This invention relates to hermetically sealed thermoplastic containers. More particularly, this invention is directed to a hermetically sealed container provided with an improved access port for a draining spike.
Hermetically sealed containers that incorporate pierceable membranes that are to be pierced by a draining spike are known in the art and are illustrated by U.S. Pat. No. 4,901,873 to Weiler and U.S. Pat. No. 5,595,314 to Weiler. Such containers utilize a separately fabricated closure insert, and are useful in applications where the container contents is dispensed through a nozzle affixed to the container as the membrane is pierced or thereafter. U.S. Pat. No. 6,571,971 to Weiler illustrates a closure insert that provides a primary seal about a draining spike in the form of a peripheral sealing band or bead carried by a downwardly depending skirt portion downstream from the pierced membrane. The pierced membrane then serves as a partial secondary seal.
From the standpoint of cost and manufacturing expediency it would be desirable, however, to dispense with the need for a separately fabricated closure insert when making hermetically sealed thermoplastic containers, the content of which can be accessed utilizing a draining spike.
The fabrication of a seal such as that shown in the aforementioned U.S. Pat. No. 6,571,971 is not possible, however, when the container closure is not a separate insert but is unitary with an fabricated concurrently with the molding of the container itself.
The present invention provides a hermetically sealed thermoplastic container well suited for use with a draining spike for emptying the contents thereof. In particular, a thermoplastic container embodying the present invention has a body portion, a specially contoured neck portion unitary with the body portion, and a removable cap that provides a closure for the neck portion. The removable cap is unitary with the neck portion but is delineated therefrom by a frangible web.
The container neck portion terminates in a flexible enclosure that preferably is bell-shaped and defines a draining spike access aperture which is occluded by the removable cap. At least a portion of the flexible enclosure is inwardly collapsible. The draining spike access aperture is sized to form a liquid-tight seal with the draining spike upon entry and preferably is inwardly collapsible about the draining spike as it enters the container. A draining spike stabilizer is provided that is spaced from the spike access aperture and is substantially coaxial therewith.
A preferred draining spike stabilizer comprises a pair of opposed, inwardly extending flange segments adapted to receive the draining spike therebetween. Preferably the opposed flange segments contact no more than about 85 percent of the draining spike perimeter received therebetween.
In the drawings,
The invention disclosed herein is, of course, susceptible of embodiment in many different forms. Shown in the drawings and described in detail hereinbelow are preferred embodiments of this invention. It is to be understood, however, that the present disclosure is an exemplification of the principles of the invention and is not to be taken as limiting.
The hermetically sealed thermoplastic container of the present invention is shown in the drawings and is described hereinbelow with reference to the container in a vertical upright position, and terms such as upper, lower, vertical, horizontal, and the like, when used, will be used with reference to that position.
In the interests of conciseness, the present drawings do not necessarily show features and details of the container that are known in the art and will be recognized as such by those skilled in the art. Detailed description of such features and details is not necessary for an understanding of the present invention.
Hermetically sealed thermoplastic containers embodying this invention can be readily fabricated from thermoplastic polymers such as polypropylene, high density polyethylene, low density polyethylene, and the like, utilizing the well-known blow-fill-seal technique shown and disclosed, for example, in U.S. Pat. No. 4,671,763 to Weiler. The containers so fabricated can have a wide variety of body shapes and capacities.
Referring now to
When cap 18 has been removed as shown in
For proper positioning of the draining spike 30 in neck portion 14 of container 10, the position of draining spike 30 must be stabilized after the spike has penetrated flexible enclosure 16 of container 10. For that purpose there is provided a pair of inwardly extending flange segments 36 and 38 (
During the container fabrication process a slight thermoplastic material bulge is produced at the mold parting line as illustrated by bulges 42 and 44 in
In order to readily achieve the desired flexibility for flexible enclosure 16, the ratio of the inside diameter of the chamber defined by the flexible enclosure to the diameter of the draining spike access aperture preferably is in the range of about 1.5 to about 2.
The foregoing description and the drawings are illustrative and are not to be taken as limiting the present invention. Still other variations and rearrangements of the functional elements within the spirit and scope of this invention are possible and will readily present themselves to those skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
6619516 | Weiler et al. | Sep 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20090008354 A1 | Jan 2009 | US |