10
11
12
13
14
16
2
20
21
3
4







HS1
7
1
14
4
3
7
2
4
4
5
7
8



HS2
84
24
57
61
44
44
35
68
20
23
61
30



HS3
110
48
35
22
26
34
41
77
24
18
65
50



HS4
3
1
1
0
2
0
5
0
3
3
1
1



HS5
5
3
3
2
0
2
0
1
4
1
2
1



HS6
10
4
15
6
3
7
12
5
5
5
6
8








5
6
7
8
9
X
15
18
19
22
Y
17







HS1
5
3
8
5
12
2
0
0
0
0
0
0



HS2
54
34
57
38
44
10
36
14
2
25
8
0



HS3
53
39
43
46
21
14
17
23
33
21
0
43



HS4
6
0
0
2
1
0
0
0
12
1
0
4



HS5
1
0
1
1
4
0
2
0
0
2
0
0



HS6
7
3
13
6
9
1
0
0
0
2
0
4







The number of CNV found, separated by sample and chromosome.






The gene associations with the DMRs are listed in Table 8 and the complete list with information in Tables 6 and 9. Approximately 50% of the DMRs had associations with genes indicating half the epimutations are intergenic and distal from genes. Previously some DMRs have been suggested to potentially act as epigenetic control regions and distally regulate expression through ncRNA mechanisms for 2-5 Mbase regions [22]. The genes associated with chemotherapy-associated DMRs are present in numerous gene classifications with no major category being overrepresented (Tables 8 and 9). The number of DMR associated with specific gene classification categories are presented in FIG. 4. The DMR associated genes were analyzed for correlated known gene pathways. No specific pathway or cellular process was found to have more than four associated genes. These results suggest that the chemotherapy induced sperm DMR can alter genome activity.









TABLE 8







DMR associated gene list and categories. The specific DMR,


associated gene symbol and classification category are


presented. Some DMR are associated with multiple genes


which are listed. DMR associated genes with unknown


classification only are not listed.











DMR Name
Gene Association
Category







DMR2:238198201
ILKAP
Signaling



DMR5:164501
PLEKHG4B
Signaling



DMR5:55530601
PPAP2A
Signaling




RNF138P1
Unknown



DMR5:9122501
SEMA5A
Signaling



DMR7:158556901
PTPRN2
Signaling



DMR8:99694501
VPS13B
Signaling




AC018442.1
Unknown



DMR13:98815001
DOCK9
Signaling



DMR16:2603101
PDPK1
Signaling




AC141586.5
Unknown



DMR17:8836901
PIK3R6
Signaling



DMR18:8634901
RAB12
Signaling



DMR10:73117601
NUDT13
Metabolism



DMR11:484301
PTDSS2
Metabolism



DMR12:81062701
ACSS3
Metabolism



DMR12:95948901
AMDHD1
Metabolism



DMR14:46935601
MDGA2
Metabolism



DMR20:2311001
TGM3
Metabolism



DMR2:2189101
MYT1L
Transcription



DMR2:144492201
ZEB2
Transcription



DMR10:30846501
ZNF438
Transcription



DMR10:32731701
CCDC7
Transcription



DMR19:52916701
ZNF888
Transcription



DMR20:61964901
TAF4
Transcription



DMR4:186476501
F11-AS1
Epigenetic




RP11-215A19.2
Unknown



DMR4:188443001
LINC01060
Epigenetic



DMR8:27797501
ESCO2
Epigenetic



DMR16:14910901
MIR3180-1
Epigenetic




NPIPA3
Unknown




RP11-958N24.1
Unknown




NPIPA1
Unknown



DMR1:175491101
TNR
ECM



DMR5:151531101
FAT2
ECM



DMR9:28333101
LINGO2
ECM



DMR19:43206901
PSG4
ECM



DMR1:12173801
TNFRSF1B
Receptor



DMR9:98644001
GABBR2
Receptor



DMR10:123691901
GPR26
Receptor



DMR6:31814701
HSPA1L
Protein




HSPA1A
Binding





Protein





Binding



DMR6:31828001
HSPA1B
Protein





Binding



DMR5:134314001
CDKL3
Cell Cycle




CTD-2410N18.4
Unknown



DMR19:756801
MISP
Cell Cycle



DMR18:46969701
KATNAL2
Cytoskeleton




TCEB3CL
Transcription



DMRX:115191101
LRCH2
Cytoskeleton




RBMXL3
Translation



DMR6:31326001
HLA-C
Immune



DMR19:54772001
KIR2DL1
Immune




KIR3DL1
Immune




CTB-61M7.1
Unknown



DMR7:87205701
TMEM243
Mitochondria



DMR7:101239401
FIS1
Mitochondria



DMR10:1197701
ADARB2
Translation



DMR22:11248401
5_8S_rRNA
Translation




AC137488.1
Unknown



DMR19:48181401
CARD8
Apoptosis




ZNF114
Transcription




C19orf68
Unknown



DMR3:55470001
WNT5A
Development



DMR22:48701801
FAM19A5
Growth





Factor



DMR12:130657401
RIMBP2
Misc.




RP11-662M24.2
Unknown




RP11-662M24.1
Unknown



DMR9:95044801
NPEPO
Proteolysis



DMR14:62802301
KCNH5
Transport

















TABLE 9







Human sperm chemotherapy-associated DMR associated genes. The DMR name, gene symbol, chromosome location


start and end position, Ensembl number, gene description and classification category are presented.










Multiple Site DMR Associated Genes


















start
end


Classification


DMR Name
Gene Symbol
Chr
position
position
Ensembl #
Gene Description
Category

















DMR1:12173801
TNFRSF1B
1
12167003
12209228
ENSG00000028137
tumor necrosis
Receptor








factor receptor








superfamily -








member 1B


DMR1:175491101
TNR
1
175315194
175743770
ENSG00000116147
tenascin R
ECM


DMR1:215393901
RP11-
1
215393646
215394418
ENSG00000282265
NA
Unknown



199H2.2


DMR1:224010101
RP11-
1
223992743
224010612
ENSG00000185495
NA
Unknown



504P24.3


DMR2:2189101
MYT1L
2
1789113
2331260
ENSG00000186487
myelin
Transcription








transcription








factor 1-like


DMR2:144492201
ZEB2
2
144384081
144524583
ENSG00000169554
zinc finger E-box
Transcription








binding homeobox








2


DMR2:238198201
ILKAP
2
238170401
238203729
ENSG00000132323
integrin-linked
Signaling








kinase-associated








serine/threonine








phosphatase


DMR3:55470001
WNT5A
3
55465715
55490539
ENSG00000114251
wingless-type
Development








MMTV








integration site








family - member








5A


DMR4:186476501
F11-AS1
4
186286094
186500997
ENSG00000251165
F11 antisense
Epigenetic








RNA 1


DMR4:186476501
RP11-
4
186426546
186555328
ENSG00000272297
Uncharacterized
Unknown



215A19.2




protein


DMR4:188443001
LINC01060
4
188400736
188681051
ENSG00000249378
long intergenic
Epigenetic








non-protein








coding RNA 1060


DMR5:164501
PLEKHG4B
5
140258
189970
ENSG00000153404
pleckstrin
Signaling








homology domain








containing -








family G (with








RhoGef domain)








member 4B


DMR5:9122501
SEMA5A
5
9035026
9546075
ENSG00000112902
sema domain -
Signaling








seven








thrombospondin








repeats (type 1 and








type 1-like) -








transmembrane








domain (TM)


DMR5:23303701
CTD-
5
23303565
23305143
ENSG00000250332
NA
Unknown



2272G21.2


DMR5:55530601
PPAP2A
5
55424854
55535050
ENSG00000067113
phosphatidic acid
Signaling








phosphatase type








2A


DMR5:55530601
RNF138P1
5
55530156
55530701
ENSG00000250853
ring finger protein
Unknown








138 - E3 ubiquitin








protein ligase








pseudogene 1


DMR5:134314001
CTD-
5
134205614
134371044
ENSG00000273345
NA
Unknown



2410N18.4


DMR5:134314001
CDKL3
5
134286350
134371047
ENSG00000006837
cyclin-dependent
Cell Cycle








kinase-like 3


DMR5:151531101
FAT2
5
151504093
151568944
ENSG00000086570
FAT atypical
ECM








cadherin 2


DMR6:1514701
RP11-
6
1513698
1515289
ENSG00000218027
NA
Unknown



157J24.1


DMR6:31326001
HLA-C
6
31268749
31357158
ENSG00000204525
major
Immune








histocompatibility








complex - class I -








C


DMR6:31814701
HSPA1L
6
31809619
31815065
ENSG00000204390
heat shock 70 kDa
Protein Binding








protein 1-like


DMR6:31814701
HSPA1A
6
31815464
31817946
ENSG00000204389
heat shock 70 kDa
Protein Binding








protein 1A


DMR6:31828001
HSPA1B
6
31827735
31830255
ENSG00000204388
heat shock 70 kDa
Protein Binding








protein 1B


DMR7:87205701
TMEM243
7
87196160
87220587
ENSG00000135185
transmembrane
Mitochondria








protein 243 -








mitochondrial


DMR7:101239401
FIS1
7
101239458
101252316
ENSG00000214253
fission 1
Mitochondria








(mitochondrial








outer membrane)








homolog








(S. cerevisiae)


DMR7:158556901
PTPRN2
7
157539056
158587788
ENSG00000155093
protein tyrosine
Signaling








phosphatase -








receptor type - N








polypeptide 2


DMR8:27797501
ESCO2
8
27771949
27812640
ENSG00000171320
establishment of
Epigenetic








sister chromatid








cohesion N-








acetyltransferase 2


DMR8:99694501
VPS13B
8
99013266
99877580
ENSG00000132549
vacuolar protein
Signaling








sorting 13








homolog B (yeast)


DMR8:99694501
AC018442.1
8
99695957
99698017
ENSG00000235683
NA
Unknown


DMR9:28333101
LINGO2
9
27948078
28670286
ENSG00000174482
leucine rich repeat
ECM








and Ig domain








containing 2


DMR9:95044801
NPEPO
9
94726701
95087218
ENSG00000148120
chromosome 9
Proteolysis








open reading








frame 3


DMR9:98644001
GABBR2
9
98288109
98709197
ENSG00000136928
gamma-
Receptor








aminobutyric acid








(GABA) B








receptor - 2


DMR10:1197701
ADARB2
10
1177318
1737476
ENSG00000185736
adenosine
Translation








deaminase - RNA-








specific - B2 (non-








functional)


DMR10:30846501
ZNF438
10
30820207
31031937
ENSG00000183621
zinc finger protein
Transcription








438


DMR10:32731701
CCDC7
10
32567723
32882874
ENSG00000150076
coiled-coil domain
Transcription








containing 7


DMR10:73117601
NUDT13
10
73110375
73131828
ENSG00000166321
nudix (nucleoside
Metabolism








diphosphate linked








moiety X)-type








motif 13


DMR10:123691901
GPR26
10
123666355
123694607
ENSG00000154478
G protein-coupled
Receptor








receptor 26


DMR10:130440901
RP11-
10
130439067
130483154
ENSG00000236303
NA
Unknown



540N6.1


DMR11:484301
PTDSS2
11
448268
491399
ENSG00000174915
phosphatidylserine
Metabolism








synthase 2


DMR11:47036401
C11orf49
11
46936689
47164385
ENSG00000149179
chromosome 11
Unknown








open reading








frame 49


DMR12:81062701
ACSS3
12
80936414
81261205
ENSG00000111058
acyl-CoA
Metabolism








synthetase short-








chain family








member 3


DMR12:95948901
AMDHD1
12
95943293
95968716
ENSG00000139344
amidohydrolase
Metabolism








domain containing








1


DMR12:130657401
RP11-
12
130628316
130716281
ENSG00000256725
NA
Unknown



662M24.2


DMR12:130657401
RIMBP2
12
130396137
130716281
ENSG00000060709
RIMS binding
Misc.








protein 2


DMR12:130657401
RP11-
12
130651371
130669233
ENSG00000256343
NA
Unknown



662M24.1


DMR13:98815001
DOCK9
13
98793487
99086625
ENSG00000088387
dedicator of
Signaling








cytokinesis 9


DMR14:19433401
POTEG
14
19402486
19434341
ENSG00000187537
POTE ankyrin
Unknown








domain family -








member G


DMR14:46935601
MDGA2
14
46839629
47674954
ENSG00000139915
MAM domain
Metabolism








containing








glycosylphosphati-








dylinositol anchor








2


DMR14:62802301
KCNH5
14
62699454
63102037
ENSG00000140015
potassium channel -
Transport








voltage gated eag








related subfamily








H - member 5


DMR15:21325001
RP11-32B5.7
15
21298233
21325241
ENSG00000247765
NA
Unknown


DMR15:21325001
RP11-
15
21328380
21343881
ENSG00000280881
NA
Unknown



275E15.2


DMR16:2603101
AC141586.5
16
2603350
2630494
ENSG00000215154
NA
Unknown


DMR16:2603101
PDPK1
16
2537964
2603188
ENSG00000140992
3-
Signaling








phosphoinositide








dependent protein








kinase 1


DMR16:14910901
MIR3180-1
16
14911220
14911313
ENSG00000265537
microRNA 3180-1
Epigenetic


DMR16:14910901
NPIPA3
16
14708944
14952073
ENSG00000224712
nuclear pore
Unknown








complex








interacting protein








family - member








A3


DMR16:14910901
RP11-
16
14911551
14935708
ENSG00000183458
NA
Unknown



958N24.1


DMR16:14910901
NPIPA1
16
14750813
14952060
ENSG00000183426
nuclear pore
Unknown








complex








interacting protein








family - member








A1


DMR17:8836901
PIK3R6
17
8802723
8867677
ENSG00000276231
phosphoinositide-
Signaling








3-kinase -








regulatory subunit








6


DMR17:46382701
NSFP1
17
46372855
46487141
ENSG00000260075
N-ethylmaleimide-
Unknown








sensitive factor








pseudogene 1


DMR17:68151901
LRRC37A16P
17
68125777
68152468
ENSG00000267023
leucine rich repeat
Unknown








containing 37 -








member A16 -








pseudogene


DMR17:68151901
RP11-
17
68152776
68159043
ENSG00000267708
NA
Unknown



147L13.7


DMR18:8634901
RAB12
18
8609445
8639381
ENSG00000206418
RAB12 - member
Signaling








RAS oncogene








family


DMR18:14484901
GRAMD4P7
18
14485806
14487501
ENSG00000266242
GRAM domain
Unknown








containing 4








pseudogene 7


DMR18:14484901
CXADRP3
18
14477955
14499278
ENSG00000265766
coxsackie virus
Unknown








and adenovirus








receptor








pseudogene 3


DMR18:46969701
KATNAL2
18
46917492
47102243
ENSG00000167216
katanin p60
Cytoskeleton








subunit A-like 2


DMR18:46969701
TCEB3CL
18
46968695
47029842
ENSG00000275553
transcription
Transcription








elongation factor








B polypeptide 3C-








like


DMR18:65609101
RP11-
18
65606090
65652053
ENSG00000265217
NA
Unknown



775G23.1


DMR19:756801
MISP
19
751126
764318
ENSG00000099812
mitotic spindle
Cell Cycle








positioning


DMR19:37842601
AC016582.2
19
37823722
37855215
ENSG00000225868
NA
Unknown


DMR19:43206901
PSG4
19
43192702
43207299
ENSG00000243137
pregnancy specific
ECM








beta-1-








glycoprotein 4


DMR19:48181401
CARD8
19
48180770
48255946
ENSG00000105483
caspase
Apoptosis








recruitment








domain family -








member 8


DMR19:48181401
ZNF114
19
48172318
48287608
ENSG00000178150
zinc finger protein
Transcription








114


DMR19:48181401
C19orf68
19
48170692
48197620
ENSG00000185453
chromosome 19
Unknown








open reading








frame 68


DMR19:52916701
ZNF888
19
52915196
52923470
ENSG00000213793
zinc finger protein
Transcription








888


DMR19:54772001
KIR2DL1
19
54769811
54784322
ENSG00000125498
killer cell
Immune








immunoglobulin-








like receptor - two








domains - long








cytoplasmic tail -








1


DMR19:54772001
KIR3DL1
19
54724497
54867215
ENSG00000167633
killer cell
Immune








immunoglobulin-








like receptor -








three domains -








long cytoplasmic








tail - 1


DMR19:54772001
CTB-61M7.1
19
54724496
54798285
ENSG00000215765

Unknown


DMR20:2311001
TGM3
20
2296001
2341078
ENSG00000125780
transglutaminase 3
Metabolism








[Source: HGNC








Symbol; Acc:








HGNC: 11779]


DMR20:61964901
TAF4
20
61953469
62065810
ENSG00000130699
TAF4 RNA
Transcription








polymerase II -








TATA box








binding protein








(TBP)-associated








factor - 135 kDa


DMR21:44158201
AP001055.6
21
44158740
44160076
ENSG00000225331
NA
Unknown


DMR22:11248401
5_8S_rRNA
22
11249809
11249959
ENSG00000276871
5.8S ribosomal
Translation








RNA








[Source: RFAM;








Acc: RF00002]


DMR22:11248401
AC137488.1
22
11253605
11253719
ENSG00000277683

Unknown


DMR22:32203601
RP1-
22
32205115
32269666
ENSG00000242082
NA
Unknown



90G24.10


DMR22:48701801
FAM19A5
22
48489460
48850912
ENSG00000219438
family with
Growth Factor








sequence








similarity 19








(chemokine (C-C








motif)-like) -








member A5


DMRX:3865201
RP11-
X
3853010
3882317
ENSG00000234449
NA
Unknown



706O15.3


DMRX:115191101
LRCH2
X
115110616
115234072
ENSG00000130224
leucine-rich
Cytoskeleton








repeats and








calponin








homology (CH)








domain containing








2


DMRX:115191101
RBMXL3
X
115189427
115192868
ENSG00000175718
RNA binding
Translation








motif protein - X-








linked-like 3









Table 10 (see associated .txt file). Human sperm DMR for all DMR sites, single and multiple, at a p-value threshold of 1e-04. The DMR name, chromosome location, start and stop base pair location, length in base pair (bp), number of significant windows (100 bp), p-value, number of CpG sites, CpG sites per 100 bp, and DMR associated gene symbol (annotation) are provided.


Discussion

The observations described herein suggest that altered sperm DNA methylation may result from early life cancer chemotherapy exposure and correlate to alterations in sperm morphology, number and ultimately male fertility. Although other epigenetic changes could also be involved, DNA methylation has been shown to have more developmental and genome wide influences than many of the other epigenetic factors [23]. This study is the first examination of the actions of current chemotherapy regimens on the human sperm epigenome and spermatogenesis. Previous studies have suggested no evidence in humans of adverse effects of chemotherapy treatment in offspring (less than five years of age) of male cancer survivors [24-26]. However, at the time of these studies, many male survivors had not yet attempted to sire a pregnancy and the number of pregnancies from partners of male survivors were small. No studies have examined later life adult generational impacts.


Previous studies in non-human model systems have demonstrated that a variety of exposures can promote epigenetic alterations in the germline [6, 7, 14, 27, 28]. Environmental toxicants including the fungicide vinclozolin [7, 8], pesticides DDT and methoxychlor [7], plastic derived compounds BPA and phthalates [15], and hydrocarbons [16] can promote altered epigenetic (DNA methylation) programming in sperm [14]. The ability of environmental exposures to promote sperm epimutations suggested that chemotherapy may also promote altered germ cell epigenetic programming. The current study was designed to investigate the effects of adolescent chemotherapy exposure on later life adult sperm epimutations. The results demonstrate the presence of DMRs or epimutations in the sperm of men that had adolescent chemotherapy exposure.


Approximately a decade had passed since the cancer patients' chemotherapy. More advanced spermatogenic cells would have been lost after 100 days following chemotherapy due to the developmental period of the spermatogenic cells in the testis. The observation of epigenetic alterations in the sperm long after chemotherapy strongly suggests that the spermatogonial stem cells in the testis had a permanent epigenetic alteration such that the adult male will produce sperm with epimutations throughout life.


The analysis and selection under high stringency (i.e. multiple site DMR with p<10−4) identified a group (i.e. signature) of sperm epimutations associated with chemotherapy exposed individuals. The lower stringency single site DMRs identified are more variable between individuals, but also reflect chemotherapy exposure associated DMR. The presence of a significant epimutation chemotherapy signature demonstrates the ability of early life chemotherapy to promote germline epimutations.


The current study was designed to examine adolescent (i.e. pubertal) male exposure, however, since the same populations of spermatogenic stem cells are present throughout adult life, potential chemotherapy induced sperm epimutations may occur any time a male is exposed to chemotherapy. Therefore, the cryopreservation of gametes prior to chemotherapy may be important for patients and their oncologists to consider in the future [4].


The sperm epimutations identified were present on all chromosomes with a number being clustered in statistically significant over-represented groups of DMR. The clustering of DMR is speculated to represent critical regulatory regions within epigenetic control regions [22]. Interestingly, the genomic features of these human sperm chemotherapy associated epigenetics were similar to previously identified sperm epimutations. In particular, one of the major genomic features is a low density CpG content within the DMR referred to as a CpG desert [20]. The CpG density was less than ten percent and the mean was around two CpG/100 bp. Due to the evolutionary conservation of these CpG clusters in a CpG desert they are speculated to be regulatory sites [20].


The selection of DMR was focused on multiple site DMR with a high statistical significance. Although a higher rate of false positives is anticipated in the much more common single site DMRs, these single sites are anticipated to be an important component of the chemotherapy induced sperm epimutations. Expanded studies are needed to further investigate the epimutation profiles in the sperm and the physiological impacts. The degree of internal population DMR variation and genetic CNV variation indicated negligible impact on the DMR detected. A large proportion of the epimutations identified were found to have gene associations. No predominant pathways or cellular processes appear over-represented by the epimutation associated genes. Previous studies have demonstrated the ability of DMR/epimutations to cause altered somatic cell gene expression [22]. Therefore transmission of the sperm epimutations to the subsequent generation may alter somatic cell gene activity in offspring.


The germline (e.g. sperm) transmission of epigenetic information can promote the epigenetic transgenerational inheritance of disease and phenotypic variation [12, 13, 22]. A variety of environmental factors from nutrition to toxicants have been shown in a variety of species from plants to humans to promote the epigenetic transgenerational inheritance phenomenon [6]. Since epigenetic inheritance requires the germline (egg or sperm) transmission of epigenetic information between generations [6, 9-11, 27, 28], the alterations of epigenetic processes in the germline need to be established. Developmentally the DNA methylation is erased after fertilization to create the embryonic stem cell totipotency, which then is remethylated in a cell specific manner during embryonic development [29]. Therefore, the majority of the DNA methylation is reset upon fertilization and during primordial germ cell development of the germline [29, 30].


However, a set of genes termed imprinted genes are protected from DNA methylation erasure at fertilization allowing them to be transmitted transgenerationally [6]. In the event an environmental exposure modified the epigenetic programming of the germline (e.g. sperm) and these sites become imprinted-like they can promote the epigenetic transgenerational inheritance of disease [6, 31]. Previous studies have documented the ability of caloric restriction to induce the epigenetic inheritance of disease in humans [11, 32]. The current study identifies the ability of chemotherapy to reprogram the epigenome of the sperm. These epimutations can be transmitted to the developing embryo of the next generation. In the event these are imprinted-like epimutations then they would not be erased and would promote epigenetic inheritance to the next generation, and potentially epigenetic transgenerational inheritance to subsequent generations. The current study suggests that chemotherapy has the ability to induce epigenetic inheritance to subsequent generations.


In summary, the current study demonstrates for the first time the ability of chemotherapy to promote epigenetic reprogramming in the spermatogonial stem cell population that will lead to human sperm epimutations later in life. These DMRs have some gene associations that could influence genome activity. A highly reproducible set of epimutations (i.e. signature) was detected and may provide an epigenetic biomarker for chemotherapy exposures. The biological impact of chemotherapy induced epimutations may be to transmit altered epigenetic information to the next generation and if imprinted-like to subsequent generations progeny.


Methods
Study Population and Samples

The patients were 19-30 year-old male survivors of osteosarcoma recruited from the Seattle Children's Hospital in Seattle Wash. and four collaborating institutions (Children's Hospital of Pennsylvania, Philadelphia, Pa.; Miller Children's, Long Beach, Calif.; Children's Hospital, University of Minnesota, Minneapolis, Minn.; and Children's Hospital, Vanderbilt University, Nashville, Tenn.). These men had been treated for their disease with cisplatin-based chemotherapy regimens, including ifosfamide in some cases, when they were 14-20 years of age. Each patient was recruited by in-clinic or mail recruitment protocols. Male survivors were eligible if they met the following criteria: alive, with no evidence of disease; diagnosed with bone or soft tissue sarcoma; off all cancer treatment, including radiation treatment, for at least 2 years; at least 15 years of age at study entry; less than 21 at diagnosis; had received cisplatin as part of cancer treatment; must not have received any other alkylating agent (Cyclophosphamide, Melphalan, Busulfan, BCNU, CCNU, Chlorambucil, Nitrogen Mustard, Procarabazine, or Thiotepa); must have received all or part of their cancer treatment at one of the collaborating sites; free of any pre-condition to cancer treatment that could result in infertility; have had no CNS, abdominal, pelvic, or gonadal radiation therapy or total body irradiation (TBI); proficiency in English as designated in patient's medical record; provided informed consent or assent, and authorization to access medical records under HIPAA. Note that relapsed patients and patients with a subsequent malignancy (SMN) that are treated with surgery alone for the relapse or SMN were eligible for this study as long as they meet the above criteria. Controls were recruited from among adult men with no history of cancer who had previously participated as controls in the Fred Hutchinson Cancer Research Center, Seattle Wash., ATLAS study [34, 35]. These men were re-contacted regarding participation in the current study.


Each patient and control was asked to provide a semen sample via home seminal fluid collection, which we used to allow for ease of subject participation since the sample can be obtained without the individual traveling to a laboratory. Sperm concentration and morphology measures were performed on semen that had undergone liquefication during shipping, consistent with the WHO protocol for semen analysis [36]. For sperm concentration (per ml), each participant's semen was diluted and assessed by CASA (Computer Assisted Sperm Analysis). Three separate counts were performed and the results averaged. A known volume of semen was washed for making smears for morphology assessments, based on 200 sperm. Although sperm motility was not assessed (because it requires a fresh sample), count and morphology data nonetheless provide a great deal of information regarding spermatogenesis and abnormalities and both are associated with an increased risk of infertility [37]. All protocols were approved by the Seattle Children's Hospital institutional IRB committee (#12839 and 13158).


DNA Preparation

Frozen human sperm samples were stored at −20° C. and thawed for analysis. Genomic DNA from sperm was prepared as follows: One hundred μl of sperm suspension was used then 820 μl. DNA extraction buffer (50 mM Tris pH 8, 10 mM EDTA pH 8, 0.5% SDS) and 80 μl 0.1 M Dithiothreitol (DTT) added and the sample incubated at 65° C. for 15 minutes. Eighty μl Proteinase K (20 mg/ml) was added and the sample incubated on a rotator at 55° C. for 2 hours. After incubation, 300 μl of protein precipitation solution (Promega, A795A, Madison, Wis.) was added, the sample mixed and incubated on ice for 15 minutes, then spun at 4° C. at 13,000 rpm for 20 minutes. The supernatant was transferred to a fresh tube, then precipitated over night with the same volume 100% isopropanol and 2 μl glycoblue at −20° C. The sample was then centrifuged and the pellet washed with 75% ethanol, then air-dried and resuspended in 100 μl H2O. DNA concentration was measured using the Nanodrop (Thermo Fisher, Waltham, Mass.).


Methylated DNA Immunoprecipitation MeDIP

Methylated DNA Immunoprecipitation (MeDIP) with genomic DNA was performed as follows: Human sperm DNA pools were generated using 2 μg of genomic DNA from each individual for 3 pools each of control and chemotherapy exposed subjects. Each pool contained 3 individuals for a total of n=9 per exposure group. The resulting 6 μg of genomic DNA per pool was diluted to 150 μl with 1× Tris-EDTA (TE, 10 mM Tris, 1 mM EDTA) and sonicated with a probe sonicator using 5×20 pulses at 20% amplitude.


Fragment size (200-800 bp) was verified on a 1.5% agarose gel. Sonicated DNA was diluted to 400 μl with 1×TE and heated to 95° C. for 10 minutes, then incubated in ice water for 10 minutes. Then 100μl of 5× immunoprecipitation (IP) buffer (50 mM Sodium Phosphate pH 7, 700 mM NaCl, 0.25% Triton X-100) and 5 μg of 5-mC monoclonal antibody (Diagenode, Denville, N.J., C15200006-500) were added and the sample incubated on a rotator at 4° C. over night. The next day Protein A/G Agarose Beads from Santa Cruz were prewashed with 1×PBS/0.1% BSA and resuspended in 1×IP buffer.


Eighty μl of the bead slurry were added to each sample and incubated at 4° C. for 2 hours on a rotator. The bead-DNA-antibody complex was washed 3 times with 1×IP buffer by centrifuging at 6,000 rpm for 2 minutes and resuspending in 1×IP buffer. After the last wash the bead-complex was resuspended in 250 μl of digestion buffer (50 mM Tris pH 8, 10 mM EDTA pH 8, 0.5% SDS) with 3.5 μl Proteinase K (20 mg/ml) per sample and incubated on a rotator at 55° C. for 2 hours. After incubation DNA was extracted with the same volume of Phenol-Chloroform-Isoamyalcohol and then with the same volume chloroform. To the supernatant from chloroform extraction 2 μl glycoblue, 20 μl 5M Sodium Chloride and 500 μl 100% cold ethanol were added. DNA was precipitated at −20° C. over night, then spun for 20 minutes at 13,000 rpm at 4 C, washed with 75% ethanol and air-dried. Dry pellet was resuspended in 20 μl H2O and concentration measured in Qubit using the Qubit ssDNA Assay Kit (Life Technologies, Carlsbad, Calif.).


MeDIP-Seq Analysis

The MeDIP pools were used to create libraries for next generation sequencing (NGS) at the University of Reno, Nev. Genomics Core Laboratory using the NEBNEXT® ULTRA™ RNA Library Prep Kit for Illumina® (San Diego, Calif.) starting at step 1.4 of the manufacturer's protocol to generate double stranded DNA. After this step the manufacturer's protocol was followed. Each pool received a separate index primer. NGS was performed at that same laboratory using the Illumina® HiSeq 2500 with a PESO application, with a read size of approximately 50 bp and approximately 100 million reads per pool. Two libraries each were run in one lane comparing one control with one chemotherapy exposed pool in each lane.


CNV-Seq Analysis

Genomic DNA extracted from sperm was used to create pools containing the same individuals as used for MeDIP-seq. Equal amounts of each individual's genomic DNA were used for each pool with a final amount of 2 μg per pool. The pools were diluted to 130 μl with 1×TE buffer and sonicated in a Covaris M220 with the manufacturer's preset program to create fragments with a peak at 300 bp. Aliquots of the pools were run on a 1.5% agarose gel to confirm fragmentation. The NEBNEXT® DNA Library Kit was used to create libraries for each pool, with each pool receiving a separate index primer. The libraries were sent to the WSU Genomics Core in Spokane, Wash. for NGS on the Illumina® HiSeq 2500 using a PESO application. All 6 libraries were run in one lane and comparisons were performed. Approximately 30 million reads were obtained for each sample for comparison.


Bioinformatics and Statistics

Basic read quality was verified using summaries produced by the FastQC program [38]. The reads for each sample for both CNV and DMR analyses were mapped to the GRCh38 human genome using Bowtie2 [39] with default parameter options. The mapped read files were then converted to sorted BAM files using SAMtools [40]. To identify DMR, the reference genome was broken into 100 bp windows. The MEDIPS R package [41] was used to calculate differential coverage between control and exposure sample groups. The edgeR p-value [42] was used to determine the relative difference between the two groups for each genomic window. Windows with an edgeR p-value less than 10−4 were considered DMRs. The DMR edges were extended until no genomic window with an edgeR p-value less than 0.1 remained within 1000 bp of the DMR. CpG density and other information was then calculated for the DMR based on the reference genome. The DMRs that included at least two windows with an edgeR p-value <10−4 were then selected for further analysis and annotated.


The cn.MOPS R package [43] was used to identify potential CNV. The cn.MOPS analysis detects CNVs by modeling read depth across all samples. The window size used by the cn.MOPS analysis was chosen dynamically for each chromosome based on the read coverage. For chromosomes 1 to 22 the window size ranged from 10 kb to 20 kb. For the MT, X, and Y chromosomes the window sizes were 1 kb, 31 kb, and 42 kb, respectively. We considered only CNV that occurred exclusively in either all control or all treatment samples.


DMR clusters were identified with R script using a 2 Mb sliding window with 50 kb intervals. DMR were annotated using the biomaRt R package [44] to access the Ensembl database [45]. The genes that overlapped with DMR were then input into the KEGG pathway search [46, 47] to identify associated pathways. The DMR associated genes were manually then sorted into functional groups by consulting information provided by the DAVID [48], Panther [49], and Uniprot databases incorporated into an internal curated database.


REFERENCES



  • 1. Howlader, N., Noone, A. M. & Waldron, W. SEER Cancer Statistics Review, 1975-2008. (National Cancer Institute, Bethesda, Md., 2011).

  • 2. Zebrack, B. J., Casillas, J., Nohr, L., Adams, H. & Zeltzer, L. K. Fertility issues for young adult survivors of childhood cancer. Psycho-oncology 13, 689-699 (2004).

  • 3. Hammond, C., Abrams, J. R. & Syrjala, K. L. Fertility and risk factors for elevated infertility concern in 10-year hematopoietic cell transplant survivors and casematched controls. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 25, 3511-3517 (2007).

  • 4. Saito, K., Suzuki, K., Iwasaki, A., Yumura, Y. & Kubota, Y. Sperm cryopreservation before cancer chemotherapy helps in the emotional battle against cancer. Cancer 104, 521-524 (2005).

  • 5. Schover, L. R. Psychosocial aspects of infertility and decisions about reproduction in young cancer survivors: a review. Medical and pediatric oncology 33, 53-59 (1999).

  • 6. Skinner, M. K. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Molecular and cellular endocrinology 398, 4-12 (2014).

  • 7. Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466-1469 (2005).

  • 8. Guerrero-Bosagna, C., Settles, M., Lucker, B. & Skinner, M. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PloS one 5, e13100 (2010).

  • 9. Skinner, M. K. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics: official journal of the DNA Methylation Society 6, 838-842 (2011).

  • 10. Gapp, K., von Ziegler, L., Tweedie-Cullen, R. Y. & Mansuy, I. M. Early life epigenetic programming and transmission of stress-induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? BioEssays: news and reviews in molecular, cellular and developmental biology 36, 491-502 (2014).

  • 11. Pembrey, M., Saffery, R. & Bygren, L. O. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J Med Genet 51, 563-572 (2014).

  • 12. Nilsson, E., et al. Environmentally Induced Epigenetic Transgenerational Inheritance of Ovarian Disease. PloS one 7, e36129 (2012).

  • 13. Guerrero-Bosagna, C., Savenkova, M., Haque, M. M., Sadler-Riggleman, I. & Skinner, M. K. Environmentally Induced Epigenetic Transgenerational Inheritance of Altered Sertoli Cell Transcriptome and Epigenome: Molecular Etiology of Male Infertility. PloS one 8, e59922 (2013).

  • 14. Manikkam, M., Guerrero-Bosagna, C., Tracey, R., Haque, M. M. & Skinner, M. K. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PloS one 7, e31901 (2012).

  • 15. Manikkam, M., Tracey, R., Guerrero-Bosagna, C. & Skinner, M. Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Adult-Onset Disease and Sperm Epimutations. PloS one 8, e55387 (2013).

  • 16. Tracey, R., Manikkam, M., Guerrero-Bosagna, C. & Skinner, M. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reproductive toxicology 36, 104-116 (2013).

  • 17. Nilsson, E. E., Anway, M. D., Stanfield, J. & Skinner, M. K. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction 135, 713-721 (2008).

  • 18. Anway, M. D., Leathers, C. & Skinner, M. K. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147, 5515-5523 (2006).

  • 19. Aston, K. I., et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertility and sterility (2015).

  • 20. Skinner, M. K. & Guerrero-Bosagna, C. Role of CpG Deserts in the Epigenetic Transgenerational Inheritance of Differential DNA Methylation Regions. BMC Genomics 15, 692 (2014).

  • 21. Dominguez-Salas, P., et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nature communications 5, 3746 (2014).

  • 22. Skinner, M. K., Manikkam, M., Haque, M. M., Zhang, B. & Savenkova, M. Epigenetic Transgenerational Inheritance of Somatic Transcriptomes and Epigenetic Control Regions. Genome biology 13, R91 (2012).

  • 23. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature reviews. Genetics 8, 253-262 (2007).

  • 24. Green, D. M., et al. Pregnancy outcome after treatment for Wilms tumor: a report from the national Wilms tumor long-term follow-up study. J Clin Oncol 28, 2824-2830 (2010).

  • 25. Hawkins, M. M. Is there evidence of a therapy-related increase in germ cell mutation among childhood cancer survivors? J Natl Cancer Inst 83, 1643-1650 (1991).

  • 26. Byrne, J., et al. Genetic disease in offspring of long-term survivors of childhood and adolescent cancer. Am J Hum Genet 62, 45-52 (1998).

  • 27. Kelly, W. G. Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenetics Chromatin 7, 6 (2014).

  • 28. Gapp, K., et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17, 667-669 (2014).

  • 29. Feng, S., Jacobsen, S. E. & Reik, W. Epigenetic reprogramming in plant and animal development. Science 330, 622-627 (2010).

  • 30. Seisenberger, S., et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Molecular cell 48, 849-862 (2012).

  • 31. Barlow, D. P. & Bartolomei, M. S. Genomic imprinting in mammals. Cold Spring Harbor perspectives in biology 6 (2014).

  • 32. Donkin, I., et al. Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell metabolism (2015).

  • 33. Wyrobek, A. J., Schmid, T. E. & Marchetti, F. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies. Journal of the National Cancer Institute. Monographs, 31-35 (2005).

  • 34. Littman, A. J., et al. Physical activity in adolescence and testicular germ cell cancer risk. Cancer causes & control: CCC 20, 1281-1290 (2009).

  • 35. Daling, J. R., et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer 115, 1215-1223 (2009).

  • 36. World Health Organization WHO Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction, (Cambridge University Press, NY, 1999).

  • 37. Guzick, D. S., et al. Sperm morphology, motility, and concentration in fertile and infertile men. The New England journal of medicine 345, 1388-1393 (2001).

  • 38. Andrews, S. FastQC: a quality control tool for high throughput sequence data.

  • 39. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature methods 9, 357-359 (2012).

  • 40. Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).

  • 41. Lienhard, M., Grimm, C., Morkel, M., Herwig, R. & Chavez, L. MEDIPS: genomewide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics 30, 284-286 (2014).

  • 42. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010).

  • 43. Klambauer, G., et al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic acids research 40, e69 (2012).

  • 44. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature protocols 4, 1184-1191 (2009).

  • 45. Cunningham, F., et al. Ensembl 2015. Nucleic acids research 43, D662-669 (2015).

  • 46. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 27-30 (2000).

  • 47. Kanehisa, M., et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic acids research 42, D199-205 (2014).

  • 48. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4, 44-57 (2009).

  • 49. Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nature protocols 8, 1551-1566 (2013).



While the invention has been described in terms of its preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. Accordingly, the present invention should not be limited to the embodiments as described above, but should further include all modifications and equivalents thereof within the spirit and scope of the description provided herein.

Claims
  • 1. A method of determining if a male subject has been exposed to a chemotherapy agent comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject;identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one differential DNA methylation region (DMR) listed in Table 6 or Table 10; anddetermining that said subject has been exposed to a chemotherapy agent if said epigenetic modification is identified to be present in said at least one genomic DNA sequence.
  • 2. The method of claim 1, wherein said epigenetic modification comprises a plurality of DMRs selected from the group listed in Table 6 or Table 10.
  • 3. The method of claim 1, wherein said epigenetic modification comprises each DMR listed in Table 6 or Table 10.
  • 4. The method of claim 1, wherein said chemotherapy agent is at least one of cisplatin and ifosfamide.
  • 5. A method of screening for pregnancy complications, infertility, and passage of heritable mutations to an infant attributable to a male subject that has previously undergone chemotherapy treatment comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject that has previously undergone chemotherapy treatment;identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one DMR listed in Table 6 or Table 10; andindicating that said subject is at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant if said epigenetic modification is identified to be present in said at least one genomic DNA sequence.
  • 6. The method of claim 5, wherein said epigenetic modification comprises a plurality of DMRs selected from the group listed in Table 6 or Table 10.
  • 7. The method of claim 5, wherein said epigenetic modification comprises each DMR listed in Table 6 or Table 10.
  • 8. The method of claim 5, wherein said male subject underwent chemotherapy treatment for a period of time at an age prior to reproduction.
  • 9. The method of claim 5, wherein said male subject underwent chemotherapy treatment for a period of time at an age from 14 and 20 years old.
  • 10. The method of claim 5, wherein said chemotherapy treatment comprised at least one of cisplatin and ifosfamide.
  • 11. A method for the early intervention and treatment of a male subject who is suspected of or who has been exposed to chemotherapy treatment, comprising obtaining at least one genomic DNA sequence from a semen sample from said male subject that has previously undergone chemotherapy treatment;identifying the presence or absence of an epigenetic modification at one or more regions of said at least one genomic DNA, wherein said epigenetic modification comprises at least one DMR listed in Table 6 or Table 10;indicating that said subject is at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant if said epigenetic modification is identified to be present in said at least one genomic DNA sequence; andadministering an appropriate treatment protocol to said subject determined to be at high risk of infertility or of passing heritable mutations which can lead to pregnancy complications or mutations in an infant.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. provisional patent application 62/301,651, filed Mar. 1, 2016, the complete contents of which is hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
62301651 Mar 2016 US