It has been found desirable in some applications to provide a hermetically sealed housing. For example, data storage devices can be advantageously hermetically encapsulated to isolate an interior environment from contamination or other effects from the surrounding atmosphere.
The use of an internally enclosed inert gas atmosphere within a data storage device housing can also generally provide improved windage and hydrodynamic flight characteristics for read/write transducers adjacent a rotatable storage medium, as compared to a standard air atmosphere.
Various embodiments of the present invention are generally directed to a hermetically sealed housing that encloses an inert gas atmosphere, and an electrical interconnect with at least one electrically conductive signal trace embedded onto a liquid crystal polymer (LCP) body to extend from an interior of the housing to an exterior of the housing.
The device 100 includes a sealed housing 102 formed from a base deck 104 and a top cover 106. A spindle motor 108 rotates a number of storage media 110. An actuator 112 rotates through application of current to a voice coil motor (VCM) 114 to align an array of transducers 116 with tracks defined on the media surfaces. A flex circuit assembly 118 establishes electrical communication paths between the transducers 116 supported at a distal end of the actuator 112 and device control electronics on an externally disposed printed circuit board (PCB) 120.
An electrical interconnect 132 sealingly spans an aperture 134 through the housing 130 to provide a number of electrically conductive signal paths therethrough. The signal paths preferably facilitate electrical communication between an interior device 136 to an exterior device 138. The interconnect 132 is preferably formed of liquid crystal polymer (LCP). A suitable LCP material is commercially available under the trademark Zenite® by Dupont Corporation, Wilmington, Del., USA.
It has been found by the present inventors that LCP has relatively very low permeability characteristics for certain types of gases, and can be as much as about ten times less permeable to oxygen, water vapor and helium than other sealing materials such as certain epoxies. This permeability does not appear to be significantly affected by large changes in relative humidity (% RH) or temperature.
It has further been found that LCP has additional features that make it particularly suitable for use in establishing a hermetic seal as disclosed herein. LCP material can be filled with suitable fibers (glass, carbon, etc.) to improve the base resin material characteristics. LCP can also be selectively plated with a metallic or other electrically conductive layer, further reducing permeability to certain gases such as helium since certain metals can form a good sealing path against helium permeation.
Plating also facilitates the use of soldering or other metal joining techniques to form a hermetic bond line. With the use of appropriately selected fill and/or coating materials, the LCP interconnect can also be laser welded or ultrasonic welded to form the requisite sealing junctures to metal, glass, or other suitable materials (e.g., the housing 130). It has been found that the LCP crystalline properties are largely maintained in the weld region, due to maintaining high polymer chain continuity in the liquid or softened state. LCP is also easily molded into thin high precision three-dimensional shapes and can be over-molded to metals and other base materials.
A number of signal traces 144 are embedded onto the body to extend therethrough from an upper surface 146 to a lower surface 148 thereof. The signal traces 144 are characterized as metallic or otherwise electrically conductive springs and follow a tortuous path through the molded LCP material to improve adhesion and reduce permeability of the encapsulated inert gas.
The body 142 includes a base flange 150 and a projection 152. The base flange 150 is sized to abut an interior surface 154 of a housing member 156, and the projection 152 extends through an aperture 158 therein. Selected surfaces of the base flange 150 and/or the projection 152 are sealed against the housing member 156 using any one of a number of suitable hermetic sealing mechanisms, including but not limiting to an epoxy, thermoset, welding, solder or overmold process. In this way, the perimeter of the interconnect 140 provides a suitably low permeable path between the interior and exterior of the housing.
The embedded traces 144 are shown to have opposing first and second ends 160, 162. The first ends 160 extend adjacent the upper surface 146 of the body 142 as fixed pad-type contacts to accommodate a suitable electrical connection member, such as the aforementioned flex circuit 118 of
The interconnect 170 further includes a base flange 174 that is expanded in size as compared to the base flange 150 in
As shown in
The housing member 182 can alternatively be plated, coated or overmolded with a suitable material to effect the hermetic seal. An infrared absorbing material for use in a welding process is commercially available under the trademark Clearweld® by Gentex Corporation, Simpson, Pa., USA.
As shown in
The traces 208 are formed of a suitable metal, such as gold, copper, nickel, silver, etc., and terminate at connection pads 224, 226 (see
The interconnect 200 is mated with a housing member 228 having a stepped aperture 230 with a recessed shelf 232, as shown in
Molded or machined standoffs 236 (
It will be appreciated that the various embodiments presented herein provide advantages over the prior art. Each of the above exemplary interconnects 140, 170, 190 and 200 advantageously establish one or more electrically conductive signal paths from an interior of a housing to an exterior of the housing. The use of an LCP material provides suitable low permeability characteristics to encapsulate an inert gas atmosphere, such as helium, within the housing while still providing an electrical signal path(s) for one or more signals to pass therethrough.
A variety of effective and cost efficient sealing mechanisms can be employed to seal the interconnects, such as but not limited to epoxy, thermoset, soldering, laser welding and overmolding. The interconnects are also well suited for incorporation into an automated assembly process.
While embodiments have been generally directed to a housing of a data storage device, such are merely illustrative and not limiting to the claimed subject matter. Rather, any number of suitable environments can be utilized as desired.
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and function of various embodiments of the invention, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the particular elements may vary depending on the particular application without departing from the spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
3820150 | Nicolaides | Jun 1974 | A |
4826451 | Cunningham | May 1989 | A |
4870703 | Augeri et al. | Sep 1989 | A |
6053744 | Gray et al. | Apr 2000 | A |
6168459 | Cox et al. | Jan 2001 | B1 |
6270375 | Cox et al. | Aug 2001 | B1 |
6320257 | Jayaraj et al. | Nov 2001 | B1 |
6587310 | Bennin et al. | Jul 2003 | B1 |
6856490 | Rosner et al. | Feb 2005 | B2 |
6867367 | Zimmerman | Mar 2005 | B2 |
6970329 | Oveyssi et al. | Nov 2005 | B1 |
6982480 | Shi | Jan 2006 | B2 |
7249971 | Burke et al. | Jul 2007 | B2 |
7446411 | Condie et al. | Nov 2008 | B2 |
20030020149 | Ogura et al. | Jan 2003 | A1 |
20030081357 | Hong et al. | May 2003 | A1 |
20070251719 | Sturdivant | Nov 2007 | A1 |
20080003493 | Bates | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080316641 A1 | Dec 2008 | US |