This application is related to U.S. patent application Ser. No. 10/673,593, entitled “HERMETICALLY SEALED ELECTRONICS ARRANGEMENT AND APPROACH”, by David Albrecht, et al, filed Sep. 29, 2003.
This application is related to co-pending U.S. patent application Ser. No. 11/351,440, entitled “HERMETICALLY SEALED HARD DISK ASSEMBLY AND METHOD OF SEALING WITH SOLDERING MATERIAL” by Michael Hatchet, et al, filed Feb. 9, 2006, assigned to the assignee of the present invention.
This application is related to co-pending U.S. patent application Ser. No. 11/352,086, entitled “HERMETICALLY SEALED HARD DISK ASSEMBLY AND METHOD OF SEALING WITH SOLDERING MATERIAL” by Michael Hatchet, et al, filed Feb. 9, 2006, assigned to the assignee of the present invention.
This application is related to co-pending U.S. patent application Ser. No. 11/352,101, entitled “HERMETICALLY SEALED HARD DISK ASSEMBLY AND METHOD OF SEALING WITH SOLDERING MATERIAL” by Michael Hatchet, et al, filed Feb. 9, 2006, assigned to the assignee of the present invention.
This invention relates generally to the field of direct access storage devices and in particular to a sealed head disk assembly and a method of achieving a semi-hermetic and a hermetic seal through a novel design of existing components.
Direct access storage devices (DASD) have become part of every day life, and as such, expectations and demands continually increase for greater speed for manipulating data and for holding larger amounts of data. To meet these demands for increased performance, the mechanical assembly in a DASD device, specifically the Head Disk Assembly (HDA) has undergone many changes.
Shown in
The dynamic performance of HDA 110 is a major mechanical factor for achieving higher data capacity as well as for manipulating this data faster. The dynamic performance of HDA 110 is dependent upon the dynamic performance of its individual components and sub-assemblies. Many factors that influence the dynamic performance are intrinsic to the individual components. Some of these intrinsic factors are in general: mass of the component; stiffness of the component; and geometry of the component. This is not an all-inclusive list and those schooled in engineering or HDA technology will understand that there are many other factors that influence dynamic performance of HDA 110 components and sub-assemblies.
The quantity of data tracks 136 recorded on disk surface 135 is determined partly by how well magnetic head 156 can be positioned and made stable over a desired data track 136. The quantity of data track 136 is a direct indicator of the amount of data stored. Although the mass, stiffness and geometry of the components in actuator 140 directly affect the stable positioning of magnetic head 156, vibration energy that acts on actuator 140 and its components is also a major factor in the stable positioning of head 156. If excessive, vibration energy will impart oscillating motion to actuator 140 and move head 156 from a desired position over data track 136.
There are several sources for vibration energy that act on actuator 140. There is outside vibration energy that enters HDA 110 through base casting 113 and affects the stability of actuator 140. There is internal vibration energy that is produced by rotating components and sub-assemblies inside HDA 110. Motor-hub assembly 130 can transmit vibration energy through base casting 113 and into actuator 140. Spinning disk surface 135 can impart oscillating motion directly into magnetic head 156 and cause it to move off data track 136. And pivot bearing 145 can also transmit vibration energy into actuator 140 and thus into magnetic head 156. Attention is given to all potential sources of vibration energy in the design of these sub-assemblies and components. Another source of vibration energy inside HDA 110 is the motion of the atmosphere inside HDA 110 and its interaction with sub-assemblies and components.
Shown in
It has been recognized by HDA designers that it is desirable to control the atmosphere inside the HDA. The atmosphere can be controlled for its humidity as cited in U.S. Pat. No. 6,762,909 or the atmosphere can be controlled for its gas composition. In light of the aforementioned problem of atmosphere inside the HDA impacting HDA components and imparting vibration energy, it has been recognized that a low-density gas, such as helium (He), has the benefit of imparting less energy into HDA components. It is well known that the aerodynamic forces on an object are proportional to the product of the density and square of the velocity of the impinging fluid. By virtue of the lower density of He, it will impart smaller lift and drag forces into HDA components as the internal gas of the HDA impinges on the internal components of the HDA.
Once a desired atmosphere or mixture of gases is introduced inside an HDA, it must be contained or maintained. US Patent Application 2003/0081349 teaches how to replenish the mixture of gases from a reservoir and valve system if the mixture of gases cannot be contained. Emphasis has been placed on containing a mixture of gases once it has been established. The general term for containing and sealing in a gas or atmosphere is a hermetic seal. Partial containment is a semi-hermetic seal. Hermetic seals have taken several forms. Much attention has been given to sealing HDAs by various means of welding. In general, welding is the assembly technique by which two parts to be joined are held together, their mating surfaces heated above their melting temperatures either by applying molten material of similar composition or applying heat directly to the mating surfaces. U.S. Pat. No. 6,762,909 cites welding as a method to achieve a hermetic seal. The high temperatures required for welding has made this approach difficult to apply to the hermetic sealing of an HDA. Other approaches for making a welded hermetic seal are taught in US Patent Application 2003/0223148 and Japanese Patent JP8161881. 2003/0223148 cites laser welding as a means to achieve a welded hermetic seal. Japanese Patent JP8161881 teaches the use of a welded metallic ribbon.
Hermetic seals have also been described that use the folding, or hemming of metal in conjunction with a compliant sealing material. Hemming is the process by which thin sheets are placed together so they overlap at an edge and are secured to each other by folding the overlapping edges together. Both U.S. Pat. Nos. 4,367,503 and 6,556,372 teach variations for hemming metal with a compliant material in the hem.
Secondary enclosures and covers have also been described in the art. US Patent Application 2003/0179489 teaches the use of a structural cover that provides a semi-hermetic seal, followed by a sealing cover that attaches to the base casting and on top of the structural cover that provides the hermetic seal. Japanese Patent JP5062446 teaches placing a generally conventional HDA inside a hermetically sealed outer container.
The challenges to the above cited art include but are not limited to: distortion of HDA components and sub-assemblies due to the high temperature required for welding; restriction of the choice of materials for the base and cover so as to be suitable for welding; the use of multiple components for isolating HDA components and sub-assemblies from welding temperatures; rework procedures that might be required due to failed HDA components or sub-assemblies.
Various embodiments of the present invention are described herein. A sealed head disk assembly has a base casting for providing attachment points for the major components of the head disk assembly. The base casting has a semi-hermetic seal encompassing an outer perimeter of the base casting and allows the semi-hermetic seal to be juxtaposed to at least one complementary surface on the cover. The cover for enclosing the major components of the head disk assembly has a hermetic seal outside a perimeter of the complementary surface for the semi-hermetic seal thus allowing the hermetic seal to be juxtaposed to at least one complementary surface on the base casting.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
It is the goal of the embodied invention to address the challenges presented by the cited prior art while achieving flexibility in the assembly and test process, minimizing the number of required components, and minimizing the cost impact associated with producing a hermetically sealed HDA.
The embodied invention teaches a component design and assembly technique by which a semi-hermetic and hermetic seal are in series with each other. A semi-hermetic seal in series with a hermetic seal allows the build and test of the HDA to occur under a desired atmosphere using the temporary semi-hermetic seal. Atmosphere is defined as a mixture of gases, a particular gas, or gases that are typically found in air. Once the HDA has finished its build and test processes, the hermetic seal is activated and the desired atmosphere is permanently sealed inside the HDA. Referring to
A major challenge of the cited prior art is the extreme heat required to weld a cover and base casting together to produce a hermetic seal. The invention presented accomplishes a hermetic seal by two methods.
The first method for achieving a hermetic seal is to use a joining technique known in the industry as soldering. Soldering involves the melting of a tertiary material to join two materials. The soldering material typically melts at a temperature below the melting point of the materials to be joined. A hermetic seal using soldering will produce an inviolable atmosphere within the HDA once melting has activated the soldering material.
It is possible that the two materials are of a different composition. If one or both surfaces to be joined are incompatible with the soldering material, a coating is applied which makes the surfaces complementary to the soldering material. The preferred method taught in this invention is to use a solder alloy as the soldering material. The common element in solder alloy is the presence of tin (Sn). Solder alloys include, but are not limited to Sn—Pb, Sn—Ag, Sn—Ag—Cu, and Sn—Bi. If required, the surfaces of the cover and base casting are made complementary to solder alloy via plating or vacuum deposition processes well known in the industry.
This invention is not limited to solder as a soldering material. One schooled in the art will recognize there are numerous methods of soldering with various metals, alloys, and plastics.
The second method for achieving a hermetic seal is to use an appropriate liquid bonding material. In general an appropriate liquid bonding material is a reactive cross-linking polymer. A common type of reactive cross-linking polymer is epoxy, but for the purpose of this invention, a reactive cross-linking polymer also includes adhesives that react and are solidified in the presence of heat or a catalyst that causes the cross-linking process to take place.
Activation of hermetic seal 305 is dependent upon the material from which hermetic seal 305 is made. The embodied invention is independent of the method of activating hermetic seal 305. Some common examples of activation by heat are: laser heating, hot iron, inductive heating, oven, and infrared radiation. Other examples of activation are applying a chemical to make a surface complementary for activation with hermetic seal 305. A chemical used in this manner is typically known as a primer.
In conjunction with providing a hermetic seal between base casting 113 and cover 115, a hermetic seal must also be provided between base casting 113 and connector 111 and base casting 113 and motor-hub assembly 130. The sealing of these components is taught in other art and is beyond the scope of the embodied invention.
Independent of hermetic seal 305 being integral to cover 215, or hermetic seal 305 being integral to base casting 213, or semi-hermetic seal 244 being integral to cover 215, or semi-hermetic seal 244 being integral to base casting 213, the assembly process follows the flow chart shown in
In step 610 of process 600, HDA components and subassemblies of a hard disk drive 110 are assembled in a base casting 113 (as shown in
In step 620 of process 600, a cover 215 is attached to a base casting 213 (as shown in
In step 630 of process 600, an atmosphere is introduced into the HDA, in an embodiment of the present invention. One schooled in the art will recognize that there are many various methods and techniques to introduce an atmosphere into an HDA.
In step 640 of process 600, upon introduction of the atmosphere into the HDA, the HDA is tested. One schooled in the art is cognizant that there are many various criteria, methods and techniques that are specified to test the HDA.
In step 680 of process 600, if the HDA passes the specified test, process 600 proceeds to step 690. If the HDA fails the specified test, process 600 proceeds to step 660.
In step 690 of process 600, the hermetic seal is activated in an embodiment of the present invention. In an embodiment, laser heating may activate the hermetic seal. Alternatively, activation of the hermetic seal may be achieved by, but is not limited to, a hot iron, an oven, infrared radiation or application of a chemical or primer, in another embodiment of the present invention.
In step 650, if the HDA fails the specified test, process 600 proceeds to step 660.
In step 660 of process 600, the cover, e.g., cover 115 of
In step 670 of process 600, those elements and/or components of the HDA that failed the specified test are repaired accordingly. Once the faulty elements and components are properly repaired, process 600 returns to step 620, in which the cover is again attached to a base casting.
Subsequent to the completion of step 620 of process 600, process 600 returns to step 630, in an embodiment of the present invention.
Advantageously, the present invention, in the various presented embodiments allows for the hermetic sealing of an HDA without precluding reworking the HDA in the event of failure during testing. The present invention in the various presented embodiments advantageously allows for cost effective hermetic sealing of an HDA through the novel design of components that are similar to the current art and by not adding more components to the HDA.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4367503 | Treseder | Jan 1983 | A |
5187621 | Tacklind | Feb 1993 | A |
5223996 | Read et al. | Jun 1993 | A |
5272580 | Hickox et al. | Dec 1993 | A |
5434748 | Fukui et al. | Jul 1995 | A |
5454157 | Ananth et al. | Oct 1995 | A |
5696648 | Jeong et al. | Dec 1997 | A |
5793566 | Scura et al. | Aug 1998 | A |
6392838 | Hearn et al. | May 2002 | B1 |
6525899 | Hearn et al. | Feb 2003 | B2 |
6525931 | Yagenji et al. | Feb 2003 | B2 |
6556372 | Hearn et al. | Apr 2003 | B2 |
6721128 | Koizumi et al. | Apr 2004 | B1 |
6762909 | Albrecht et al. | Jul 2004 | B2 |
6821032 | Lake et al. | Nov 2004 | B2 |
7016145 | Gunderson et al. | Mar 2006 | B2 |
7019942 | Gunderson et al. | Mar 2006 | B2 |
7123440 | Albrecht et al. | Oct 2006 | B2 |
7292406 | Huang | Nov 2007 | B1 |
7355811 | Gifford et al. | Apr 2008 | B1 |
7359144 | Xu et al. | Apr 2008 | B2 |
7362541 | Bernett et al. | Apr 2008 | B2 |
7570455 | Deguchi et al. | Aug 2009 | B2 |
7692891 | Hatchett et al. | Apr 2010 | B2 |
7701663 | Oh et al. | Apr 2010 | B2 |
7729083 | Hatchett et al. | Jun 2010 | B2 |
20020044375 | Hirasaka et al. | Apr 2002 | A1 |
20020089782 | Hearn et al. | Jul 2002 | A1 |
20020114104 | Hearn et al. | Aug 2002 | A1 |
20030081349 | Bernett | May 2003 | A1 |
20030179489 | Bernett et al. | Sep 2003 | A1 |
20030223148 | Macleod et al. | Dec 2003 | A1 |
20040252407 | Gunderson et al. | Dec 2004 | A1 |
20070183085 | Hatchett et al. | Aug 2007 | A1 |
20070183086 | Hatchett et al. | Aug 2007 | A1 |
20070183087 | Hatchett et al. | Aug 2007 | A1 |
20070295233 | Karmazyn | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
5062446 | Mar 1993 | JP |
8161881 | Jun 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20070183086 A1 | Aug 2007 | US |