1. Field of the Invention
The present invention relates to hermetic compressors, more particularly, devices and methods for attenuating the vibrations and noises produced in hermetic compressors.
2. Description of the Related Art
A variety of hermetic compressors are known. One common type includes a positive displacement compressor mechanism, such as a reciprocating piston mechanism, operably connected to an electric motor via a rotating shaft. The compressor mechanism, motor and shaft are all hermetically sealed within the interior volume of a housing. In operation, low pressure refrigerant gas may enter a portion of the interior volume of the housing through a suction line. The low pressure refrigerant gas is compressed to a high pressure gas by the compressor mechanism. The high pressure gas is then discharged from the compressor mechanism typically into a discharge chamber before being discharged from the housing via a discharge tube. The cyclic movements of the compressor mechanism and of the suction and discharge action of the gas creates vibrations within the housing which can stress the components of the compressor assembly and cause objectionable noise. When the frequency of these vibrations coincides with the acoustic resonant frequency of the interior plenum defined by the compressor assembly, the vibrations are amplified and may thereby cause added stress to the compressor components and increased noise.
To minimize the occurrence of these vibrations and resulting stresses and noise, suction muffler tubes have been connected to the suction line of the compressor and have been positioned such that the tube is in direct communication with the suction line of the compressor. However, such suction mufflers may cause a drag in the suction, thereby lowering the efficiency of the compressor. In addition, the placement of such mufflers may increase the physical size of the compressor. Therefore, a need remains for a device for and a method of efficiently and effectively attenuating the vibrations created in a compressor.
The present invention provides a hermetic compressor including a housing defining an interior plenum; a compressible vapor received within the interior plenum; a motor disposed within the housing; a compression mechanism disposed within the housing and operably connected to the motor; and a tuner disposed entirely within the interior plenum. The tuner has an open end and an opposite closed end. The tuner defines a resonating cavity, which is in direct communication with the interior plenum via the open end. The resonating cavity defines a length extending from the open end to the closed end and measuring about one quarter of the wavelength of a noise pressure wave for which attenuation is desired.
The present invention also provides, in another form thereof, a hermetic compressor including a housing having a wall defining an interior plenum; a fluid port defining a passageway through the wall and in communication with the interior plenum; a compressible vapor received within the interior plenum; a motor disposed within the housing; a compression mechanism disposed within the housing and operably connected to the motor; and a tuner mounted either entirely within the interior plenum or exterior to the housing. The tuner has an open end and an opposite closed end. The tuner defines a resonating cavity extending from the open end to the closed end. The tuner is in direct communication with the interior plenum via the open end. The open end of the tuner is in indirect communication with the fluid port via the interior plenum.
The present invention further provides, in yet another form thereof, a method of attenuating the vibration within a hermetic compressor having a housing defining an interior plenum, a motor disposed within the housing, a compression mechanism disposed within the housing, a compressible vapor received within the interior plenum, and a fluid port defining a passageway through the housing and in communication with the interior plenum. The method includes providing a tuner that defines a resonating cavity and has an open end and an opposite closed end. The resonating cavity defines a length between the open and closed ends. The length of the resonating cavity may measure approximately one quarter of a wavelength of a resonant frequency defined by the interior plenum or one quarter of the wavelength of a noise frequency for which attenuation is desired. The method further includes the step of positioning the tuner such that the open end is in direct communication with the interior plenum and is in indirect communication with the fluid port via the interior plenum.
The above-mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
The embodiments hereinafter disclosed are not intended to be exhaustive or limit the invention to the precise forms disclosed in the following description. Rather the embodiments are chosen and described so that others skilled in the art may utilize its teachings.
In accordance with the present invention a hermetic compressor assembly 10 is illustrated in
Referring still to
Inlet tube 42 defines a fluid port providing a passageway through housing 38. In operation, low pressure gas is received into interior plenum 40 through suction inlet tube 42. The low or suction pressure gas is communicated from interior plenum 40 to compression chambers 28 of compressor mechanism 12 where the low pressure gas is compressed to a high pressure gas by reciprocating pistons 26. The resulting high pressure gas is discharged into discharge chambers 34 and then, ultimately, exits compressor assembly 10 through discharge tube 46. Although not included in the illustrated embodiment, compressor assembly 10 may also include a conventional suction muffler and/or discharge muffler as are known to those having ordinary skill in the art. Such mufflers could be mounted to subassembly 36. The reciprocating movement of pistons 26 and concomitant influx and discharge of refrigerant creates vibrations which are transmitted through compressor assembly 10 including the refrigerant within interior plenum 40. When the frequency of the vibrations coincides with one of the resonant frequencies of the interior plenum, a standing wave may be created within the refrigerant contained within plenum 40 resulting in vibrations of increased amplitude. These vibrations may result in undue stress to the components of the compressor assembly and/or undesirable noise.
To attenuate the vibration and noise within the compressor assembly 10, tuner 52 is mounted to compressor assembly 10 and is in communication with interior plenum 40. In the embodiment illustrated in
In operation, pressure waves travel into resonating cavity 58 through open end 54. The waves travel down length L of resonating cavity 58 until they reach closed end 56, where they are deflected back down resonating cavity 58. To achieve attenuation of pressure waves of a selected wavelength, length L is measured such that the deflected waves destructively interfere or cancel out the waves entering resonating cavity 58. As a result, the waves exiting resonating cavity 58 will have a reduced or zero amplitude. This occurs when length L of resonating cavity 58 measures ¼ the wavelength λ of the selected pressure waves.
The wavelength that is selected for attenuation by tuner 52 may correspond to a resonant frequency defined by the compressor assembly 10, e. g. , operation of compressor assembly 10 may cause the excitement of a standing wave in the refrigerant contained within interior plenum 40 thus defining such a resonant frequency, or, the selected wavelength may correspond to an objectionable noise caused by the operation of compressor 10 that does not create such a standing wave, or, to some other wavelength for which attenuation by tuner 52 is desired. The wavelength λr of the resonant vibration waves within interior plenum 40 is described by the following equation:
When it is desired to attenuate resonant waves having wavelength λr,length L of resonating cavity 58 is chosen to be substantially equal to ¼ λr or v/4ƒr. Determining the frequency for which attenuation is desired for a particular compressor design may be done empirically. In some embodiments, it may be advantageous to employ multiple resonating cavities 58 to attenuate multiple pressure wavelengths.
Tuner 52 need not be in line with suction inlet tube 42 and, therefore, tuner 52 can be mounted anywhere within interior plenum 40, as shown in
As illustrated in
Also shown in
Although tuner 52 is positioned in communication with a plenum at suction pressure in the illustrated embodiment, in other embodiments, such as a high side hermetic compressor with a plenum containing vapors at discharge pressure, a tuner 52 could be positioned downstream of the compressor mechanism in communication with an interior plenum containing vapors at a discharge pressure. Tuner 52 could also be used with a two stage compressor and be positioned in a plenum between compressor stages at an intermediate pressure. It is also possible to employ a quarter wavelength tuner in communication with the interior plenum of hermetic compressors having various other designs. Furthermore, as previously mentioned, the compressor assembly may include a conventional suction muffler and/or discharge muffler in addition to tuner 52.
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
Number | Name | Date | Kind |
---|---|---|---|
3748997 | Dean, Jr. et al. | Jul 1973 | A |
4212370 | Dreher et al. | Jul 1980 | A |
4231228 | Galvin et al. | Nov 1980 | A |
4239461 | Elson | Dec 1980 | A |
5101931 | Blass et al. | Apr 1992 | A |
5333576 | Verkleeren | Aug 1994 | A |
5596879 | Burkhart et al. | Jan 1997 | A |
5605447 | Kim et al. | Feb 1997 | A |
5762479 | Baars et al. | Jun 1998 | A |
5957664 | Stolz et al. | Sep 1999 | A |
6009705 | Arnott et al. | Jan 2000 | A |
6167985 | Van Ligten | Jan 2001 | B1 |
6309026 | Svedhem | Oct 2001 | B1 |
6415888 | An et al. | Jul 2002 | B1 |
6453695 | Marks et al. | Sep 2002 | B1 |
6468050 | Hashimoto et al. | Oct 2002 | B1 |
6488482 | Yannascoli et al. | Dec 2002 | B1 |
6544009 | Makino et al. | Apr 2003 | B1 |
6558137 | Tomell et al. | May 2003 | B1 |
20020098093 | Tomell et al. | Jul 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050106036 A1 | May 2005 | US |