1. Technical Field
The present invention relates to a hermetic compressor used in a freezer, such as a home refrigerator, and to a method of manufacturing the compressor.
2. Background Art
A hermetic motor-driven compressor used in a freezer, such as a home refrigerator, has been demanded to have a small power consumption, small noises, low cost, and high reliability.
An operation of hermetic compressor 501 will be described. The rotation of motor element 3 is converted to a reciprocating movement by eccentric shaft 8 and connecting rod 9 of compressing element 2. Connecting rod 9 causes piston 10 to reciprocate in cylinder 2A to compress refrigerant. Motor element 3 rotates shaft 6 to rotate oil-feeding pipe 12. Oil-feeding pipe 12 having the tip end opening to lubricating oil 4 rotates to generate a pressure in oil-feeding pipe 12 by centrifugal pump effects. This pressure causes lubricating oil 4 to be sucked to oil-feeding pipe 12 and supplies the sucked oil to sliding parts of compressing element 2 from a top end of shaft 6.
Fine metal powder 6B is produced after oil-feeding pipe 12 is fixed to shaft 6, and hence, metal powder 6B can hardly be removed completely even upon being cleaned, thus remaining inside opening 6A of shaft 6. Fine metal powder 6B which remains is carried to the sliding parts of compressing element 2 together with lubricating oil 4 flowing in direction 501A when compressor 501 operates. Fine metal powder 6B caught in the sliding parts of compressing element 2 may stop compressor 501.
A hermetic compressor includes a hermetic container arranged to store lubricating oil, a motor element accommodated in the hermetic container, an oil-feeding mechanism arranged to carry the lubricating oil, and a centrifugal pump arranged to carry the lubricating oil to the oil-feeding mechanism. The centrifugal pump includes a cylindrical portion having a hollow opening at the opening, and an aperture plate having a suction aperture formed therein. The aperture plate has an inner edge facing the suction aperture, and an outer edge of the aperture plate contacting an inner surface of the cylindrical portion. A portion of the aperture plate between the inner edge and the outer edge of the aperture plate is positioned more outward from the cylindrical portion than the inner edge and the outer edge are.
This hermetic compressor does not produce fine metal powder during manufactured, having high reliability.
Motor element 125 is driven by an inverter circuit, and includes stator 127 fixed beneath cylinder block 111 and rotor 129 fixed to main shaft 117. Stator 127 is arranged to be connected to the inverter circuit. Rotor 129 includes a permanent magnet. Spring 131 is fixed to stator 127, and elastically fixes compressing element 107 and motor element 125 to hermetic container 101.
Shaft 121 includes oil-feeding mechanism 133 carrying lubricating oil 103 upward. Oil-feeding mechanism 133 is constituted by a groove provided between main shaft 117 and bearing 115. Oil-feeding mechanism 133 communicates with centrifugal pump 137 provided at lower end 121B of shaft 121. Centrifugal pump 137 has lower end 137B arranged to be positioned in lubricating oil 103. Lower end 137B has opening 135 which is formed therein and which is arranged to be positioned in lubricating oil 103. Centrifugal pump 137 includes cylindrical portion 137D and aperture plate 139. Cylindrical portion 137D has substantially a cylindrical shape, and has hollow 137A and opening 135 opening to lubricating oil 103. Hollow 137A opens at opening 135. Aperture plate 139 is provided at opening 135 of cylindrical portion 137D. Aperture plate 139 has suction aperture 138 formed therein. Suction aperture has a cross-sectional area smaller than that of hollow 137A. Suction aperture 138 is positioned on rotation axis 121C of shaft 121. Hollow 137A extends upward from suction aperture 138 along center axis 137C which inclines apart from rotation axis 121C.
Cylindrical portion 137D of centrifugal pump 137 has inner surface 137F facing hollow 137A. Inner surface 137F of cylindrical portion 137D includes small-diameter part 137G positioned at the upper part of cylindrical portion 137D, step surface 137H connected with small-diameter part 137G, and large-diameter part 137J connected with step surface 137H. Step surface 137H is directed towards opening 135. Large-Diameter part 137J has a diameter larger than that of small-diameter part 137G.
Aperture plate 139 has suction aperture 138 provided therein, and has substantially an annular plate shape. Aperture plate 139 is made of a metal plate, such as a hot-rolled steel plate or cold-rolled steel plate, plastically deformable, and is formed by punching the metal plate with a mold. Aperture plate 139 has upper surface 139A facing hollow 137A of cylindrical portion 137D and lower surface 139B opposite to upper surface 139A. Lower surface 139B of aperture plate 139 is directed in direction 137E towards the outside of cylindrical portion 137D, namely, is directed downward. Aperture plate 139 has inner edge 139C facing suction aperture 138 and outer edge 139D contacting cylindrical portion 137D. Outer edge 139D of aperture plate 139 contacts step surface 137H and large-diameter part 137J out of inner surface 137F of cylindrical portion 137D.
As shown in
Length L1 of aperture plate 139 along lower surface 139B before the plastic deformation is longer than diameter L2 of large-diameter part 137J which is an inner diameter of opening 135. The plastic deformation of aperture plate 139 allows outer edge 139D of aperture plate 139 to reliably pressure-contact large-diameter part 137J of inner surface 137F of cylindrical portion 137D at opening 135. The amount of the deformation of aperture plate 139 may be adjusted to easily adjust a force with which cylindrical portion 137D pressure-contacts the cylindrical portion. Thus aperture plate 139 pressure-contacts inner surface 137F of cylindrical portion 137D with a large force, thereby being prevented from removing and dropping from opening 135.
An operation of hermetic compressor 1001 will be described below.
When stator 127 of motor element 125 is energized by an inverter circuit, rotor 129 rotates shaft 121 and eccentrically rotates eccentric shaft 119. The eccentric rotation of eccentric shaft 119 is transferred to piston 113 via connecting rod 123. Then, piston 113 reciprocates in compression chamber 109 to compress refrigerant gas 105 which has inhaled. Upon rotating, shaft 121 rotates centrifugal pump 137, and causes lubricating oil 103 stored in hermetic container 101 to be sucked into hollow 137A of cylindrical portion 137D of centrifugal pump 137 through suction aperture 138 of aperture plate 139.
Suction aperture 138 is positioned on rotation axis 121C of shaft 121. Hollow 137A extends upward from suction aperture 138 along center axis 137C inclining depart from rotation axis 121C. When centrifugal pump 137 rotates about rotation axis 121C, lubricating oil 103 in hollow 137A receives a force directed upward along center axis 137C of hollow 137A of cylindrical portion 137D by a centrifugal force. This upward force moves lubricating oil 103 in hollow 137A upward to the top end of shaft 121 through oil-feeding mechanism 133, then, scattering the oil. Lubricating oil 103 which is moved and scattered is supplied to sliding parts of motor element 125 and compressing element 107.
According to the embodiment, aperture plate 139 is fixed to opening 135 by a pressure-contact force caused by the plastic deformation, and therefore, does not produce fine metal powder even upon being fixed to opening 135. Thus, the fine metal powder is not mixed into lubricating oil 103 sucked into hollow 137A of centrifugal pump 137, and does not reach the sliding parts of motor element 125 and compressing element 107. This prevents compressing element 107 from locking, thus providing hermetic compressor 1001 with high reliability.
As shown in
As shown in
Diameter L2 of large-diameter part 137J of inner surface 137F of cylindrical portion 137D is determined to be smaller than external diameter L3 of aperture plate 139 after the plastic deformation. Even if a force with which aperture plate 139 press-contacts inner surface 137F weakens after the deformation, aperture plate 139 is prevented from removing and dropping from opening 135, thereby allowing centrifugal pump 237 to suck lubricating oil 103 into hollow 137A. Hermetic compressor 1001 including centrifugal pump 237 thus has high reliability.
Width W1 of groove 241 is slightly larger than thickness T1 of aperture plate 139. This arrangement allows aperture plate 139 to deform while outer edge 139D of aperture plate 139 is inserted reliably in groove 241. Hence, aperture plate 139 pressure-contacts slope 242 reliably, thus providing hermetic compressor 1001 with further reliability.
This invention is not limited to this embodiment.
A hermetic compressor according to the present invention does not produce fine metal powder when being manufactured, and has high reliability, thus being useful for a refrigerating apparatus, such as a home refrigerator, dehumidifier, refrigerated display case, and vending machine, operating in a refrigeration cycle.
Number | Date | Country | Kind |
---|---|---|---|
2008-027465 | Feb 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/003046 | 10/27/2008 | WO | 00 | 5/15/2009 |