Pursuant to 35 U.S.C. §119(a), this application claims priority to Korean Application No. 10-2012-0113797, filed in Korea on Oct. 12, 2012, the contents of which is incorporated by reference herein in its entirety.
1. Field
A hermetic compressor is disclosed herein.
2. Background
In general, a hermetic compressor may include, within an inner space thereof, a motor that generates a driving force, and a compression device that compresses a refrigerant by receiving the driving force from the motor. Hermetic compressors may be classified as a single-stage hermetic compressor or a multi-stage hermetic compressor according to a number of cylinders. The single-stage hermetic compressor includes one suction pipe coupled to one cylinder, whereas the multi-stage hermetic compressor includes a plurality of suction pipes coupled to a plurality of cylinders, respectively.
The multi-stage hermetic compressor may be divided into a 1-suction and 2-discharge type and a 1-suction and 1-discharge type according to a method of compressing a refrigerant. The 1-suction and 2-discharge type (or 2-suction and 2-discharge type) is a compressor having a plurality of cylinders connected to one suction pipe in a diverging manner or connected to a plurality of suction pipes, respectively, such that each of the plurality of cylinders compresses a refrigerant and discharges the compressed refrigerant into an inner space of a hermetic casing. On the other hand, the 1-suction and 1-discharge type is a compressor having a first cylinder of a plurality of cylinders connected to a primary suction channel, and a second cylinder connected to a discharge side of the first cylinder through a secondary suction channel, such that a refrigerant is compressed by two stages to be discharged from the second cylinder into an inner space of a hermetic casing. The 1-suction and 1-discharge type may be referred to as a two-stage compression type hermetic compressor.
An intermediate chamber 5, which has a predetermined inner space S3 to temporarily receive a first-stage compressed refrigerant, may be formed below the first cylinder 2. The intermediate chamber 5 may be connected to the second compression chamber S2 of the second cylinder 3 through a secondary suction channel 6, which may serve as an inner communication path.
Unexplained reference numeral 7 denotes a drive motor, and 8 denotes an accumulator in
With such a configuration of a two-stage compression type hermetic compressor according to the related art, a refrigerant sucked into the first cylinder 2 through the suction pipe 4 may be first-stage compressed in the first compression chamber S1 to be discharged into the intermediate chamber 5. The first-stage compressed refrigerant may then be introduced into the second compression chamber S2 of the second cylinder 3 through the secondary suction channel 6, and then two-stage or second-stage compressed in the second compression chamber S2 of the second cylinder 3. The two-stage compressed refrigerant may be discharged into the inner space of the hermetic casing 10. This series of processes may be repetitively executed.
A first pressure reduction may be caused while or when the refrigerant is sucked into the first compression chamber S1 of the first cylinder 2, and a second pressure reduction may be caused while or when the refrigerant is discharged from the first compression chamber S1 of the first cylinder 2 into the intermediate chamber 5 to be introduced into the second compression chamber S2 of the second cylinder 3 through the secondary suction channel 6. In the related art, to reduce pressure and pressure pulsation, the inner space S3 of the intermediate chamber 5 is formed as large as possible and a cross section of the secondary suction channel 6 is also large.
However, when the reduction of the pressure and the pressure pulsation is derived by increasing a volume of the intermediate chamber 5 and the cross section of the secondary suction channel 6, as shown in the related art two-stage compression type hermetic compressor, as illustrated in
Embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements, and wherein:
Description will now be given in detail of embodiments, with reference to the accompanying drawings. For the sake of brief description with reference to the drawings, the same or equivalent components will be provided with the same reference numbers, and description thereof will not be repeated.
The compression device C may include a first compression device 30 and a second compression device 40 installed on or at both sides of an intermediate plate 51 to compress a refrigerant in a sequential manner, a lower bearing plate (hereinafter, referred to as a lower bearing) 52 installed on or at a lower end of the first compression device 30 and forming a first compression chamber S1 of the first compression device 30 together with a lower surface of the intermediate plate 51, and an upper bearing plate (hereinafter, referred to as an upper bearing) 53 installed on or at an upper end of the second compression device 40 and forming a second compression chamber S2 of the second compression device 40 together with an upper surface of the intermediate plate 51.
The first compression device 30 may include a first cylinder 31, a first rolling piston 32, a first vane (not shown), and a first discharge valve 33. The second compression device 40 may include a second cylinder 41, a second rolling piston 42, a second vane (not shown), a second discharge valve 43, and a discharge muffler 44.
The intermediate plate 51 may be installed between the first cylinder 31 and the second cylinder 41 so as to separate the first compression chamber S1 of the first cylinder 31 from the second compression chamber S2 of the second cylinder 41.
The first cylinder 31 may include an inlet 31a forming a primary suction channel. The inlet 31a may be connected to an accumulator 80 through a suction pipe 14. An outlet (not shown) of the first cylinder 31 may communicate with an intermediate chamber 35, which may be coupled to the first cylinder 31, via a communication hole 31b. The intermediate chamber 35 may communicate with the second compression chamber S2 through a communication hole 31c, which may form a secondary suction channel F to be explained later, and an inlet 41a of the second cylinder 41. An outlet (not shown) of the second cylinder 41 may communicate with an inner space of the hermetic casing 10 through the discharge muffler 44, and the inner space of the hermetic casing 10 may be connected to a refrigerating system through a discharge pipe 12.
Unexplained reference numeral 21 denotes a stator, 22 denotes a rotor, and 23 denotes a rotation shaft in
A rotary compressor having the above-described configuration may operate as follows.
When the rotor 22 is rotated in response to power applied to the stator 21 of the motor 20, the rotation shaft 23 may be rotated together with the rotor 22 to transfer a rotational force of the motor 20 to the first compression device 30 and the second compression device 40. Accordingly, the first rolling piston 32 and the second rolling piston 42 in the first compression device 30 and the second compression device 40 may perform an orbiting motion, so as to form the first compression chamber S1 and the second compression chamber S2 together with the first vane and the second vane, respectively.
A gaseous refrigerant, which may be separated from a liquid refrigerant in the accumulator 80, may be introduced into the first compression chamber S1 of the first cylinder 31 through the suction pipe 14 to be first-stage compressed in the first compression chamber S1. The first-stage compressed refrigerant may then be introduced into the intermediate chamber 35 through the outlet of the first cylinder 31. The first-stage compressed refrigerant introduced into the intermediate chamber 35 may be sucked into the second compression chamber S2 of the second cylinder 41 through the secondary suction channel F to be two-stage compressed in the second compression chamber S2 of the second cylinder 41. The two-stage compressed refrigerant may be discharged into the inner space of the hermetic casing 10 through the outlet of the second cylinder 41. This series of processes may be repetitively performed.
Oil, which may be mixed with the first-stage compressed refrigerant in the first compression chamber S1 of the first cylinder 31, may be discharged into the inner space S3 of the intermediate chamber 35. The oil may remain in the inner space S3 of the intermediate chamber 35 due to pressure pulsation and an oil circulating rate, which is a so-called oil accumulation. When the oil accumulation is caused in the inner space S3 of the intermediate chamber 35, an excessive amount of oil may accumulate in the inner space S3 of the intermediate chamber 35. This may cause a second pressure reduction, and also may result in a frictional loss in the second compression device 40 due to a shortage of oil introduced into the second compression chamber S2 of the second cylinder 41.
According to this embodiment, a fluid guide 100 may be installed in the intermediate chamber 35 to allow refrigerant and oil discharged from the first compression chamber S1 of the first cylinder 31 into the intermediate chamber 35 to smoothly flow into the second compression chamber S2 of the second cylinder 41. Accordingly, the oil accumulation in the inner space S3 of the intermediate chamber 35 may be prevented, and simultaneously, the oil may be smoothly supplied into the second compression device 40.
The fluid guide 100 according to this embodiment, as illustrated in
The inlet 101 of the fluid guide 100 may have an extending portion 110 with an increased inner diameter so as to effectively suck oil near or adjacent the fluid guide 100 therein. An outlet 102 of the fluid guide 100 may be fixedly inserted into a communication hole 52a of the lower bearing 52, which may form a portion of the secondary suction channel F, so as to increase a coupling force.
When the fluid guide 100 is installed in the inner space S3 of the intermediate chamber 35, oil discharged from the first compression chamber S1 of the first cylinder 31 into the inner space S3 of the intermediate chamber 35 may be induced into the second cylinder 41 through the fluid guide 100 without remaining in the inner space S3 of the intermediate chamber 35. Accordingly, noise, which may be generated when an excessive amount of oil remains in the inner space S3 of the intermediate chamber 35, may be reduced, and a shortage of oil in the second compression device 40 may be prevented.
Hereinafter, description will be given of a fluid guide according to another embodiment.
That is, with the previous embodiment, the fluid guide is shown formed in the shape of a pipe. However, with this embodiment, the fluid guide is shown formed in the shape of a plate disposed at a front of an inner side wall surface of intermediate chamber 35. That is, with this embodiment, a fluid guide 200 may have a guide portion 210, which may be formed in a curved shape with a predetermined curvature or in a shape inclined toward secondary suction channel F, to smoothly guide gas and oil toward the secondary suction channel F.
An elastically fixed portion 220 having the shape of a C-ring may be formed on or at an upper end of the fluid guide 200. The elastically fixed portion 220 may be inserted into the secondary suction channel F (or communication hole 52a) to be elastically fixed thereto.
The fluid guide 200 having the configuration described above may be similar to the previous embodiment with respect to a basic operation effect. With this embodiment, as the guide portion 210 of the fluid guide 200 is formed in the shape of a plate, flow resistance of refrigerant may be further reduced in comparison to the previous embodiment so as to allow for smooth flow of the refrigerant; however, a suction force for the oil may be a little bit reduced as well. However, as an inlet of the secondary suction channel F is located on or at an upper end of the inner space S3 of the intermediate chamber 35, relatively heavy oil may be effectively introduced into the second cylinder 41, as compared with the related art, in which such oil is unable to be sucked into the secondary suction channel F.
Hereinafter, description will be given of a fluid guide according to another embodiment.
That is, the foregoing embodiments illustrate the fluid guides 100 and 200 as separately fabricated and thereafter installed in inner space S3 of intermediate chamber 35. With this embodiment illustrated in
As illustrated in
When the guide hole 35b is formed in the intermediate chamber 35, a volume of the inner space S3 of the intermediate chamber 35 may be slightly reduced; however, processing and assembly of the fluid guide may be improved as compared with separately fabricating and assembling the fluid guide.
As the fluid guide may be installed on the bottom surface of the intermediate chamber, oil discharged from the first cylinder into the inner space of the intermediate chamber may flow into the second cylinder through the fluid guide without remaining in the inner space of the intermediate chamber. This may prevent lowering of a reduction effect of noise, which may be generated due to an excessive amount of oil remaining in the inner space of the intermediate chamber, and also prevent a shortage of oil in the second compression device.
Embodiments disclosed herein illustrate that the fluid guide may be installed in an intermediate chamber applied to a two-stage compression type compressor; however, embodiments are not so limited. That is, the fluid guide according to embodiments may also be applicable to a 1-suction and 2-discharge (or 2-suction and 2-discharge) type multi-stage compressor. In this case, an intermediate chamber may be formed at a discharge side of a cylinder, which may be located at a relatively lower side, and a communication hole may be formed through both cylinders, such that the intermediate chamber may communicate with a discharge side of another cylinder located at an upper side. Also, a fluid guide may be coupled to the communication hole in a manner that an outlet of the fluid guide may be inserted into a lower end of the communication hole. As refrigerant and oil discharged into the intermediate chamber may be guided into the communication hole by the fluid guide, a problem that oil remains in the intermediate chamber may be prevented from being caused in advance.
Embodiments disclosed herein provide a hermetic compressor, capable of minimizing oil accumulation within an inner space of an intermediate chamber, located between a first compression chamber and a second compression chamber, by reducing flow resistance of the oil in the intermediate chamber.
Embodiments disclosed herein provide a hermetic compressor that may include a hermetic casing, a first cylinder installed in the hermetic casing, and having a first compression chamber, a second cylinder installed in the hermetic casing, and having a second compression chamber spaced from the first compression chamber, an intermediate chamber installed at an outlet side of the first compression chamber or an outlet side of the second compression chamber, and a fluid guide installed in the intermediate chamber and configured to guide fluid introduced into an inner space of the intermediate chamber to an outside of the intermediate chamber.
Embodiments disclosed herein further provide a hermetic compressor that may include a hermetic casing, a first cylinder installed in the hermetic casing, and having a first compression chamber, a second cylinder installed in the hermetic casing, and having a second compression chamber in which a refrigerant compressed in the first cylinder is two-staged compressed, and an intermediate chamber installed between the first compression chamber and the second compression chamber, and having a predetermined inner space to communicate the first compression chamber and the second compression chamber with each other. The intermediate chamber may be provided therein with a fluid guide configured to guide fluid, discharged from the first compression chamber into the inner space of the intermediate chamber, toward the second compression chamber.
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present disclosure. The present teachings can be readily applied to other types of apparatuses. This description is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art. The features, structures, methods, and other characteristics of the embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments.
As the present features may be embodied in several forms without departing from the characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its scope as defined in the appended claims, and therefore all changes and modifications that fall within the metes and bounds of the claims, or equivalents of such metes and bounds are therefore intended to be embraced by the appended claims.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0113797 | Oct 2012 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4269576 | Shibuya | May 1981 | A |
20080240954 | Morozumi et al. | Oct 2008 | A1 |
20110165004 | Park et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
1959116 | May 2007 | CN |
101072951 | Nov 2007 | CN |
102251964 | Nov 2011 | CN |
2 441 961 | Apr 2012 | EP |
2000009072 | Jan 2000 | JP |
2007113542 | May 2007 | JP |
2008-240667 | Oct 2008 | JP |
Entry |
---|
Chinese Office Action issued in Application No. 201310474583.7 dated Jul. 15, 2015. |
Number | Date | Country | |
---|---|---|---|
20140105774 A1 | Apr 2014 | US |