Hermetically sealed container and image forming apparatus

Information

  • Patent Grant
  • 6821179
  • Patent Number
    6,821,179
  • Date Filed
    Tuesday, April 8, 2003
    21 years ago
  • Date Issued
    Tuesday, November 23, 2004
    20 years ago
Abstract
A method of manufacturing a hermetically sealed container includes the steps of providing a first substrate, a second substrate and an outer frame disposed between the first and second substrates, and bonding the first substrate to the outer frame and the second substrate to the outer frame to form a hermetically sealed space. A ratio W/T of width W and thickness of T of the outer frame is set to an aspect ratio A, with A≧1.5, and with the width W measured in a direction substantially parallel with planar surfaces of the first and second substrates.
Description




BACKGROUND




1. Field of the Invention




The present invention relates to a hermetically sealed container and an image forming apparatus using the hermetically sealed container.




2. Related Background Art




As a flat panel display, a vacuum fluorescent display utilizing a thermionic cathode, an image display utilizing cold cathodes such as a surface conduction electron emitting device, and the like are known.




Such flat panel image forming apparatuses are disclosed, for example, in Japanese Patent Application Laid-Open Nos. 10-236851, 10-188787, and the like. The schematic structure of such flat panel image forming apparatus is shown in FIG.


7


. In

FIG. 7

, numeral


101


denotes a face plate (front substrate),


102


denotes a rear plate (back substrate),


103


denotes an outer frame, and a hermetically sealed container


7


is constituted by bonding the abutment portions of the components


101


,


102


,


103


. In general, the abutment portions are bonded by adhesives such as a frit glass. Moreover, in the image forming apparatus shown in

FIG. 7

, electrons emitted from an electron source


109


are accelerated by an anode voltage applied to an image forming member


108


such as a phosphor, so that emission and display are performed.





FIG. 4

is a sectional view showing the basic constitution of the vacuum fluorescent display disclosed in the Japanese Patent Application Laid-Open No. 10-236851 among the above-described flat panel displays. In

FIG. 4

, numeral


14


denotes a front glass,


12


denotes a plate glass disposed opposite to the front glass, and


16


denotes a spacer glass disposed between two glasses at the peripheral edge of the front glass


14


and plate glass


12


. These constitute a vacuum fluorescent display


10


as a hermetically sealed container.




In

FIG. 4

, character W denotes the width of the spacer glass


16


, and T denotes thickness. Numeral


24


denotes a filament-like thermionic cathode which emits electrons,


30


denotes a phosphor layer which is irradiated with the electrons to obtain emission, and these components are disposed on the plate glass


12


.




SUMMARY




According to the present invention, there is provided a hermetically sealed container comprising: a front substrate; a back substrate disposed opposite to the front substrate; and an outer frame disposed between the front substrate and the back substrate. The front and back substrates, and the outer frame are bonded with an adhesive to form a hermetically sealed space. When a ratio W/T of the width W and thickness T of the outer frame is set to the aspect ratio A of the outer frame, 1.5≦A.




Moreover, according to the present invention, there is provided an image forming apparatus using a hermetically sealed container comprising: a front substrate having an image forming member and a conductive film; a back substrate disposed opposite to the front substrate and provided with an electron source; and an outer frame disposed between the front substrate and the back substrate. The front and back substrates, and the outer frame are bonded with an adhesive to form a hermetically sealed space. When a ratio W/T of the width W and thickness T of the outer frame is set to the aspect ratio A of the outer frame, 1.5≦A.




Furthermore, according to the present invention, when the ratio W/T of the width W and thickness T of the outer frame is set to the aspect ratio A of the outer frame, 1.5≦A≦30.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic sectional view of a hermetically sealed container showing an image forming apparatus prepared in an embodiment.





FIG. 2

is a schematic perspective view of the image forming apparatus prepared in the embodiment.





FIG. 3

is a schematic sectional view of the hermetically sealed container showing the present embodiment.





FIG. 4

is a sectional view showing a conventional example.





FIG. 5

is a schematic sectional view showing a problem.





FIG. 6

is a schematic view showing the problem.





FIG. 7

is a schematic view showing the structure of a flat panel image forming apparatus.





FIG. 8

is a schematic view showing the image forming apparatus prepared in the embodiment.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




When the above-described image forming apparatus shown in

FIGS. 4 and 7

is driven, mainly an electron source (


109


,


24


) emitting electrons, and a phosphor (image forming member)


30


,


108


irradiated with the electrons generate heat. Therefore, the temperature of the constituting member of a hermetically sealed container in the vicinity of the heating source locally rises. Particularly in the substrate (face plate, rear plate), an in-plane temperature distribution in a thickness direction is generated, non-uniform thermal expansion is therefore generated, and the hermetically sealed container is deformed. One example of deformation in the vacuum fluorescent display will be described hereinafter with reference to FIG.


5


.





FIG. 5

is a schematic sectional view of the hermetically sealed container constituting the vacuum fluorescent display. In

FIG. 5

, numeral


401


denotes a front substrate,


402


denotes a back substrate disposed opposite to the front substrate


401


, and


403


denotes an outer frame (represented as the spacer glass in

FIG. 4

, but hereinafter referred to as the outer frame) hermetically bonded to the front substrate


401


and the back substrate


402


by an adhesive


405


. The outer frame


403


has a width W and a thickness T. Moreover, numeral


406


denotes a hermetically sealed container constituted by the front substrate


401


, back substrate


402


, and outer frame


403


, and


410


denotes a hermetically sealed space. Numeral


409


denotes a filament cathode as the thermionic cathode mounted on the back substrate


402


, and


408


denotes a phosphor mounted on the back substrate


402


and irradiated with the electrons generated by the filament cathode


409


to emit light.




In a region A as the central portion of the back substrate


402


the temperature rises by the heat generated by the phosphor


408


and the filament cathode


409


, and the back substrate


402


is deformed in −z direction. As a result, a peeling stress σ is generated in z direction in a region B of the outer frame


403


and adhesive section


405


for connecting the front substrate


401


and back substrate


402


. Additionally, the deformation in the −z direction is drawn in an exaggerated manner for the sake of description.




In the image forming apparatus shown in

FIG. 4

, the display area is small, and the anode voltage applied to the phosphor


408


is as low as several hundreds of volts. Furthermore, the filament cathode having a very high temperature is held apart from the substrate (in a hollow state). Therefore, the peeling stress σ is small, and the above-described deformation raises no problem.




However, in recent years, the image display has been requested to have a larger screen and perform a higher-luminance image display. To meet the new request, it has been desired to set the size of the face plate


101


or the rear plate


102


shown in

FIG. 7

to several tens of inches, or to apply a very high anode voltage in a range of several kilovolts to several tens of kilovolts.




For this purpose, the conventional image display is simply enlarged while maintaining the distance between the face plate


101


and the rear plate


102


at several millimeters, and further the anode voltage is raised. In this case, however, when the image display is driven for a long time, a crack leading to slow leak is sometimes produced in the outer frame of the hermetically sealed container and the bonded portion of the outer frame and substrate.




The slow leak means a phenomenon in which the air (gas) outside the hermetically sealed container flows along a micro leak path into the hermetically sealed space, and the vacuum degree of the hermetically sealed space is gradually deteriorated.




In order to apply a high voltage of several kilovolts to several tens of kilovolts between the opposite substrates as described above, the inside of the hermetically sealed container has to be maintained in a very high vacuum state of 10


−5


Pa or more, more preferably 10


−7


Pa or more. Moreover, the distance between the opposite substrates needs to be suppressed to several millimeters. Therefore, when the slow leak is produced, the performance of the hermetically sealed container is deteriorated, the performance (electric insulating properties between the anode and cathode) of the image display is simultaneously deteriorated, discharge occurs, and the life of the electron emitting device is therefore lowered.




The occurrence of the slow leak is attributed to the enlargement of a heating portion area by the enlarged screen, the increase of calorific value by the high luminance (a substantial rise in anode voltage), and the increase of heating density by high definition.




Therefore, the peeling stress σ of the outer frame, which has heretofore caused no problem, is increased, and the slow leak is sometimes generated.




The peeling stress σ will now be described in detail with reference to

FIG. 6

in which the hermetically sealed container


406


is seen from the side of front substrate


401


. The peeling stress σ has a size distribution in the outer frame


403


. The region C corresponds to the central portion of the longitudinal direction of the outer frame


403


, and the peeling stress σ is maximized in the region C. A region D corresponds to the central portion of the short direction of the outer frame


403


, and the peeling stress σ of this region is large next to that of the region C. Therefore, in the regions C and D the crack or peel leading to the slow leak is produced, and the slow leak is generated.




The generation of the slow leak of the hermetically sealed container as described above has been an important problem in manufacturing a large-sized, high-luminance, high-definition image display.




To solve the problem, it has been desired to provide an outer frame structure suitable for a hermetically sealed structure, and to provide a hermetically sealed container in which slow leak is not easily generated and an image display using the container.





FIG. 3

is a schematic sectional view showing one example of the hermetically sealed container according to the present invention. In

FIG. 3

, numeral


201


denotes a front substrate (face plate),


202


denotes a back substrate (rear plate) disposed opposite to the front substrate


201


, and


203


denotes an outer frame hermetically bonded to the front substrate


201


and the back substrate


202


via an adhesive (bonding member)


205


.




The outer frame


203


has a width W and a thickness T. The thickness T is in a range of 1 mm to 10 mm, preferably 1 mm to 5 mm.




Moreover, numeral


206


denotes a hermetically sealed container constituted by the front substrate


201


, back substrate


202


, and outer frame


203


, and


211


denotes a hermetically sealed space. The hermetically sealed space is held in a vacuum degree of 10


−5


Pa or more, more preferably 10


−7


Pa or more.




Furthermore, the material of the front substrate


201


, back substrate


202


, and outer frame


203


is preferably glass.




Numeral


209


denotes a cathode (electron source) mounted on the back substrate


202


and comprising a cold cathode. It should be recognized that the electron source according to the present invention comprises one or more electron emitting devices. As the electron source, (a) surface conduction electron emitting device, (a) field emitter, MIM type electron emitting device, and the like can preferably be applied. Particularly, since the surface conduction electron emitting device can easily be formed in a large area, this electron emitting device is most suitable for the present invention.




A phosphor


208


is mounted on the front substrate, and irradiated with electrons emitted from the cathode


209


to emit light. A conductive film (anode electrode, metal back)


210


is disposed on the surface of the phosphor


209


on the rear plate side. A voltage of several kilovolts to several tens of kilovolts (preferably in a range of 1 to 20 kV, more preferably 5 to 15 kV) is applied to the conductive film from the high-voltage power source disposed outside the hermetically sealed container. The thickness of the conductive film


210


is in a range of 30 to 200 nm, preferably 50 to 100 nm.




As described above as the problems, in the present invention, requests were obtained as follows with respect to the aspect ratio (W/T):A in the sectional configuration of the outer frame.




First, study by FEM (finite element method) analysis was performed. The FEM analysis comprises: forming a state for driving the image display, that is, applying a heat to the substrate as the constituting member of the hermetically sealed container and performing heat conduction analysis to form the temperature distribution; and further using the temperature distribution as a thermal load to perform stress analysis, so that the peeling stress σ as a thermal stress produced in the outer frame corresponding to the regions B and C, and the bonded portion of the outer frame and substrate was obtained. A first condition required for the outer frame is that the peeling stress σ corresponds to the peeling strength of the adhesive (frit glass) and the fracture strength of glass obtained from experiments, and is 12 MPa or less.




Secondly, various outer frames were used to prepare the hermetically sealed container including the heating source in the same state as the state for driving the image display, the deformation of the hermetically sealed container by heating was caused for a long period, and a helium leak detector or the like was used to check the occurrence of slow leak. Here, a second condition is that no slow leak is generated.




From the above-described two conditions, it has been found that the aspect ratio A of the outer frame needs to be 1.5≦A.




Furthermore, judgment of practicabilities such as the apparatus cost in bonding the outer frame and the weight/cost of outer frame members was performed, and a third condition is that the outer frame be practical.




From these three judgments, 1.5≦A≦30, 1.5 mm≦W≦30 mm is appropriate.




Detailed judgment contents will be described in examples.




One example of a method of manufacturing the image forming apparatus of the present invention will next be described. The method comprises: first forming the red, green and blue phosphor film


208


on the inner surface of the front substrate


201


; further forming the conductive film (anode electrode, metal back)


210


on the phosphor film; next disposing the electron source


209


, and the like on the back substrate


202


; subsequently laminating and arranging the adhesive


205


and the outer frame


203


on the back substrate


202


; further placing the front substrate


201


; fixing the relative positions of the members with a jig or the like; heating, softening and bonding the adhesive


205


which is frit glass with a hot plate or the like in vacuum; and hermetically sealing and bonding the members. Subsequently, by performing the temperature raising and the removal from the hot plate, the hermetically sealed container


206


provided with the hermetically sealed space


211


is completed.




Even when the temperatures of the front substrate


201


and back substrate


202


rise during the driving of the image display formed as described above, the cracks which can be seen with a 10 times magnifier are not produced in the outer frame


203


and adhesive


205


. Additionally, it has been confirmed that no slow leak is generated, and that the hermetically sealed container


206


provided with a stable performance and the image display using the container can be manufactured.




For the material of the front substrate


201


and back substrate


202


a soda-lime glass is preferable because of its low manufacture cost, but glasses such as a high strain point glass, a non-alkali glass, and a pyrex glass may be used.




For the material of the outer frame


203


, the same material as that of the front substrate


201


or the back substrate


202


is preferable, but glasses such as the high strain point glass, the non-alkali glass, and the pyrex glass may be used, and ceramics, metals, or metal alloys such as


426


alloy may be used. Moreover, the outer frame


203


may be continuous and integral with either the front substrate


201


or the back substrate. In this case, the front substrate


201


present in the region corresponding to the outer frame


203


is defined as the outer frame.




The adhesive


205


for bonding the outer frame


203


to the front substrate


201


and back substrate


202


may be inorganic adhesives such as frit glass or organic adhesives such as polyimide and epoxy.




Moreover, in the present embodiment, the use of the cold cathode


209


as an electron source


209


has been described, but the present invention is not limited to this, and the filament cathode which is a thermionic cathode may be used. However, since the thermionic cathode has a high calorific value, the above-described cold cathode is preferably used.




EXAMPLE 1




This is an example in which the object is attained against the problem in the enlarged screen of the image display.





FIGS. 1 and 2

are explanatory views of a first example according to the present invention.

FIG. 1

is a schematic sectional view of the hermetically sealed container, and

FIG. 2

is a schematic perspective view in which the constituting members of the hermetically sealed container are exploded.




In the drawings, numeral


101


denotes a front substrate (thickness of 2.8 mm),


102


denotes a back substrate (thickness of 2.8 mm) disposed opposite to the front substrate


101


, and


103


denotes an outer frame hermetically bonded to the front substrate


101


and back substrate


102


by a frit glass


105


. The outer frame


103


has a width W of 3 mm, thickness T of 1 mm, and aspect ratio A of 3. Moreover, the thickness of the frit glass


105


is 0.2 mm.




Numeral


104


denotes a spacer for suppressing the deformation of the hermetically sealed container against the atmospheric pressure applied from the outside when the hermetically sealed container


106


is evacuated. For the size, the length t of x-direction is 0.2 mm, the length of y-direction is 40 mm, and the length of z-direction is 1.2 mm. The spacer is fixed only to the back substrate


102


via a frit glass


107


(thickness of 0.2 mm) (only abuts on the front substrate


101


). In

FIGS. 1

,


2


, only three spacers are shown, but there are actually 250 spacers.




Numeral


106


denotes a hermetically sealed container constituted of the front substrate


101


, the back substrate


102


and outer frame


103


. Numeral


110


denotes a hermetically sealed space. The size of the hermetically sealed container


106


is 900 mm in the x-direction, 580 mm in the y-direction, and 7 mm in the z-direction. Moreover, the materials of the front substrate


101


, back substrate


102


, outer frame


103


, and spacer


104


are soda-lime glasses.




Numeral


109


denotes (a) surface conduction electron emitting devices mounted on the back substrate


102


as an electron source, and


108


denotes a phosphor mounted on the front substrate and irradiated with the electrons emitted by the surface conduction electron emitting device


109


to emit light. The detailed technique on the surface conduction electron emitting device


109


is disclosed in Japanese Patent Application Laid-Open No. 7-235255, and the like.




A method of manufacturing the image forming apparatus of the present example will next be described. The method comprises: first forming the phosphor


108


on the front substrate


101


; further forming a metal back of Al in a thickness of 60 nm; subsequently disposing the surface conduction electron emitting devices


109


, and the like on the back substrate


102


; thereafter laminating and arranging the frit glass


105


and outer frame


103


on the back substrate


102


; further positioning and arranging the spacer


104


and frit glass


107


with a jig; applying loads to the outer frame


103


and spacer


104


; heating the components up to the bonding temperature of the frit glass


105


in a hot plate; and bonding and cooling the components. Furthermore, the method comprises: placing the frit glass


105


and front substrate


101


on the outer frame


103


; fixing the components in appropriate positions with the jig or the like; heating the components to the bonding temperature of the frit glass


105


in the hot plate; applying the load to the frit glass


105


; and hermetically bonding the components. Subsequently, by raising the temperature and removing the components from the hot plate, the container


106


provided with the space


110


was completed.




Subsequently, by exhausting the air (gas) from the space


110


via an exhaust tube (not shown) to obtain vacuum, connecting the surface conduction electron emitting devices


109


to an exterior drive circuit (not shown), and supplying power to the surface conduction electron emitting devices


109


, an electron emitting region was formed. Thereafter, by sealing the exhaust tube (not shown), the hermetically sealed container was obtained.




Next, by connecting the exterior drive circuit to the hermetically sealed container, and applying a voltage of 10 kV to the metal back, with reference to the electron source (electron emitting device), the image forming apparatus was driven for a long time. Even when the temperatures of the front substrate


101


and back substrate


102


were raised, no slow leak was caused in the outer frame


103


and frit glass


105


, so that the stable hermetically sealed container and image display could be obtained.




Subsequently, the FEM analysis was performed on the outer frames having widths W=1, 1.5, 2, 5, 30, 40 mm using a thickness T of 1 mm as a target and centering on the width W=3 mm of the outer frame


103


as the above-described first condition. A judgment criterion was the peeling stress σ of 12 MPa or less at which the crack leading to the slow leak was considered not to occur. Moreover, the outer frames having the widths W=1, 1.5, 2, 5, 30, 40 mm of the outer frame


103


were used to form the hermetically sealed container, the container was driven as the image display, the slow leak was checked using the helium leak detector particularly in the regions C and D, and it was confirmed that there was no slow leak.




Moreover, when the width W of the outer frame increases, the load necessary for heating/bonding the outer frame with the front substrate and back substrate using the frit glass


105


increases during manufacture of the hermetically sealed container, the manufacture device is much worn, and the manufacture cost increases. Therefore, it is practically appropriate that the width W is in a range of 1.5 to 30 mm.




Results are shown in Table 1.




In the present example, it was indicated by performing the study and manufacture that in the hermetically sealed container having a large screen and the image display using the container, when the aspect ratio (W/T):A of the outer frame


103


was 1.5≦A≦30 in the frame width W of 1.5 mm≦W≦30 mm, this was a practical range, and the slow leak was not easily caused.




Moreover, the spacer


104


having a length of 40 mm and thickness of 0.2 mm was used in the present example, but the configuration and size are not limited to this. For example, the length may be 200 mm, the thickness may be 0.1 mm, or a cylindrical shape with a radius of about 0.1 mm may be used.




EXAMPLE 2




Similarly to the first example, this is an example in which the object is attained against the problem in the enlarged screen of the image display.




The present example is different from the first example only in the size of the outer frame


103


and spacer


104


, and is the same as the first example in the sizes of the other constituting members.




In the present example, the outer frame


103


has a width W of 12 mm, thickness T of 3 mm, and aspect ratio A of 4. Accordingly, the length of the z-direction of the spacer


104


is 3.2 mm.




Moreover, the thickness of the frit glass


105


is 0.2 mm. Moreover, the material of the front substrate


101


, back substrate


102


, outer frame


103


and spacer


104


is a high distortion point glass.




These members were used to manufacture the hermetically sealed container in the same method as that of the first example, then the image display was manufactured, and it was confirmed that there was no slow leak during the drive in a maximum ability.




Furthermore, by varying the thickness T to T=2, 4 mm centering on T=3 mm with respect to the width W=12 mm of the outer frame, the hermetically sealed container, then the image display were manufactured, and the study and confirmation were performed in a similar manner as the first example. Results are shown in Table 2. Additionally, when the thickness T was changed, the length of the z-direction of the spacer


104


was also changed to 2.2 mm, 4.2 mm.




In the present example, it was indicated by performing the study and manufacture that in the hermetically sealed flat container with the large screen and the image display using the container, also when a thickness T of an outer frame, if 1.5≦A, the slow leak was hardly caused.




EXAMPLE 3





FIG. 8

is an explanatory view showing the present example.

FIG. 8

is a schematic sectional view of the hermetically sealed container, and in

FIG. 8

, numeral


201


denotes a back substrate (thickness of 2.8 mm),


202


denotes a front substrate (thickness of 2.8 mm) disposed opposite to the back substrate


201


, and


203


denotes an outer frame hermetically bonded to the front substrate


202


and the back substrate


201


via a polyimide adhesive


205


(thickness of 0.2 mm). The outer frame


203


has a width W of 10 mm, thickness T of 5 mm, and aspect ratio A of 2. Numeral


206


denotes a hermetically sealed container constituted by the front substrate


202


, back substrate


201


, and outer frame


203


, and


210


denotes a hermetically sealed space. The size of the hermetically sealed space


206


is 250 mm in the x-direction, 50 mm in the y-direction, and 11 mm in the z-direction.




The material of the front substrate


202


, back substrate


201


, and outer frame


203


is a soda-lime glass.




Numeral


209


denotes a filament as a thermionic cathode mounted on the back substrate


202


, and


208


denotes a phosphor mounted on the front substrate


202


and irradiated with the electrons emitted from the filament


209


to emit light. In the present example, since the details such as the phosphor section are the same as those of the conventional example, the description thereof is omitted. In the present example, in order to enhance the luminance than before, the voltage for accelerating the thermions was set to be double the conventional voltage, and to obtain the high definition, the number of filaments


209


was set to be approximately double the conventional number.




A manufacture method will next be described. The method comprises: first forming the red, green and blue filter film (not shown) on the inner surface of the front substrate


202


; further forming a transparent ITO film (not shown) as an anode and the phosphor


208


on the filter film; next disposing the cathode (electron source)


209


, and the like on the back substrate


201


; subsequently laminating and arranging the adhesive


205


and outer frame


203


on the back substrate


201


; further placing the front substrate


202


; fixing the relative positions of the members with a jig or the like; performing the heating in a hot plate or the like until the adhesive


205


hardens; and hermetically sealing and bonding the members. Subsequently, by performing the temperature raising and the removal from the hot plate, the container


206


provided with the hermetically sealed space


210


was completed.




A method of manufacturing the image display utilizing the container


206


will next be described. The method comprises: first exhausting the air (gas) from the space


210


using an exhaust tube (not shown) to obtain vacuum; connecting the filament


209


to an external drive circuit (not shown), and the like; and supplying power to the filament


209


so that the performance as the electron emitter was given. Thereafter, by sealing the exhaust tube (not shown), the hermetically sealed container was obtained.




Subsequently, the hermetically sealed container was connected to the external drive circuit, and the container was driven as the image forming apparatus. Even when the temperatures of the front substrate


202


and back substrate


201


rose, no slow leak was caused in the outer frame


203


and frit glass


205


, so that the stable hermetically sealed container and image display could be obtained.




Subsequently, the FEM analysis was performed on the outer frames


203


having widths W=5, 7.5, 30, 40 mm using a thickness T=5 mm as a target and centering on the width W=10 mm as the above-described first condition. The judgment criterion was the peeling stress σ of 12 MPa or less at which the crack leading to the slow leak was considered not to occur. Moreover, the outer frames with W=7.5, 30, 40 mm were used to form the hermetically sealed container, and further the image display was manufactured.




Moreover, the drive of the maximum ability was performed, the slow leak was checked using the helium leak detector, and it was confirmed that there was no slow leak.




Furthermore, when the frame width W increases, the weight of the outer frame


203


accordingly increases, and the member cost increases. Therefore, the outer frame width W of 30 mm or less is practically appropriate.




Results are shown in Table 1.




In the present example, it was indicated by performing the study and manufacture that in the hermetically sealed container aiming at the high-luminance, high-definition display and the image display using the container, when the outer frame aspect ratio A was 1.5≦A≦6, and the frame width W was 7.5≦W≦30, the slow leak was not easily caused.




As described above, according to the present invention, there is provided an outer frame structure in which the crack leading to the slow leak is not easily generated in the bonded portion of the outer frame and substrates, and there can be manufactured the hermetically sealed container provided with the stable performance and the image display using the container and having a long life of electron emitting source.












TABLE 1











first condition in the first example













Item




Judgment




Judgment Criterion






















Outer frame




1




1.5




2




3




5




30




40




Measured value






width [mm]






Thickness




1




1




1




1




1




1




1




Measured value






T [mm]






Aspect ratio




1




1.5




2




3




5




30




40




W/T






FEM analysis




x




o




o




o




o




o




o




x: stress σ > 12 MPa














o: stress σ ≦ 12 MPa






Drive




x




o




o




o




o




o




o




x: not performed














o: no leak






Practicability





o




o




o




o




o




Δ




Δ: impractical














o: practical






















TABLE 2











first condition in the second example













Item




Judgment




Judgment Criterion


















Outer frame width [mm]




12




12




12




Measured value






Thickness T [mm]




2




3




4




Measured value






Aspect ratio A




6




4




3




W/T






FEM analysis




o




o




o




x: stress σ > 12MPa










o: stress σ ≦ 12MPa






Drive




o




o




o




x: not performed










o: no leak






Practicability




o




o




o




Δ: impractical










o: practical






















TABLE 3











first condition in the third example













Item




Judgment




Judgment Criterion





















Outer frame




5




7.5




10




20




30




40




Measured value






width [mm]






Thickness




5




5




5




5




5




5




Measured value






T[mm]






Aspect ratio A




1




1.5




2




4




6




8




W/T






FEM analysis




x




o




o




o




o




o




x: stress σ > 12 MPa













o: stress σ > 12 MPa






Drive




x




o




o




o




o




o




x: not performed













o: no leak






Practicability





o




o




o




o




Δ




Δ: impractical













o: practical













Claims
  • 1. A method of manufacturing a hermetically sealed container, comprising the steps of:preparing a first substrate, a second substrate and an outer frame to be disposed between the first and second substrates; applying an adhesive between the first substrate and the outer frame and between the second substrate and the outer frame; and bonding the first substrate to the outer frame and the second substrate to the outer frame by the adhesive so that an interval between the first substrate and the second substrate is not less than 1 mm, wherein a ratio W/T of width W and thickness T of the outer frame is not less than 1.5, and with the width W measured in a direction substantially parallel with planar surfaces of the first and second substrates.
  • 2. The method according to claim 1, wherein the aspect ratio is not larger than 30.
  • 3. The method according to claim 1, wherein the width W is not smaller than 1.5 mm.
  • 4. The method according to claim 3, wherein the width W is not larger than 30 mm.
  • 5. The method according to claim 1, wherein the thickness T is not less than 1 mm and not larger than 10 mm.
  • 6. The method according to claim 1, further comprising a step of disposing a spacer for supporting an atmospheric pressure between the first and second substrates.
  • 7. The method according to claim 1, wherein the thickness T is not less than 1 mm and not larger than 5 mm.
  • 8. The method according to claim 1, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 9. The method according to claim 2, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 10. The method according to claim 3, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 11. The method according to claim 4, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 12. The method according to claim 5, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 13. The method according to claim 6, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 14. The method according to claim 7, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 15. A method of manufacturing an image forming apparatus comprising a hermetically sealed container, a phosphor disposed within the hermetically sealed container, and excitation means for exciting the phosphor, wherein the hermetically sealed container is manufactured by a method comprising the steps of:preparing a first substrate, a second substrate and an outer frame to be disposed between the first and second substrates; applying an adhesive between the first substrate and the outer frame and between the second substrate and the outer frame; and bonding the first substrate to the outer frame and the second substrate to the outer frame by the adhesive so that an interval between the first and second substrates is not less than 1 mm, wherein a ratio W/T of width W and thickness T of the outer frame is not less than 1.5, and with the width W measured in a direction substantially parallel with planar surfaces of the first and second substrates.
  • 16. The method according to claim 15, wherein the aspect ratio is not larger than 30.
  • 17. The method according to claim 15, wherein the width W is not smaller than 1.5 mm.
  • 18. The method according to claim 17, wherein the width W is not larger than 30 mm.
  • 19. The method according to claim 15, wherein the thickness T is not less than 1 mm and not larger than 10 mm.
  • 20. The method according to claim 15, further comprising a step of disposing a spacer for supporting an atmospheric pressure between the first and second substrates.
  • 21. The method according to claim 15, wherein the excitation means is an electron-emitting device.
  • 22. The method according to claim 16, further comprising a step of connecting a driving circuit for driving the electron-emitting device to the hermetically sealed container.
  • 23. The method according to claim 15, wherein the thickness T is not less than 1 mm and not larger than 5 mm.
  • 24. The method according to claim 15, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 25. The method according to claim 16, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 26. The method according to claim 17, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 27. The method according to claim 18, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 28. The method according to claim 19, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 29. The method according to claim 20, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 30. The method according to claim 21, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 31. The method according to claim 22, wherein the first substrate, the second substrate and the outer frame are made of glass.
  • 32. The method according to claim 23, wherein the first substrate, the second substrate and the outer frame are made of glass.
Priority Claims (2)
Number Date Country Kind
11-058440 Mar 1999 JP
2000-037126 Feb 2000 JP
Parent Case Info

This is a divisional application of application Ser. No. 09/510,150, filed on Feb. 22, 2000 now U.S. Pat No. 6,603,254.

US Referenced Citations (3)
Number Name Date Kind
4618802 Schrank Oct 1986 A
5600203 Namikawa et al. Feb 1997 A
5952775 Sato et al. Sep 1999 A
Foreign Referenced Citations (4)
Number Date Country
0 660 357 Jun 1995 EP
7-235255 Sep 1995 JP
10-188787 Jul 1998 JP
10-236851 Sep 1998 JP