HETEROCYCLIC ASPARTYL PROTEASE INHIBITORS

Information

  • Patent Application
  • 20090306047
  • Publication Number
    20090306047
  • Date Filed
    June 08, 2009
    15 years ago
  • Date Published
    December 10, 2009
    15 years ago
Abstract
Disclosed are compounds of the formula I
Description
FIELD OF THE INVENTION

This invention relates to heterocyclic aspartyl protease inhibitors, pharmaceutical compositions comprising said compounds, their use in the treatment of cardiovascular diseases, cognitive and neurodegenerative diseases, and their use as inhibitors of the Human Immunodeficiency Virus, plasmepsins, cathepsin D and protozoal enzymes.


BACKGROUND

Eight human aspartic proteases of the A1 (pepsin-like) family are known to date: pepsin A and C, renin, BACE, BACE 2, Napsin A, cathepsin D in pathological conditions.


The role of renin-angiotensin system (RAS) in regulation of blood pressure and fluid electrolyte has been well established (Oparil, S, et al. N Engl J Med 1974; 291:381-401/446-57). The octapeptide Angiotensin-II, a potent vasoconstrictor and stimulator for release of adrenal aldosterone, was processed from the precursor decapeptide Angiotensin-I, which in turn was processed from angiotensinogen by the renin enzyme. Angiotensin-II was also found to play roles in vascular smooth muscle cell growth, inflammation, reactive oxygen species generation and thrombosis, influence atherogenesis and vascular damage. Clinically, the benefit of interruption of the generation of angiotensin-II through antagonism of conversion of angiotensin-I has been well known and there are a number of ACE inhibitor drugs on the market. The blockade of the earlier conversion of angiotensinogen to angiotensin-I, i.e. the inhibition of renin enzyme, is expected to have similar but not identical effects. Since renin is an aspartyl protease whose only natural substrate is angiotensinogen, it is believed that there would be less frequent adverse effect for controlling high blood pressure and related symptoms regulated by angiotensin-II through its inhibition.


Another protease, Cathespin-D, is involved in lysosomal biogenesis and protein targeting, and may also be involved in antigen processing and presentation of peptide fragments. It has been linked to numerous diseases including, Alzheimers, disease, connective tissue disease, muscular dystrophy and breast cancer.


Alzheimer's disease (AD) is a progressive neurodegenerative disease that is ultimately fatal. Disease progression is associated with gradual loss of cognitive function related to memory, reasoning, orientation and judgment. Behavioral changes including confusion, depression and aggression also manifest as the disease progresses. The cognitive and behavioral dysfunction is believed to result from altered neuronal function and neuronal loss in the hippocampus and cerebral cortex. The currently available AD treatments are palliative, and while they ameliorate the cognitive and behavioral disorders, they do not prevent disease progression. Therefore there is an unmet medical need for AD treatments that halt disease progression.


Pathological hallmarks of AD are the deposition of extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles comprised of abnormally phosphorylated protein tau. Individuals with AD exhibit characteristic Aβ deposits, in brain regions known to be important for memory and cognition. It is believed that Aβ is the fundamental causative agent of neuronal cell loss and dysfunction which is associated with cognitive and behavioral decline. Amyloid plaques consist predominantly of Aβ peptides comprised of 40-42 amino acid residues, which are derived from processing of amyloid precursor protein (APP). APP is processed by multiple distinct protease activities. Aβ peptides result from the cleavage of APP by β-secretase at the position corresponding to the N-terminus of Aβ, and at the C-terminus by γ-secretase activity. APP is also cleaved by α-secretase activity resulting in the secreted, non-amyloidogenic fragment known as soluble APP.


An aspartyl protease known as BACE-1 has been identified as the β-secretase activity responsible for cleavage of APP at the position corresponding to the N-terminus of Aβ peptides.


Accumulated biochemical and genetic evidence supports a central role of Aβ in the etiology of AD. For example, Aβ has been shown to be toxic to neuronal cells in vitro and when injected into rodent brains. Furthermore inherited forms of early-onset AD are known in which well-defined mutations of APP or the presenilins are present. These mutations enhance the production of Aβ and are considered causative of AD.


Since Aβ peptides are formed as a result β-secretase activity, inhibition of BACE-1 should inhibit formation of Aβ peptides. Thus inhibition of BACE-1 is a therapeutic approach to the treatment of AD and other cognitive and neurodegenerative diseases caused by Aβ plaque deposition.


Human immunodeficiency virus (HIV), is the causative agent of acquired immune deficiency syndrome (AIDS). It has been clinically demonstrated that compounds such as indinavir, ritonavir and saquinavir which are inhibitors of the HIV aspartyl protease result in lowering of viral load. As such, the compounds described herein would be expected to be useful for the treatment of AIDS. Traditionally, a major target for researchers has been HIV-1 protease, an aspartyl protease related to renin.


In addition, Human T-cell leukemia virus type I (HTLV-I) is a human retrovirus that has been clinically associated with adult T-cell leukemia and other chronic diseases. Like other retroviruses, HTLV-I requires an aspartyl protease to process viral precursor proteins, which produce mature virions. This makes the protease an attractive target for inhibitor design. Moore, et al. Purification of HTLV-I Protease and Synthesis of Inhibitors for the treatment of HTLV-I Infection 55th Southeast Regional Meeting of the American Chemical Society, Atlanta, Ga., US Nov. 16-19, 2003 (2003), 1073. CODEN; 69EUCH Conference, AN 2004:137641 CAPLUS.


Plasmepsins are essential aspartyl protease enzymes of the malarial parasite. Compounds for the inhibition of aspartyl proteases plasmepsins, particularly I, II, IV and HAP, are in development for the treatment of malaria. Freire, et al. WO 2002074719. Na Byoung-Kuk, et al. Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates Korean Journal of Prasitology (2004 June), 42(2) 61-6. Journal code: 9435800 Furthermore, compounds used to target aspartyl proteases plasmepsins (e.g. I, II, IV and HAP), have been used to kill malarial parasites, thus treating patients thus afflicted. Certain compounds also exhibited inhibitory activity against Cathespin D.


SUMMARY OF THE INVENTION

The present invention relates to compounds having the structural formula I







or a stereoisomer, tautomer, or pharmaceutically acceptable salt or solvate thereof,


wherein


W is a bond, —C(═S)—, —S(O)—, —S(O)2—, —C(═O)—, —O—, —C(R6)(R7)—, —N(R5)— or —C(═N(R5))—;


X is —O—, —N(R5)— or —C(R6)(R7)—; provided that when X is —O—, U is not —O—, —S(O)—, —S(O)2—, —C(═O)— or —C(═NR5)—;


U is a bond, —S(O)—, —S(O)2—, —C(O)—, —O—, —P(O)(OR15)—, —C(═NR5)—, —(C(R6)(R7))b— or —N(R5)—; wherein b is 1 or 2; provided that when W is —S(O)—, —S(O)2—, —O—, or —N(R5)—, U is not —S(O)—, —S(O)2—, —O—, or —N(R5)—; provided that when X is —N(R5)— and W is —S(O)—, —S(O)2—, —O—, or —N(R5)—, then U is not a bond;


R1, R2 and R5 are independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylcycloalkyl, —OR5, —CN, —C(O)R8, —C(O)OR9, —S(O)R10, —S(O)2R10, —C(O)N(R11)(R12), —S(O)N(R11)(R12), —S(O)2N(R11)(R12), —NO2, —N═C(R8)2 and —N(R8)2, provided that R1 and R5 are not both selected from —NO2, —N═C(R8)2 and —N(R8)2;


R3, R4, R6 and R7 are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CH2—O—Si(R9)(R10)(R19), —SH, —CN, —OR9, —C(O)R8, —C(O)OR9, —C(O)N(R11)(R12), —SR19, —S(O)N(R11)(R12), —S(O)2N(R11)(R12), —N(R11)(R12), —N(R11)C(O)R8, —N(R11)S(O)R10, —N(R11)C(O)N(R12)(R13), —N(R11)C(O)OR9 and —C(═NOH)R8; provided that when U is —O— or —N(R5)—, then R3, R4, R6 and R7 are not halo, —SH, —OR9, —SR19, —S(O)N(R11)(R12), —S(O)2N(R11)(R12), —N(R11)(R12), —N(R11)C(O)R8, —N(R11)S(O)R10, —N(R11)C(O)N(R12)(R13), or —N(R11)C(O)OR9; provided that when W is —O— or —N(R5)—, then R3 and R4 are not halo, —SH, —OR9, —SR19, —S(O)N(R11)(R12), —S(O)2N(R11)(R12), —N(R11)(R12), —N(R11)C(O)R8, —N(R11)S(O)R10, —N(R11)C(O)N(R12)(R13), or —N(R11)C(O)OR9; and provided that when X is —N(R5)—, W is —C(O)— and U is a bond, R3, R4, R6 and R7 are not halo, —CN, —SH, —OR9, —SR19, —S(O)N(R11)(R12) or —S(O)2N(R11)(R12); or R3, R4, R6 and R7, together with the carbon to which they are attached, form a 3-7 membered cycloalkyl group optionally substituted by R14 or a 3-7 membered cycloalkylether optionally substituted by R14


or R3 and R4 or R6 and R7 together with the carbon to which they are attached, are combined to form multicyclic groups such as







wherein M is —CH2—, S, —N(R19)— or O, A and B are independently aryl or heteroaryl and q is 0, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond; and with the proviso that when R3, R4, R6 and R7 form said multicyclic groups







then adjacent R3 and R4 or R6 and R7 groups cannot be combined to form said multicyclic groups;


R8 is independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —OR15, —N(R15)(R16), —N(R15)C(O)R16, —N(R15)S(O)R16, —N(R15)S(O)2R16, —N(R15)S(O)2N(R16)(R17), —N(R15)S(O)N(R16)(R17), —N(R15)C(O)N(R16)(R17) and —N(R15)C(O)OR16;


R9 is independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl and heteroarylalkyl;


R10 is independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl and —N(R15)(R16);


R11, R12 and R13 are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —C(O)R8, —C(O)OR9, —S(O)R10, —S(O)2R10, —C(O)N(R15)(R16), —S(O)N(R15)(R16), —S(O)2N(R15)(R16) and CN;


R14 is 1-5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CN, —OR15, —C(O)R15, —C(O)OR15, —C(O)N(R15)(R16), —SR15, —S(O)N(R15)(R16), —S(O)2N(R15)(R16), —C(═NR15)R16, —P(O)(OR15)(OR16), —N(R15)(R16), —N(R15)C(O)R16, —N(R15)S(O)R16, —N(R15)S(O)2R16, —N(R15)S(O)2N(R16)(R17), —N(R15)S(O)N(R16)(R17), —N(R15)C(O)N(R16)(R17) and —N(R15)C(O)OR16;


R15, R16 and R17 are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylcycloalkyl, arylheterocycloalkyl, R18-alkyl, R18-cycloalkyl, R18-cycloalkylalkyl, R18-heterocycloalkyl, R18-heterocycloalkylalkyl, R18-aryl, R18-arylalkyl, R18-heteroaryl and R18-heteroarylalkyl; or


R15, R16 and R17 are







wherein R23 numbers 0 to 5 substituents, m is 0 to 6 and n is 1 to 5;


R18 is 1-5 substituents independently selected from the group consisting of alkyl, alkenyl, aryl, arylalkyl, arylalkenyl, arylalkynyl, —NO2, halo, heteroaryl, HO-alkyoxyalkyl, —CF3, —CN, alkyl-CN, —C(O)R19, —C(O)OH, —C(O)OR19, —C(O)NHR20, —C(O)NH2, —C(O)NH2—C(O)N(alkyl)2, —C(O)N(alkyl)(aryl), —C(O)N(alkyl)(heteroaryl), —SR19, —S(O)2R20, —S(O)NH2, —S(O)NH(alkyl), —S(O)N(alkyl)(alkyl), —S(O)NH(aryl), —S(O)2NH2, —S(O)2NHR19, —S(O)2NH(heterocycloalkyl), —S(O)2N(alkyl)2, —S(O)2N (alkyl)(aryl), —OCF3, —OH, —OR20, —O-heterocycloalkyl, —O-cycloalkylalkyl, —O-heterocycloalkylalkyl, —NH2, —NHR20, —N(alkyl)2, —N(arylalkyl)2, —N(arylalkyl)-(heteroarylalkyl), —NHC(O)R20, —NHC(O)NH2, —NHC(O)NH(alkyl), —NHC(O)N(alkyl)(alkyl), —N(alkyl)C(O)NH(alkyl), —N(alkyl)C(O)N(alkyl)(alkyl), —NHS(O)2R20, —NHS(O)2NH(alkyl), —NHS(O)2N(alkyl)(alkyl), —N(alkyl)S(O)2NH(alkyl) and —N(alkyl)S(O)2N(alkyl)(alkyl);


or two R18 moieties on adjacent carbons can be linked together to form







R19 is alkyl, cycloalkyl, aryl, arylalkyl or heteroarylalkyl;


R20 is alkyl, cycloalkyl, aryl, halo substituted aryl, arylalkyl, heteroaryl or heteroarylalkyl;


and wherein each of the alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkenyl and alkynyl groups in R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11R12, R13 and R14 are independently unsubstituted or substituted by 1 to 5 R21 groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CN, —OR15, —C(O)R15, —C(O)OR15, —C(O)N(R15)(R16), —SR15, —S(O)N(R15)(R16), —CH(R15)(R16), —S(O)2N(R15)(R16), —C(═NOR15)R16—P(O)(OR15)(OR16), —N(R15)(R16), -alkyl-N(R15)(R16), —N(R15)C(O)R16, —CH2—N(R15)C(O)R16, —CH2—N(R15)C(O)N(R16)(R17), —CH2—R15; —CH2N(R15)(R16), —N(R15)S(O)R16, —N(R15)S(O)2R16, —CH2—N(R15)S(O)2R16, —N(R15)S(O)2N(R16)(R17), —N(R15)S(O)N(R16)(R17), —N(R15)C(O)N(R16)(R17), —CH2—N(R15)C(O)N(R16)(R17), —N(R15)C(O)OR16, —CH2—N(R15)C(O)OR16, —S(O)R15, ═NOR15, —N3, —NO2 and —S(O)2R15; and wherein each of the alkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkenyl and alkynyl groups in R21 are independently unsubstituted or substituted by 1 to 5 R22 groups independently selected from the group consisting of alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, heteroaryl, halo, —CF3, —CN, —OR15, —C(O)R15, —C(O)OR15, -alkyl-C(O)OR15, C(O)N(R15)(R16), —SR15, —S(O)N(R15)(R16), —S(O)2N(R15)(R16), —C(═NOR15)R16, —P(O)(OR5)(R16), —N(R15)(R16), -alkyl-N(R15)(R16), —N(R15)C(O)R16, —CH2—N(R15)C(O)R16, —N(R15)S(O)R16, —N(R15)S(O)2R16, —CH2—N(R15)S(O)2R16, —N(R15)S(O)2N(R16)(R17), —N(R15)S(O)N(R16)(R17), —N(R15)C(O)N(R16)(R17), —CH2—N(R15)C(O)N(R16)(R17), —N(R15)C(O)OR16, —CH2—N(R15)C(O)OR16—N3, ═NOR15, —NO2, —S(O)R15 and —S(O)2R15;


or two R21 or two R22 moieties on adjacent carbons can be linked together to form







and when R21 or R22 are selected from the group consisting of —C(═NOR15)R16, —N(R15)C(O)R16, —CH2—N(R15)C(O)R16, —N(R15)S(O)R16, —N(R15)S(O)2R16, —CH2—N(R15)S(O)2R16, —N(R15)S(O)2N(R16)(R17), —N(R15)S(O)N(R16)(R17), —N(R15)C(O)N(R16)(R17), —CH2—N(R15)C(O)N(R16)(R17), —N(R15)C(O)OR16 and —CH2—N(R15)C(O)OR16, R15 and R16 together can be a C2 to C4 chain wherein, optionally, one, two or three ring carbons can be replaced by —C(O)— or —N(H)— and R15 and R16, together with the atoms to which they are attached, form a 5 to 7 membered ring, optionally substituted by R23;


R23 is 1 to 5 groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CN, —OR24, —C(O)R24, —C(O)OR24, —C(O)N(R24)(R25), —SR24, —S(O)N(R24)(R25), —S(O)2N(R24)(R25), —C(═NOR24)R25, —P(O)(OR24)(OR25), —N(R24)(R25), -alkyl-N(R24)(R25), —N(R24)C(O)R25, —CH2—N(R24)C(O)R25, —N(R24)S(O)R25, —N(R24)S(O)2R25, —CH2—N(R24)S(O)2R25, —N(R24)S(O)2N(R25)(R26), —N(R24)S(O)N(R25)(R26), —N(R24)C(O)N(R25)(R26), —CH2—N(R24)C(O)N(R25)(R26), —N(R24)C(O)OR25, —CH2—N(R24)C(O)OR25, —S(O)R24 and —S(O)2R24; and wherein each of the alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkenyl and alkynyl groups in R23 are independently unsubstituted or substituted by 1 to 5 R27 groups independently selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, halo, —CF3, —CN, —OR24, —C(O)R24, —C(O)OR24, alkyl-C(O)OR24, C(O)N(R24)(R25), —SR24, —S(O)N(R24)(R25), —S(O)2N(R24)(R25), —C(═NOR24)R25, —P(O)(OR24)(OR25), —N(R24)(R25), -alkyl-N(R24)(R25), —N(R24)C(O)R25, —CH2—N(R24)C(O)R25, —N(R24)S(O)R25, —N(R24)S(O)2R25, —CH2—N(R24)S(O)2R25, —N(R24)S(O)2N(R25)(R26), —N(R24)S(O)N(R25)(R26), —N(R24)C(O)N(R25)(R26), —CH2—N(R24)C(O)N(R25)(R26), —N(R24)C(O)OR25, —CH2—N(R24)C(O)OR25, —S(O)R24 and —S(O)2R24;


R24, R25 and R26 are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylcycloalkyl, R27-alkyl, R27-cycloalkyl, R27-cycloalkylalkyl, R27-heterocycloalkyl, R27-heterocycloalkylalkyl, R27-aryl, R27-arylalkyl, R27-heteroaryl and R27-heteroarylalkyl;


R27 is 1-5 substituents independently selected from the group consisting of alkyl, aryl, arylalkyl, —NO2, halo, —CF3, —CN, alkyl-CN, —C(O)R28, —C(O)OH, —C(O)OR28, —C(O)NHR29, —C(O)N(alkyl)2, —C(O)N(alkyl)(aryl), —C(O)N(alkyl)(heteroaryl), —SR28, —S(O)2R29, —S(O)NH2, —S(O)NH(alkyl), —S(O)N(alkyl)(alkyl), —S(O)NH(aryl), —S(O)2NH2, —S(O)2NHR28, —S(O)2NH(aryl), —S(O)2NH(heterocycloalkyl), —S(O)2N(alkyl)2, —S(O)2N(alkyl)(aryl), —OH, —OR29, —O-heterocycloalkyl, —O-cycloalkylalkyl, —O-heterocycloalkylalkyl, —NH2, —NHR29, —N(alkyl)2, —N(arylalkyl)2, —N(arylalkyl)(heteroarylalkyl), —NHC(O)R29, —NHC(O)NH2, —NHC(O)NH(alkyl), —NHC(O)N(alkyl)(alkyl), —N(alkyl)C(O)NH(alkyl), —N(alkyl)C(O)N(alkyl)(alkyl), —NHS(O)2R29, —NHS(O)2NH(alkyl), —NHS(O)2N(alkyl)(alkyl), —N(alkyl)S(O)2NH(alkyl) and —N(alkyl)S(O)2N(alkyl)(alkyl);


R28 is alkyl, cycloalkyl, arylalkyl or heteroarylalkyl; and


R29 is alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl or heteroarylalkyl;


provided that when W is —C(O)— and U is a bond, R1 is not optionally substituted phenyl, and that when U is —C(O)— and W is a bond, R5 is not optionally substituted phenyl;


provided that neither R1 nor R5 is —C(O)-alkyl-azetidinone or alkyl di-substituted with (—COOR15 or —C(O)N(R15)(R16)) and (—N(R15)(R16), —N(R15)C(O)R16, —N(R15)S(O)R16, —N(R15)S(O)2R16, —N(R15)S(O)2N(R16)(R17), —N(R15)S(O)N(R16)(R17), —N(R15)C(O)N(R16)(R17), or —N(R15)C(O)OR16);


provided that when R1 is methyl, X is —N(R5)—, R2 is H, W is —C(O)— and U is a bond, (R3, R4) is not (H, H), (phenyl, phenyl), (H, phenyl), (benzyl, H), (benzyl, phenyl), (i-butyl, H), (i-butyl, phenyl), (OH-phenyl, phenyl), (halo-phenyl, phenyl), or (CH3O-phenyl, NO2-phenyl); and when W is a bond and U is —C(O)—, (R3, R4) is not (H, H), (phenyl, phenyl), (H, phenyl), (benzyl, H), (benzyl, phenyl), (i-butyl, H), (i-butyl, phenyl), (OH-phenyl, phenyl), (halo-phenyl, phenyl), or (CH3O-phenyl, NO2-phenyl);


provided that when X is —N(R5)—, R1 and R5 are each H, W is —C(O)— and U is a bond, (R3, R4) is not (optionally substituted phenyl, optionally substituted benzyl), (optionally substituted phenyl, heteroarylalkyl) or (heteroaryl, heteroarylalkyl);


provided that when U is a bond, W is —C(O)—, and R3 and R4 form a ring with the carbon to which they are attached, R1 is not 2-CF3-3-CN-phenyl;


provided that when X is —N(R5)—, U is —O— and W is a bond or —C(R6)(R7)—, (R3, R4) is not (H, —NHC(O)-alkyl-heteroaryl) or (H, alkyl-NHC(O)-alkyl-heteroaryl); and


provided that when X is —N(R5)—, R1 and R5 are not -alkylaryl-aryl-SO2—N(R15)(R16) wherein R15 is H and R16 is heteroaryl;


provided that when R1 is R21-aryl or R21-arylalkyl, wherein R21 is —OCF3, —S(O)CF3, —S(O)2CF3, —S(O)alkyl, —S(O)2alkyl, —S(O)2CHF2, —S(O)2CF2CF3, —OCF2CHF2, —OCHF2, —OCH2CF3, —SF5 or —S(O)2NR15R16;


wherein R15 and R16 are independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, R18-alkyl, R18-cycloalkyl, R18-heterocycloalkyl, R18-aryl and R18-heteroaryl; U is a bond or —CH2; and X is —N(R5)—; then R5 is H;


provided that when U is a bond,


R3 and R4 are alkyl,







where R21 is halo, —CN, alkyl, alkoxy, haloalkyl or haloalkoxy, or R3 and R4, together with the carbon to which they are attached, form a 3-7 membered cycloalkyl group,


and R1 is







where a is 0 to 6 and R22 is alkyl, alkoxy, halo, —CN, —OH, —NO2 or haloalkyl;


then R21a is not H, —C(O)2R15, wherein R15 is selected from the group consisting of alkyl, cycloalkyl and alkyl substituted with phenyl, alkyl or alkyl-R22, wherein R22 is selected from the group consisting of


phenyl,


phenyl substituted with alkyl,


and







wherein R22 is selected from the group consisting of H, methoxy, nitro, oxo, —OH, halo and alkyl,







In another aspect, the invention relates to a pharmaceutical composition comprising at least one compound of formula I and a pharmaceutically acceptable carrier.


In another aspect, the invention comprises the method of inhibiting aspartyl protease comprising administering at least one compound of formula I to a patient in need of such treatment.


More specifically, the invention comprises: the method of treating a cardiovascular disease such as hypertension, renal failure, or a disease modulated by renin inhibition; the method of treating Human Immunodeficiency Virus; the method of treating a cognitive or neurodegenerative disease such as Alzheimer's Disease; the method of inhibiting plasmepins I and II for treatment of malaria; the method of inhibiting Cathepsin D for the treatment of Alzheimer's Disease, breast cancer, and ovarian cancer; and the method of inhibiting protozoal enzymes, for example inhibition of plasmodium falciparnum, for the treatment of fungal infections. Said method of treatment comprise administering at least one compound of formula I to a patient in need of such treatment. In particular, the invention comprises the method of treating Alzheimer's disease comprising administering at least one compound of formula I to a patient in need of such treatment.


In another aspect, the invention comprises the method of treating Alzheimer's disease comprising administering to a patient I need of such treatment a combination of at least one compound of formula I and a cholinesterase inhibitor or a muscarinic antagonist.


In a final aspect, the invention relates to a kit comprising in separate containers in a single package pharmaceutical compositions for use in combination, in which one container comprises a compound of formula I in a pharmaceutically acceptable carrier and a second container comprises a cholinesterase inhibitor or a muscarinic antagonist in a pharmaceutically acceptable carrier, the combined quantities being an effective amount to treat a cognitive disease or neurodegenerative disease such as Alzheimer's disease.







DETAILED DESCRIPTION

Compounds of formula I wherein X, W and U are as defined above include the following independently preferred structures:










In compounds of formulas IA to IF, U is preferably a bond or —C(R6)(R7)—. In compounds of formula IG and IH, U is preferably —C(O)—.


It will be understood that since the definition of R1 is the same as the definition of R5, when X is —N(R5)—, compounds of formula I wherein W is a bond and U is a bond, —S(O)—, —S(O)2—, —C(O)—, —O—, —C(R6)(R7)— or —N(R5)— are equivalent to compounds of formula I wherein U is a bond and W is a bond, —S(O)—, —S(O)2—, —C(O)—, —O—, —C(R6)(R7)— or —N(R5)—.


More preferred compounds of the invention are those of formula IB wherein U is a bond or those of formula IB wherein U is —C(R6)(R7)—.


Another group of preferred compounds of formula I is that wherein R2 is H.


R3, R4, R6 and R7 are preferably selected from the group consisting of alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CH2—O—Si(R9)(R10)(R19), —SH, —CN, —OR9, —C(O)R8, —C(O)OR9, —C(O)N(R11)(R12), —SR19, —S(O)N(R11)(R12), —S(O)2N(R11)(R12), —N(R11)(R12), —N(R11)C(O)R8, —N(R11)S(O)R10, —N(R11)C(O)N(R12)(R13), —N(R11)C(O)OR9 and —C(═NOH)R8.


R3, R4, R6 and R7 are preferably selected from the group consisting of aryl, heteroaryl, heteroarylalkyl, arylalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylalkyl, alkyl and cycloalkylalkyl.


In a group of preferred compounds

    • U is a bond or —C(O)—;
    • W is a bond or —C(O)—;
    • X is —N(R5)—;
    • R1 is H, alkyl, R21-alkyl, arylalkyl, R21-arylalkyl, cycloalkylalkyl, R21-cycloalkylalkyl, heterocycloalkyalkyl or R21-heterocycloalkylalkyl,
    • R2 is H;
    • R3 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R21-alkyl, R21-cycloalkylalkyl, R21-cycloalkyl, R21-aryl or R21-arylalkyl;
    • R4 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R21-alkyl, R21-cycloalkylalkyl, R21-cycloalkyl, R21-aryl or R21-arylalkyl;
    • R5 is H, alkyl, R21-alkyl, arylalkyl, R21-arylalkyl, cycloalkylalkyl, R21-cycloalkylalkyl, heterocycloalkyalkyl or R21-heterocycloalkylalkyl;
    • R6 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R21-alkyl, R21-cycloalkylalkyl, R21-cycloalkyl, R21-aryl or R21-arylalkyl;
    • R7 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R21-alkyl, R21-cycloalkylalkyl, R21-cycloalkyl, R21-aryl or R21-arylalkyl;
    • R15, R16 and R17 is H, R18-alkyl, alkyl or









    • R21 is alkyl, aryl, halo, —OR15, —NO2, —C(O)R15, —CH2—N(R15)C(O)N(R16)(R17) or —CH(R15)(R16);

    • n is 1;

    • m is 1;

    • R18 is —OR20

    • R20 is aryl;


      and

    • R23 is alkyl.





In a group of preferred compounds

    • R3, R4, R6 and R7 are







and

    • R1 and R5 is H, CH3,







In an additional group of preferred compounds;

    • U is a bond or —C(O)—;
    • W is a bond or —C(O)—;
    • X is —N(R5)—;
    • R1 is H, alkyl, R21-alkyl, arylalkyl, R21-arylalkyl, cycloalkylalkyl, R21-cycloalkylalkyl, heterocycloalkyalkyl or R21-heterocycloalkylalkyl,
    • R2 is H;
    • R3 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R21-alkyl, R21-cycloalkylalkyl, R21-cycloalkyl, R21-aryl, R21-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R21-heteroarylalkyl, R21-heteroaryl, R21-heterocycloalkyl or R21-heterocycloalkylalkyl;
    • R4 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R21-alkyl, R21-cycloalkylalkyl, R21-cycloalkyl, R21-aryl, R21-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R21-heteroarylalkyl, R21-heteroaryl, R21-heterocycloalkyl or R21-heterocycloalkylalkyl;
    • R5 is H, alkyl, R21-alkyl, arylalkyl, R21-arylalkyl, cycloalkylalkyl, R21-cycloalkylalkyl, heterocycloalkyalkyl or R21-heterocycloalkylalkyl;
    • R6 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R21-alkyl, R21-cycloalkylalkyl, R21-cycloalkyl, R21-aryl, R21-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R21-heteroarylalkyl, R21-heteroaryl, R21-heterocycloalkyl or R21-heterocycloalkylalkyl;
    • R7 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R21-alkyl, R21-cycloalkylalkyl, R21-cycloalkyl, R21-aryl, R21-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R21-heteroarylalkyl, R21-heteroaryl, R21-heterocycloalkyl or R21-heterocycloalkylalkyl;
    • R15, R16 and R17 is H, cycloalkyl, cycloalkylalkyl, R18-alkyl, alkyl, aryl, R18-aryl,







R18-arylalkyl, arylalkyl,

    • n is 1 or 2;
    • m is 0 or 1;
    • R18 is —OR20 or halo;
    • R20 is aryl or halo substituted aryl;
    • R21 is alkyl, aryl, heteroaryl, R22-alkyl, R22-aryl, R22-heteroaryl, halo, heterocycloalkyl, —N(R15)(R16), —OR15, —NO2, —C(O)R15, —N(R15)C(O)R16, —N(R15)S(O)2R16, —CH2—N(R15)C(O)N(R16)(R17), —N(R15)C(O)N(R16)(R17) or —CH(R15)(R16);
    • R22 is —OR15 or halo


      and
    • R23 is H or alkyl.


As used above, and throughout the specification, the following terms, unless otherwise indicated, shall be understood to have the following meanings:


“Patient” includes both human and animals.


“Mammal” means humans and other mammalian animals.


“Alkyl” means an aliphatic hydrocarbon group which may be straight or branched and comprising about 1 to about 20 carbon atoms in the chain. Preferred alkyl groups contain about 1 to about 12 carbon atoms in the chain. More preferred alkyl groups contain about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain. “Lower alkyl” means a group having about 1 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, heptyl, nonyl and decyl. R32-substituted alkyl groups include fluoromethyl, trifluoromethyl and cyclopropylmethyl.


“Alkenyl” means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkenyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkenyl chain. “Lower alkenyl” means about 2 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl.


“Alkynyl” means an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkynyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 4 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkynyl chain. “Lower alkynyl” means about 2 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkynyl groups include ethynyl, propynyl, 2-butynyl, 3-methylbutynyl, n-pentynyl, and decynyl.


“Aryl” means an aromatic monocyclic or multicyclic ring system comprising about 6 to about 14 carbon atoms, preferably about 6 to about 10 carbon atoms. The aryl group can be optionally substituted with one or more substituents (e.g., R18, R21, R22, etc.) which may be the same or different, and are as defined herein or two substituents on adjacent carbons can be linked together to form







Non-limiting examples of suitable aryl groups include phenyl and naphthyl.


“Heteroaryl” means an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one to four of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heteroaryls contain about 5 to about 6 ring atoms. The “heteroaryl” can be optionally substituted by one or more R21 substituents which may be the same or different, and are as defined herein. The prefix aza, oxa or thia before the heteroaryl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom. A nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide. Non-limiting examples of suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, imidazo[1,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, 1,2,4-triazinyl, benzothiazolyl and the like.


“Cycloalkyl” means a non-aromatic mono- or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms. Preferred cycloalkyl rings contain about 5 to about 7 ring atoms. The cycloalkyl can be optionally substituted with one or more R21 substituents which may be the same or different, and are as defined above. Non-limiting examples of suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non-limiting examples of suitable multicyclic cycloalkyls include 1-decalin, norbornyl, adamantyl and the like. Further non-limiting examples of cycloalkyl include the following







“Cycloalkylether” means a non-aromatic ring of 3 to 7 members comprising an oxygen atom and 2 to 7 carbon atoms. Ring carbon atoms can be substituted, provided that substituents adjacent to the ring oxygen do not include halo or substituents joined to the ring through an oxygen, nitrogen or sulfur atom.


“Cycloalkenyl” means a non-aromatic mono or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms which contains at least one carbon-carbon double bond. The cycloalkenyl ring can be optionally substituted with one or more R21 substituents which may be the same or different, and are as defined above. Preferred cycloalkenyl rings contain about 5 to about 7 ring atoms. Non-limiting examples of suitable monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like. Non-limiting example of a suitable multicyclic cycloalkenyl is norbornylenyl.


“Heterocyclenyl” means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon-nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclenyl rings contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The heterocyclenyl can be optionally substituted by one or more ring system substituents, wherein “ring system substituent” is as defined above. The nitrogen or sulfur atom of the heterocyclenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of suitable monocyclic azaheterocyclenyl groups include 1,2,3,4-tetrahydropyridine, 1,2-dihydropyridyl, 1,4-dihydropyridyl, 1,2,3,6-tetrahydropyridine, 1,4,5,6-tetrahydropyrimidine, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, and the like. Non-limiting examples of suitable oxaheterocyclenyl groups include 3,4-dihydro-2H-pyran, dihydrofuranyl, fluorodihydrofuranyl, and the like. Non-limiting example of a suitable multicyclic oxaheterocyclenyl group is 7-oxabicyclo[2.2.1]heptenyl. Non-limiting examples of suitable monocyclic thiaheterocyclenyl rings include dihydrothiophenyl, dihydrothiopyranyl, and the like.


“Halo” means fluoro, chloro, bromo, or iodo groups. Preferred are fluoro, chloro or bromo, and more preferred are fluoro and chloro.


“Haloalkyl” means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above.


“Heterocyclyl” (or heterocycloalkyl) means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which 1-3, preferably 1 or 2 of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclyls contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The heterocyclyl can be optionally substituted by one or more R21 substituents which may be the same or different, and are as defined herein. The nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of suitable monocyclic heterocyclyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,3-dioxolanyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.


“Arylalkyl” means an aryl-alkyl-group in which the aryl and alkyl are as previously described. Preferred aralkyls comprise a lower alkyl group. Non-limiting examples of suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylmethyl. The bond to the parent moiety is through the alkyl.


“Arylcycloalkyl” means a group derived from a fused aryl and cycloalkyl as defined herein. Preferred arylcycloalkyls are those wherein aryl is phenyl and cycloalkyl consists of about 5 to about 6 ring atoms. The arylcycloalkyl can be optionally substituted by 1-5 R21 substituents. Non-limiting examples of suitable arylcycloalkyls include indanyl and 1,2,3,4-tetrahydronaphthyl and the like. The bond to the parent moiety is through a non-aromatic carbon atom.


“Arylheterocycloalkyl” means a group derived from a fused aryl and heterocycloalkyl as defined herein. Preferred arylcycloalkyls are those wherein aryl is phenyl and heterocycloalkyl consists of about 5 to about 6 ring atoms. The arylheterocycloalkyl can be optionally substituted by 1-5 R21 substituents. Non-limiting examples of suitable arylheterocycloalkyls include







The bond to the parent moiety is through a non-aromatic carbon atom.


Similarly, “heteroarylalkyl” “cycloalkylalkyl” and “heterocycloalkylalkyl” mean a heteroaryl-, cycloalkyl- or heterocycloalkyl-alkyl-group in which the heteroaryl, cycloalkyl, heterocycloalkyl and alkyl are as previously described. Preferred groups contain a lower alkyl group. The bond to the parent moiety is through the alkyl.


“Acyl” means an H—C(O)—, alkyl-C(O)—, alkenyl-C(O)—, alkynyl-C(O)— or cycloalkyl-C(O)— group in which the various groups are as previously described. The bond to the parent moiety is through the carbonyl. Preferred acyls contain a lower alkyl. Non-limiting examples of suitable acyl groups include formyl, acetyl, propanoyl, 2-methylpropanoyl, butanoyl and cyclohexanoyl.


“Alkoxy” means an alkyl-O— group in which the alkyl group is as previously described. Non-limiting examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and heptoxy. The bond to the parent moiety is through the ether oxygen.


“Alkyoxyalkyl” means a group derived from an alkoxy and alkyl as defined herein. The bond to the parent moiety is through the alkyl.


“Arylalkenyl” means a group derived from an aryl and alkenyl as defined herein. Preferred arylalkenyls are those wherein aryl is phenyl and the alkenyl consists of about 3 to about 6 atoms. The arylalkenyl can be optionally substituted by one or more R27 substituents. The bond to the parent moiety is through a non-aromatic carbon atom.


“Arylalkynyl” means a group derived from a aryl and alkenyl as defined herein. Preferred arylalkynyls are those wherein aryl is phenyl and the alkynyl consists of about 3 to about 6 atoms. The arylalkynyl can be optionally substituted by one or more R27 substituents. The bond to the parent moiety is through a non-aromatic carbon atom.


The suffix “ene” on alkyl, aryl, heterocycloalkyl, etc. indicates a divalent moiety, e.g., —CH2CH2— is ethylene, and







is para-phenylene.


The term “optionally substituted” means optional substitution with the specified groups, radicals or moieties, in available position or positions.


Substitution on a cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, or heteroarylalkyl moiety includes substitution on the ring portion and/or on the alkyl portion of the group.


When a variable appears more than once in a group, e.g., R8 in —N(R8)2, or a variable appears more than once in the structure of formula I, e.g., R15 may appear in both R1 and R3, the variables can be the same or different.


With reference to the number of moieties (e.g., substituents, groups or rings) in a compound, unless otherwise defined, the phrases “one or more” and “at least one” mean that there can be as many moieties as chemically permitted, and the determination of the maximum number of such moieties is well within the knowledge of those skilled in the art. With respect to the compositions and methods comprising the use of “at least one compound of formula I,” one to three compounds of formula I can be administered at the same time, preferably one.


As used herein, the term “composition” is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.


The wavy line as a bond generally indicates a mixture of, or either of, the possible isomers, e.g., containing (R)- and (S)-stereochemistry. For example,







means containing both







Lines drawn into the ring systems, such as, for example:







indicate that the indicated line (bond) may be attached to any of the substitutable ring carbon atoms.


As well known in the art, a bond drawn from a particular atom wherein no moiety is depicted at the terminal end of the bond indicates a methyl group bound through that bond to the atom, unless stated otherwise. For example:







It should also be noted that any heteroatom with unsatisfied valences in the text, schemes, examples, structural formulae, and any Tables herein is assumed to have the hydrogen atom or atoms to satisfy the valences.


Those skilled in the art will recognize that certain compounds of formula I are tautomeric, and all such tautomeric forms are contemplated herein as part of the present invention. For example, a compound wherein X is —N(R5)— and R1 and R5 are each H can be represented by any of the following structures:







When R21 and R22, are, for example, —N(R15)C(O)N(R16)(R17) and R15 and R16 form a ring, the moiety formed, is, for example,







Prodrugs and solvates of the compounds of the invention are also contemplated herein. The term “prodrug”, as employed herein, denotes a compound that is a drug precursor which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of formula I or a salt and/or solvate thereof. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) Volume 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press, both of which are incorporated herein by reference thereto.


“Solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. “Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like. “Hydrate” is a solvate wherein the solvent molecule is H2O.


“Effective amount” or “therapeutically effective amount” is meant to describe an amount of compound or a composition of the present invention effective in inhibiting aspartyl protease and/or inhibiting BACE-1 and thus producing the desired therapeutic effect in a suitable patient.


The compounds of formula I form salts which are also within the scope of this invention. Reference to a compound of formula I herein is understood to include reference to salts thereof, unless otherwise indicated. The term “salt(s)”, as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a compound of formula I contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions (“inner salts”) may be formed and are included within the term “salt(s)” as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful. Salts of the compounds of the formula I may be formed, for example, by reacting a compound of formula I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization. Acids (and bases) which are generally considered suitable for the formation of pharmaceutically useful salts from basic (or acidic) pharmaceutical compounds are discussed, for example, by S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; in The Orange Book (Food & Drug Administration, Washington, D.C. on their website); and P. Heinrich Stahl, Camille G. Wermuth (Eds.), Handbook of Pharmaceutical Salts: Properties, Selection, and Use, (2002) Int'l. Union of Pure and Applied Chemistry, pp. 330-331. These disclosures are incorporated herein by reference thereto.


Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, methyl sulfates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pamoates, pectinates, persulfates, 3-phenylpropionates, phosphates, picrates, pivalates, propionates, salicylates, succinates, sulfates, sulfonates (such as those mentioned herein), tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) undecanoates, and the like.


Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, aluminum salts, zinc salts, salts with organic bases (for example, organic amines) such as benzathines, diethylamine, dicyclohexylamines, hydrabamines (formed with N,N-bis(dehydroabietyl)ethylenediamine), N-methyl-D-glucamines, N-methyl-D-glucamides, t-butyl amines, piperazine, phenylcyclohexylamine, choline, tromethamine, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g. decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.


All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.


All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates and prodrugs of the compounds as well as the salts and solvates of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention. Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. The use of the terms “salt”, “solvate” “prodrug” and the like, is intended to equally apply to the salt, solvate and prodrug of enantiomers, stereoisomers, rotamers, tautomers, racemates or prodrugs of the inventive compounds.


Polymorphic forms of the compounds of formula I, and of the salts, solvates and prodrugs of the compounds of formula I, are intended to be included in the present invention


Compounds of formula I can be made using procedures known in the art. Preparative methods for preparing starting materials and compounds of formula I are show below as general reaction schemes (Method A, Method B, etc.) followed by specific procedures, but those skilled in the art will recognize that other procedures can also be suitable. In the Schemes and in the Examples below, the following abbreviations are used:


methyl: Me; ethyl: Et; propyl: Pr; butyl: Bu; benzyl: Bn; tertiary butyloxycarbonyl: Boc or BOC


high pressure liquid chromatography: HPLC


liquid chromatography mass spectroscopy: LCMS


room temperature: RT or rt


day: d; hour: h; minute: min


retention time: Rt


microwave: μW


saturated: sat.; anhydrous: anhyd.


1-hydroxybenzotriazole: HOBt


1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride: EDCl


ethyl acetate: EtOAc


Benzyloxycarbonyl: CBZ


[1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2] octane bis(tetrafluoro-borate)]: Selectfluor


1,8-diazabicyclo[5,4,0]undec-7-ene: DBU


tetrahydrofuran: THF; N,N-dimethylformamide: DMF; methanol: MeOH; diethyl ether: Et2O; acetic acid: AcOH; acetonitrile: MeCN; trifluoroacetic acid: TFA; dichloromethane: DCM; dimethoxyethane: DME; diphenylphosphinoferrocene (dppf);


n-butyllithium: n-BuLi; lithium diisopropylamide: LDA


1-hydroxy-7-azabenzotriazole: HOAt


4-N,N-dimethylaminopyridine: DMAP; diisopropylethylamine: DIEA; N-methylmorpholine: NMM


Microporous Toluene sulfonic acid resin (MP-TSOH resin)


tris-(2-aminoethyl)aminomethyl polystyrene (PS-trisamine)


methylisocyanate polystyrene (PS-NCO)


Saturated (sat.); anhydrous. (anhyd); room temperature (rt); hour (h); Minutes (Min), Retention Time (Rt); molecular weight (MW); milliliter (mL); gram (g). milligram (mg); equivalent (eq); day (d); microwave (μW); microliter(μL);


All NMR data were collected on 400 MHz NMR spectrometers unless otherwise indicated. LC-Electrospray-Mass spectroscopy with a C-18 column and 5% to 95% MeCN in water as the mobile phase was used to determine the molecular mass and retention time. The tables contain the compounds with retention time/observed MW and/or NMR data.


For internal consistency in the reaction schemes shown in Methods A to AA, the product of each method is shown as structure A4, B4, C3, etc., wherein certain variables are as defined for that method, but it will be apparent that, for example, A4 has the same structure as C3. That is, different methods can be used to prepare similar compounds.


The compounds in the invention may be produced by processes known to those skilled in the art and as shown in the following reaction schemes and in the preparations and examples described below. Table I contains the compounds with observed m/e values from mass spectrascopy and/or NMR data. These compounds can be obtained with synthetic methods similar to these listed in the last column using appropriate reagents.







Method A, Step 1:


To a solution of A1 (R3═CH3 & R4═CH2CH(CH3)2) (10 mmol, 1 eq) in 30 ml of anhyd. CH2Cl2 was added thiocarbonyl dipyridone (1.2 eq). After stirring overnight the solution was diluted with CH2Cl2, washed with 1N HCl, H2O (2×), and a saturated aqueous NaCl solution (2×). The organic solution was dried over Na2SO4, filtered and concentrated. The crude material was purified via flash chromatography to afford A2 (R3═CH3 & R4═CH2CH(CH3)2).


Method A, Step 2:


A solution of 3,5-difluorobenzyl amine (0.15 mmol, 1.5 eq) in THF (0.15 mL) was added to a solution of A2 (R3═CH3 & R4═CH2CH(CH3)2) (0.1 mmol, 1 eq) in anhydrous CH2Cl2 (1 mL). The reaction mixture was refluxed overnight. The reaction solution was added to MP-TsOH resin (2-3 eq) and diluted with CH3CN. The suspension was agitated overnight. The mixture was filtered and the filtrate was concentrated to afford A3 (R1=3,5-difluorobenzyl, R3═CH3, & R4═CH2CH(CH3)2).


Method A, Step 3:


To a solution of A3 (R1=3,5-difluorobenzyl, R3═CH3, & R4═CH2CH(CH3)2) (10 mg) in CH3OH (1 mL) was added NH4OH (0.44 mL) and t-butyl hydrogen peroxide (0.1 mL) and the reaction mixture was agitated for 2 d. The solution was concentrated, the resulting residue was dissolved in CH3OH (1.2 mL) and was treated with sulfonic acid resin. The suspension was agitated overnight and the resin was washed with CH3OH (4×10 min) before it was treated with 2 N NH3 in CH3OH for 1 h. The suspension was filtered and the filtrate was concentrated to give the crude material which was purified by preparative HPLC/LCMS eluting with a CH3CN/H2O gradient to afford A4 (Rt=3,5-difluorobenzyl, R2═H, R3═CH3, & R4═CH2CH(CH3)2). NMR (CD3OD): δ6.9, m, 3H, δ4.8-4.9, m; δ1.75, d, 2H, δ1.5, m, 1H, δ1.42, s, 3H, δ0.85, d, 3H, δ0.65, d, 3H. ES_LCMS (m/e) 296.1.


The following compounds were synthesized using similar methods:


















Obs.


#
Structure
MW
m/e


















1





223
224





2





223
224





3





225
226





4





225
226





5





227
228





6





237
238





7





239
240





8





239
240





9





239
240





10





240
241





11





241
242





12





241
242





13





251
252





14





253
254





15





254
255





16





255
256





17





255
256





18





255
256





19





260
261





20





260
261





21





265
266





22





265
266





23





265
266





24





267
268





25





268
269





26





268
269





27





269
270





28





273
274





29





273
274





30





274
275





31





274
275





32





274
275





33





277
278





34





279
280





35





280
281





36





280
281





37





280
281





38





280
281





39





281
282





40





282
283





41





282
283





42





282
283





43





283
284





44





285
286





45





287
288





46





287
288





47





289
290





48





293
294





49





294
295





50





294
295





51





295
296





52





296
297





53





301
302





54





303
304





55





304
305





56





304
305





57





305
306





58





307
308





59





307
308





60





308
309





61





310
311





62





317
318





63





319
320





64





322
323





65





324
325





66





327
328





67





327
328





68





327
328





69





327
328





70





328
329





71





330
331





72





331
332





73





331
332





74





335
336





75





335
336





76





337
338





77





337
338





78





342
343





79





345
346





80





345
346





81





349
350





82





349
350





83





351
352





84





351
352





85





351
352





86





359
360





87





361
362





88





361
362





89





361
362





90





363
364





91





363
364





92





363
364





93





363
364





94





363
364





95





363
364





96





369
370





97





374
375





98





375
376





99





375
376





100





377
378





101





377
378





102





377
378





103





381
382





104





382
383





105





385
386





106





385
386





107





386
387





108





389
390





109





391
392





110





391
392





111





391
392





112





391
392





113





393
394





114





393
394





115





400
401





116





401
402





117





401
402





118





401
402





119





401
402





120





403
404





121





403
404





122





403
404





123





405
406





124





405
406





125





409
410





126





409
410





127





409
410





128





409
410





129





411
412





130





413
414





131





413
414





132





414
415





133





415
416





134





415
416





135





415
416





136





417
418





137





419
420





138





421
422





139





423
424





140





425
426





141





425
426





142





425
426





143





427
428





144





429
430





145





430
431





146





430
431





147





431
432





148





433
434





149





437
438





150





439
440





151





440
441





152





440
441





153





441
442





154





441
442





155





442
443





156





447
448





157





449
450





158





455
456





159





463
464





160





463
464





161





471
472





162





473
474





163





481
482





164





481
482





165





487
488





166





488
489





167





499
500





168





504
505





169





523
524





170





525
526





171





525
526





172





527
528





173





528
529





174





535
536





175





535
536





176





535
536





177





535
536





178





550
551





179





554
555





180





556
557





181





569
570





182





581
582





183





374
NA





184





388
NA





185





337
NMR





186





351
NMR














A modified literature procedure was used (Ugi, I. Angew. Chem. 1962, 74 9-22).


Method B, Step 1:


To a solution of B1 (HCl salt, R1=3-chlorophenethyl) (1.1 g, 5.73 mmol) in anhydrous CH3OH (15 mL) was added potassium thiocyanate (0.56 g, 5.73 mmol). The reaction mixture was heated to 60° C. for 1 h. The suspension was filtered and the filtrate was added to B5 (R3═Me, R4iBu) (0.72 mL, 5.73 mmol) and benzyl isocyanide (0.77 mL, 6.3 mmol). The mixture was stirred overnight before the solution was concentrated and the residue was purified via flash chromatography eluting with ethyl acetate in hexane to yield 0.28 g of B2 (R3═CH3, R4═CH2CH(CH3)2, and R1=3-Chlorophenethyl).


Method B, Step 2:


A solution of 40% concentrated HCl in CH3CH2OH was added to B2 (R3═CH3, R4═CH2CH(CH3)2, and R1=3-Chlorophenethyl) and the solution was heated in a microwave at 160° C. for 30 min. The solution was concentrated and purified via reverse phase preparative HPLC eluting with a CH3CN/H2O (with 0.1% formic acid) gradient to afford B3 (R3═CH3, R4═CH2CH(CH3)2, and R1=3-Chlorophenethyl).


Method B, Step 3:


Compound B4 (R2═H, R3═CH3, R4═CH2CH(CH3)2, and R1=3-Chlorophenethyl) was prepared from B3 (R3═CH3, R4═CH2CH(CH3)2, and R1=3-Chlorophenethyl) following a procedure similar to Method A, Step 3. NMR (CD3OD): δ 8.1, br, 1H; δ 7.35, s, 1H; δ 7.25, m, 3H; δ 3.6, m, 1H; δ 3.4, m, 1H; δ 3.0, m, 1H; δ 2.8, m, 1H; δ 1.75, m, 1H; δ 1.6, m, 1H; δ 1.35, m, 1H; δ 1.2 s, 3H; δ 0.8, m, 6H. ES_LCMS (m/e): 308.1


The following compounds were prepared using similar methods


















Obs.


#
Structure
MW
m/e







545





251
252





546





293
294





547





307
308





548





357
358





549





371
372





550





413





551





265














Method C, Step 1:


A solution of C1 (R3═R4═CH2CH2CH2CH3) (50 mg, 0.25 mmol) and C4 (R1=3-chlorophenyl) (38 μL, 0.26 mmol) was refluxed overnight. Trisamine resin (2 eq) and polystyrene isocyanate resin (2 eq) was added and the mixture was agitated. After 3 h, the suspension was filtered and the resin was washed with CH2Cl2 (3×) and CH3OH (3×). The filtrate was concentrated to afford C2 (R1=3-Cl—C6H4, R3═R4═CH2CH2CH2CH3) (60 mg, 68%).


Method C, Step 2:


Compound C3 (R1=3-Cl—C6H4, R2═H, R3═R4═CH2CH2CH2CH3) was prepared from C2 (R1=3-Cl—C6H4, R3═R4═CH2CH2CH2CH3) following a procedure similar to Method A, Step 3. NMR (CDCl3): δ 7.4, m, 2H; δ 7.2, m, 2H; δ 5.0, s, 2H; δ 1.7, m, 4H; δ 1.1, m, 8H; δ 0.7; m, 6H. ES-LCMS (m/e): 336.1.


The following compounds were prepared using similar method.


















Obs.


#
Structure
MW
m/e







641





209
210





642





211
212





643





215
216





644





225
226





645





239
240





646





245
246





647





246
247





648





251
252





649





267
268





650





309
310





651





317
318





652





319
320





653





323
324





654





324
325





655





329
330





656





329
330





657





335
336





658





335
336





659





335
336





660





335
336





661





335
336





662





352
353





663





352
353





664





377
378





665





385
386





666





391
392





667





420
421





668





420
421














Method D, Step 1:


A mixture of D1 (R3═R4═CH2C6H5) (20 g), potassium cyanide (40 g) and ammonium carbonate (15 g) in ethanol (100 mL) and H2O (200 mL) was heated in a sealed flask at 130° C. overnight to yield 25 g of D2 (R3═R4═CH2C6H5) after filtration followed by washing with water.


Method D, Step 2:


A solution of 2 N KOH (3 eq) was added to D2 (R3═R4═CH2C6H5) (1 eq) and irradiated via microwave at 185° C. for 3 h followed by addition of concentrated HCl to the solution until a pH=2-3 was obtained. The solid was filtered and washed with water to afford D3 (R3═R4═CH2C6H5).


Method D, Step 3:


A solution of trimethylsilyidiazomethane in hexane (2 N) (2 eq) was added drop wise to a solution of D3 (R3═R4═CH2C6H5) (1 eq) in anhydrous CH3OH (30 mL). After 1 h, an additional 2 eq of trimethylsilyldiazomethane in hexane (2 N) was added and the reaction was stirred for 20 minutes before it was concentrated. The residue was dissolved in a 0.2 N HCl solution (25 mL) and washed with ether (3×). A saturated solution of Na2CO3 was added to the aqueous phase until the pH of the solution was basic. The solution was extracted with ethyl acetate (3×). The organic extracts were combined, dried over Na2SO4, and concentrated to afford D4 (R3═R4═CH2C6H5).


The following amino esters were prepared using a similar method.















Method E, Step 1:


Thionyl chloride (0.47, 6.38 mmol) was added drop wise to a solution of E1 (R3═CH2CH2C6H5) (2 g, 6.38 mmol) and benzaldehyde dimethyl acetal (0.96 mL, 6.38 mmol) in anhydrous THF at 0° C. under N2. After 5 min, ZnCl2 (0.87 g, 6.38 mmol) was added and the reaction mixture was stirred at 0° C. After 3 h, an additional amount of ZnCl2 (0.18 g, 1.28 mmol) and thionyl chloride (0.1 mL, 1.28 mmol) were added and stirred for 1 h at 0° C. The reaction mixture was poured into a stirred suspension of ice/H2O. The mixture was stirred occasionally until the ice melted. The aqueous solution was extracted with ether (3×). The combined organic extracts were washed with H2O (3×), a sat. aqueous solution of NaHCO3 (1×), and H2O (2×). The organic solution was dried over Na2SO4, filtered and concentrated. The crude material was purified via flash chromatography eluting with ethyl acetate in hexane to yield compound E2 (R3═CH2CH2C6H5).


Method E, Step 2:


A solution of lithium hexamethyldisilazide in hexane (1.0 M, 1.65 mL, 1.64 mmol) was added drop wise to a solution of E2 (R3═CH2CH2C6H5) (600 mg, 1.49 mmol) and HMPA (0.85 mL) in THF (6.5 mL) cooled at −78° C. under N2. After 15 min, isobutyl iodide (0.52 mL, 4.48 mmol) was added drop wise and the reaction mixture was stirred at −78° C. for 3 h. The reaction was warmed to −65° C., stirred for 2 h and warmed to rt overnight. The reaction solution was poured into a mixture of sat. NaHCO3 (aq)/ether/ice. The aqueous layer was extracted with ether (3×). The organic extracts were combined and washed with brine (2×). The organic solution was dried over Na2SO4, filtered and concentrated. The crude material was purified via flash chromatography eluting with ethyl acetate in hexane to yield compound E3 (R3═CH2CH2C6H5, R4═CH2CH(CH3)2).


Method E, Step 3:


A solution of lithium methoxide (1 N in CH3OH) (0.36 mL, 0.36 mmol) was added to compound E3 (R3═CH2CH2C6H5, R4═CH2CH(CH3)2). The reaction mixture was shaken at rt for 50 min. An additional 0.55 eq of lithium methoxide were added. After 2.5 h, a sat. aqueous solution of NaHSO3 (0.75 mL) and ethyl acetate (3 mL) was added to the reaction mixture and shaken for 15 min. The suspension was filtered. The resulting white solid was washed with a sat. aqueous solution of NaHSO3 (1×) and ethyl acetate (1×). The aqueous phase of the filtrate was separated and extracted with ethyl acetate (2×). The organic extracts were combined and washed with a sat. aqueous solution of NaHSO3 (8×). The organic solution was dried over Na2SO4, filtered and concentrated to afford E4 (R3═CH2CH2C6H5, R4═CH2CH(CH3)2) (109 mg, 87%).


Method E, Step 4:


To a solution of E4 (R3═CH2CH2C6H5, R4═CH2CH(CH3)2) (109 mg, 0.28 mmol) in CH3OH (4 mL) was added 1 N HCl (0.28 mL, 0.28 mmol) and 20% palladium hydroxide on carbon (22 mg). The reaction mixture was hydrogenated at 40 psi. After 2.5 h, the reaction was filtered and the catalyst was washed with CH3OH (3×). The filtrate was concentrated to afford E5 (R3═CH2CH2C6H5, R4═CH2CH(CH3)2) (78 mg, 96%).


The following aminoesters were prepared using similar method.


















A 500 mL methanol solution of 20 g of D5 (R3=benzyl, n=1) with 1.5 eq of HCl was hydrogenated with 1 g of Rh/C (5% w/w) and 2 g of Pt/C (5% w/w) at 60 psi for 2 days. The solid was filtered and washed with excessive methanol. The combined solution was evaporated to give 20 g of F1 (R3=cyclohexylmethyl, n=1) as HCl salt.


The following amino esters were examples prepared using similar method.















Method G, Step 1:


To a solution of G1 (R1═CH2(3-ClC6H4) and R3═CH3) (400 mg, 1.23 mmol, generated following a procedure similar to Method C, Step 1) in ethanol (5 mL) was added lithium hydroxide monohydrate (100 mg, 2.45 mmol) in H2O (0.5 mL). After 2.5 h, another portion of lithium hydroxide monohydrate (100 mg, 2.45 mmol) was added. After 5.5 h, the reaction mixture was diluted with H2O (15 mL) and extracted with ether (2×). A solution of 30% HCl was added to the aqueous phase until its pH=1 to 2. The solution was saturated with NaCl and extracted with ethyl acetate (3×). The organic solution was dried over Na2SO4, filtered and concentrated to afford G2 (R1═CH2(3-ClC6H4) and R3═CH3) (357 mg, 93%).


Method G, Step 2:


A solution of benzyl amine (1.2 eq) was added to G2 (R1═CH2(3-ClC6H4) and R3═CH3) (1 eq), HOBT (1.5 eq) and polystyrene EDC resin (94 mg, 1.53 mmol/g, 3 eq) in 1:1 THF:CH3CN (1 mL). The reaction mixture was shaken overnight at rt. Trisamine resin (85 mg, 3.38 mmol/g, 6 eq) and isocyanate resin (100 mg, 1.47 mmol/g, 3 eq) was added. After 6 h, the suspension was filtered and the filtrate was concentrated to afford G3 (R1═CH2(3-ClC6H4), R3═CH3, R15═CH2C6H5 and R16═H).


Method G, Step 3:


Compound G4 (R1═CH2(3-ClC6H4), R2═H, R3═CH3, R15═CH2C6H5 and R15═H) was prepared from G3 (R1═CH2(3-ClC6H4), R3═CH3, R15═CH2C6H5 and R16═H) following a procedure similar to Method A, Step 3.


The following compounds were prepared using similar methods.


















Obs.


#
Structure
MW
m/e







669





322
323





670





334
335





671





336
337





672





348
349





673





364
365





674





364
365





675





376
377





676





384
385





677





390
391





678





393
394





679





398
399





680





398
399





681





406
407





682





412
413





683





414
415





684





414
415





685





414
415





686





421
422





687





428
429





688





434
435





689





442
443





690





449
450





691





461
462





692





511
512





693





511
512














Method H, Step 1:


To a solution of H1 (R3═CH3) (5 g, 39 mmol) in a 1:1 mixture of 0.5 M NaHCO3:CH3CH2OH was added R1—NCS (R1=3-chlorobenzyl) (11.5 mL, 78 mmol). The reaction mixture was heated at 50° C. overnight. The reaction was cooled and diluted with water. The aqueous phase was extracted with ethyl acetate (5×). The organic extracts were combined, washed with water (2×) and dried over Na2SO4. The solution was filtered and solvent was removed to give a small volume of solution. Hexane was added and the resulting suspension was filtered to yield 6.8 g of a solid H2 (R3═CH3, R1═CH2(3-ClC6H4)) (61%).


Method H, Step 2:


Compound H3 (R3═CH3, R1═CH2(3-ClC6H4))was synthesized from H2 (R3═CH3, R1═CH2(3-ClC6H4)) following a procedure similar to Method A, Step 3.


Method H, Step 3:


To a solution of crude H3 (R3═CH3, R1═CH2(3-ClC6H4)) (14 mmol) in a 1:3 mixture of CH3OH:THF was added 0.5 M NaHCO3 in H2O (28 mL, 14 mmol) and di-tert-butyl dicarbonate (3.69 g, 16.9 mmol). The reaction was stirred at rt for 2.5 h and then stored at −10° C. overnight. The reaction was diluted with brine and extracted with ethyl acetate (4×). The organic extracts were combined and washed with brine (1×). The organic solution was dried over Na2SO4, filtered and concentrated. The crude material was purified via flash chromatography eluting with ethyl acetate in hexane to afford 1.5 g of H4 (R1═CH2(3-ClC6H4) and R3═CH3).


Method H, Step 4:


A solution of triflic anhydride (128 μL, 0.76 mmol) in CH2Cl2 (5 mL) was added drop wise to a solution of H4 (R1═CH2(3-ClC6H4) and R3═CH3) (200 mg, 0.55 mmol) and 2,6-lutidine (176 μL, 2.18 mmol) at −30° C. The reaction mixture was stirred for 1.5 h. Water (10 mL) was added at −20° C. and the ice bath was removed. The reaction was stirred until it reached 0° C. The organic layer was separated, dried over Na2SO4, filtered and concentrated to afford 310 mg of H5 (R1═CH2(3-ClC6H4) and R3═CH3).


Method H, Step 5:


A solution of crude H5 (R1═CH2(3-ClC6H4) and R3═CH3) (0.11 mmol) and 7N ammonia in Methanol (R21—H═NH2—H) (10 eq) was stirred overnight at rt. The reaction solution was concentrated. The crude material was purified using reverse phase preparative HPLC eluting with a CH3CN/H20 gradient with 0.1% formic acid to yield H6 (R1═CH2(3-ClC6H4), R3═CH3, R21═NH2).


Method H, Step 6:


A solution of 50% trifluoroacetic acid in CH2Cl2 (2 mL) was added to H6 (R1═CH2(3-ClC6H4), R3═CH3, R21═NH2). After 40 min the solvent was evaporated and residue purified by preparative HPLC/LCMS eluting with a CH3CN/H2O gradient to afford H7 (R1═CH2(3-ClC6H4), R3═CH3, R21═NH2). NMR (CDCl3), δ 7.45, m, 3H; δ 7.35, m, 1H; δ 4.9, m, 2H; δ 3.5, m, 2H; δ 1.65, s, 3H. ES_LCMS (m/e) 267.07.


The following compounds were prepared using similar methods.


















Obs.


#
Structure
MW
m/e







694





238
239





695





248
249





696





257
258





697





264
265





698





266
267





699





292
293





700





308
309





701





314
315





702





320
321





703





328
329





704





334
335





705





342
343





706





354
355





707





372
373





708





418
419





709





483
484














Method I, Step 1:


Diethylaminomethyl polystyrene resin (5 eq) was added to a solution of the formate salt of I1 (R1═CH2(3-ClC6H4), R3═CH3 and R16═H) in CH2Cl2 and the suspension was agitated. After 15 min, the mixture was filtered and the resin was washed with CH2Cl2 (4×). The filtrate was concentrated to afford the free base I1 (R1═CH2(3-ClC6H4), R3═CH3 and R16═H).


A solution of R15COOH(R15=Phenethyl) (1.3 eq) was added to a mixture of EDC resin (41 mg, 1.53 mmol/g, 3 eq), HOBT (1.5 eq), and the free base of I1 (R1═CH2(3-ClC6H4), R3═CH3 and R16═H) (0.021 mmol) in 1:1 CH3CN:THF. The suspension was agitated overnight. Polystyrene isocyanate resin (45 mg, 3 eq), polystyrene trisamine resin (40 mg, 6 eq) and a 1:1 mixture of CH3CN:THF (0.5 mL) was added. The mixture was agitated for 6 h. The suspension was filtered and the filtrate was concentrated to afford I2 (R1═CH2(3-ClC6H4), R3═CH3, R16═H and R15═CH2CH2C6H5).


Method I, Step 2:


I3 (R1═CH2(3-ClC6H4), R3═CH3, R16═H and R15═CH2CH2C6H5) was prepared from I2 (R1═CH2(3-ClC6H4), R3═CH3, R6═H and R15═CH2CH2C6H5) using method similar to method H step 6.


The following compounds were prepared using similar method.


















Obs.


#
Structure
MW
m/e







710





280
281





711





308
309





712





308
309





713





334
335





714





342
343





715





362
363





716





372
373





717





376
377





718





398
399





719





406
407





720





410
 11





721





410
 11





722





414
 15





723





420
 21





724





428
 29





725





511
 12














Method J, Step 1:


Diethylaminomethyl polystyrene resin (5 eq) was added to a solution of J1 (TFA salt, R1═CH2(3-ClC6H4) and R3═CH3) in CH2Cl2 and the suspension was agitated. After 15 min, the mixture was filtered and the resin was washed with CH2Cl2 (4×). The filtrate was concentrated to afford the free base. A solution of R15NCO(R15=butyl) (2 eq) in CH2Cl2 was added to the free base of J1 (R1═CH2(3-ClC6H4) and R3═CH3) (0.021 mmol) in 1:1 CH3CN:THF. The suspension was agitated overnight. Polystyrene isocyanate resin (45 mg, 3 eq), polystyrene trisamine resin (40 mg, 6 eq) and a 1:1 mixture of CH3CN:THF (0.5 mL) was added. The mixture was agitated for 6 h. The suspension was filtered and the filtrate was concentrated to afford J2 (R1═CH2(3-ClC6H4), R3═CH3, and R15═CH2CH2CH2CH3).


Method J, Step 2:


Compound J3 (R1═CH2(3-ClC6H4), R3═CH3, and R15═CH2CH2CH2CH3) was prepared from J2 (R1═CH2(3-ClC6H4), R3═CH3, and R15═CH2CH2CH2CH3) following the procedure described in Method H, Step 2.


The following compounds were prepared using similar method.


















Obs.


#
Structure
MW
m/e







726





323
324





727





337
338





728






352





729






358





730





365
366





731





377
378





732





413
414





733





417
418





734





421
422





735





425
426














Method K, Step 1:


A solution of propyl R15SO2Cl (R15=Propyl)(1.5 eq) was added to a suspension of polystyrene diisopropylethylamine resin (18 mg, 3.45 mmol/g, 3 eq) and the free base of K1 prepared using method H (R1═CH2(3-ClC6H4) and R3═CH3) (0.021 mmol) in 1:1 CH3CN:THF. The suspension was agitated overnight. Polystyrene isocyanate resin (45 mg, 3 eq), polystyrene trisamine resin (40 mg, 6 eq) and a 1:1 mixture of CH3CN:THF (0.5 mL) was added. The mixture was agitated for 6 h. The suspension was filtered and the filtrate was concentrated to afford K2 (R1═CH2(3-ClC6H4), R3═CH3, and R15═CH2CH2CH3).


Method K, Step 2:


Compound K3 (R1═CH2(3-ClC6H4), R3═CH3, and R15═CH2CH2CH3) was prepared from K2 (R1═CH2(3-ClC6H4), R3═CH3, and R15═CH2CH2CH3) following the procedure described in Method H, Step 6.


The following compounds were prepared using similar method.


















Obs.


#
Structure
MW
m/e







736





316
317





737





344
345





738





372
373





739





378
379





740





442
443





741





454
455





742





492
493














(In the scheme, -Z-NH—C(O)R16— is equivalent to R1 substituted by R21, or R1 Substituted by alkyl-R22, wherein R21 and R22 are —N(R15)C(O)R16 and R15 is H, and wherein Z is optionally substituted alkylene-arylene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene-alkylene, alkylene-cycloalkylene, alkylene-cycloalkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene-alkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)


Method L, Step 1:


A solution of L1 (R3═CH3 and R4═CH2CH(CH3)2) (1 eq) and Z=-para-methylene-benzyl) (1.05 eq) in CH2Cl2 was stirred at rt. The reaction solution was concentrated and purified via flash chromatography. The material was treated with 50% trifluoroacetic acid in CH2Cl2 for 30 min. The solution was concentrated. The residue was dissolved in 1 N HCl (10 mL) and washed with ether (2×). A saturated solution of Na2CO3 in H2O was added to the aqueous phase until the solution became basic. The solution was extracted with CH2Cl2 (3×). The CH2Cl2 extracts were combined, dried over Na2SO4, filtered and concentrated to yield L2 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—).


Method L, Step 2:


Compound L3 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R16═CH2CH2CH2CH3) was prepared from L2 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—) following the procedure described in Method I, Step 1.


Method L, Step 3:


Compound L4 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R1═CH2CH2CH2CH3) was prepared from (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R16═CH2CH2CH2CH3) following the procedure described in Method A, Step 3.


The following compounds were prepared using similar method.


















Obs.


#
Structure
MW
m/e







743





316
317





744





316
317





745





330
331





746





330
331





747





344
345





748





344
345





749





358
359





750





358
359





751





386
387





752





386
387





753





386
387





754





400
401





755





400
401





756





420
421





757





434
435





758





434
435





759





436
437





760





436
437





761





450
451





762





450
451





763





450
451





764





450
451





765





464
465





766





464
465





767





470
471





768





478
479





769





478
479





770





484
485





771





484
485





772





492
493





773





492
493





774





519
520





775





519
520





776





533
534





777





533
534

























Obs.


#
Structure
MW
m/e







778





331
332





779





359
360





780





359
360





781





373
374





782





373
374





783





373
374





784





373
374





785





387
388





786





387
388





787





387
388





788





387
388





789





401
402





790





401
402





791





405
406





792





407
408





793





407
408





794





407
408





795





413
414





796





413
414





797





418
419





798





418
419





799





421
422





800





421
422





801





421
422





802





421
422





803





421
422





804





421
422





805





421
422





806





421
422





807





423
424





808





423
424





809





423
424





810





423
424





811





425
426





812





425
426





813





427
428





814





429
430





815





429
430





816





429
430





817





432
433





818





432
433





819





432
433





820





433
434





821





433
434





822





435
436





823





435
436





824





435
436





825





435
436





826





435
436





827





435
436





828





435
436





829





437
438





830





437
438





831





437
438





832





437
438





833





437
438





834





437
438





835





437
438





836





439
440





837





439
440





838





439
440





839





441
442





840





441
442





841





441
442





842





441
442





843





443
444





844





443
444





845





443
444





846





447
448





847





447
448





848





449
450





849





450
451





850





450
451





851





450
451





852





451
452





853





451
452





854





451
452





855





452
453





856





453
454





857





453
454





858





455
456





859





455
456





860





455
456





861





457
458





862





457
458





863





457
458





864





458
459





865





458
459





866





460
461





867





461
462





868





461
462





869





461
462





870





461
462





871





461
462





872





461
462





873





461
462





874





463
464





875





466
467





876





466
467





877





467
468





878





469
470





879





469
470





880





471
472





881





471
472





882





472
473





883





472
473





884





475
476





885





475
476





886





475
476





887





475
476





888





475
476





889





475
476





890





475
476





891





475
476





892





475
476





893





475
476





894





475
476





895





475
476





896





477
478





897





477
478





898





479
480





899





479
480





900





480
481





901





483
484





902





483
484





903





485
486





904





485
486





905





485
486





906





485
486





907





485
486





908





489
490





909





489
490





910





489
490





911





491
492





912





493
494





913





493
494





914





493
494





915





493
494





916





496
497





917





496
497





918





497
498





919





497
498





920





499
500





921





501
502





922





501
502





923





502
503





924





502
503





925





502
503





926





502
503





927





503
504





928





505
506





929





507
508





930





507
508





931





507
508





932





509
510





933





509
510





934





509
510





935





510
511





936





511
512





937





511
512





938





514
515





939





515
516





940





515
516





941





519
520





942





519
520





943





522
523





944





523
524





945





523
524





946





525
526





947





527
528





948





529
530





949





533
534





950





537
538





951





539
540





952





543
544





953





545
546





954





545
546





955





547
548





956





549
550





957





553
554





958





555
556





959





559
560





960





559
560





961





387














(In the scheme, -Z-NH—C(O)—NHR15— is equivalent to R1 substituted by R21, or R1 Substituted by alkyl-R22, wherein R21 and R22 are —N(R16)—C(O)—NHR15 and R16 is H, and wherein Z is optionally substituted alkylene-arylene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene-alkylene, alkylene-cycloalkylene, alkylene-cycloalkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene-alkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)


Method M, Step 1:


Compound M2 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R15=3,4-difluorophenyl) was prepared from M1 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—) following the procedure described in Method J, Step 1.


Method M, Step 2:


Compound M3 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R15=3,4-difluorophenyl) was prepared from M2 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R15=3,4-difluorophenyl) following the procedure described in Method A, Step 3. NMR (CD3OD) δ 7.45, m, 1H; δ 7.26, m, 4H, 7.24, m, 1H; δ 6.96, m, 1H; δ 4.8, m; δ 4.3, s, 2H; δ 1.69, m, 2H; δ 1.44, m, 1H; δ 1.37, s, 3H; δ 0.8, m, 3H; δ 0.63, m, 3H. ES_LCMS (m/e) 430.27


The following compounds were prepared using similar method.







(In the scheme, -Z-NH—S(O)2R16— is equivalent to R1 substituted by R21, or R1 Substituted by alkyl-R22, wherein R21 and R22 are —N(R16)—C(O)—NHR15 and R16 is H, and wherein Z is optionally substituted alkylene-arylene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene-alkylene, alkylene-cycloalkylene, alkylene-cycloalkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene-alkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)


Method N, Step 1:


Compound N2 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R16═CH2CH(CH3)2) was prepared from N1 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—) following the procedure described in Method K, Step 1.


Method N, Step 2:


Compound N3 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R16═CH2CH(CH3)2) was prepared from N2 (R3═CH3, R4═CH2CH(CH3)2, Z=para-(CH2)C6H4(CH2)—, R16═CH2CH(CH3)2) following the procedure described in Method A, Step 3.


The following compounds were prepared using similar method.


















Obs.


#
Structure
MW
m/e







962





380
381





963





380
381





964





394
395





965





394
395





966





451
452





967





484
485





968





484
485





969





498
499





970





498
499

















Method O, Step 1:


A solution of indole-6-methanol (400 mg, 2.72 mmol), tert-butyldimethysilyl chloride (816 mg, 5.41 mmol) and imidazole (740 mg, 10.9 mmol) in CH2Cl2 was stirred at rt. overnight before the solvent was evaporated and residue chromatographed using ethylacetate/hexane to give product O2.


Method O, Step 2:


To a solution of O2 (200 mg, 0.77 mmol) in THF (10 mL) at −78° C. was added butyl lithium (1.2 eq). The solution was stirred at −78° C. for 5 min and then warmed to rt. The reaction mixture was cooled to −78° C. and p-toluenesulfonyl chloride was added. The solution was warmed to rt and stirred overnight. The reaction was quenched with a saturated aqueous K2CO3 solution, extracted with ethyl acetate and CH2Cl2. The crude material was purified via flash chromatography using ethylacetate/hexane to afford 360 mg of O3.


Method O, Step 3:


A solution butyl lithium (1.2 eq) was added to a solution of O3 (340 mg, 0.829 mmol) in THF (20 mL). The reaction mixture was stirred for 15 min at −78° C. then sulfur dioxide was bubbled through the solution for 15 min. Hexane (100 mL) was added to the reaction mixture. The reaction mixture was evaporated to afford O4 which was used in the next step without further purification.


Method O, Step 4:


To a solution of O4 (0.829 mmol) in CH2Cl2 cooled to 0° C. was added N-chlorosuccinimide (220 mg, 1.66 mmol). After 2 h of stirring, the solution was filtered through a Celite plug. The filtrate was concentrated to afford O5.


Method O, Step 5:


To a solution of O5 in anhydrous pyridine (3 mL) was added butyl amine (100 μL). The reaction was agitated at rt for 4 d. The reaction mixture was partitioned between 1 N HCl and CH2Cl2. The organic layer was separated and washed with 1 N HCl (3×). The organic solution was dried over Na2SO4, filtered and concentrated. The crude material was purified via flash chromatography using ethylacetate/hexane to yield O6.


Method O, Step 6:


To a solution of O6 (70 mg) in THF was added TBAF. The reaction was stirred at rt. before the reaction mixture was chromatographed using ethylacetate/hexane to afforded 50 mg of O7 (95%).


Method O, Step 7:


To a solution of O7 (50 mg) in CH2Cl2 (5 mL) was added thionyl chloride (1 mL) the reaction was stirred for 5 min and then evaporated to afford O8.


Method O, Step 8:


To a solution of O8 in CH3OH (5 mL) was added sodium azide (50 mg). The solution was stirred at rt overnight and solvent evaporated. The residue was chromatographed using ethylacetate/hexane to afforded O9 after purification.


Method O, Step 9:


To a suspension of O9 (70 mg) in CH3OH was added 1 eq HCl (aq) and palladium on carbon. The reaction mixture was hydrogenated at 1 atm for 20 min to yield 90 mg of crude product O10.


Method O, Step 10:


A solution of lithium hydroxide (30 mg) in H2O was added to a solution of O10 (40 mg) in CH3OH (3 mL). The reaction was stirred at rt for 2 h and an additional portion of LiOH (40 mg) was added and solution was stirred for 2 more hours. The solvent was evaporated and residue chromatographed using ethylacetate/hexane to afforded O11.







Method P, Step 1:


A 300 mL of THF solution of 100 g of P1 (R23=n-Pr) was added to a suspension of 38 g of LAH in 2 L of anhydrous THF at 0 C. The reaction mixture is stirred at r.t. for 1 h before 30 ml of H2O, 90 ml of 15% NaOH was added at 0° C. The mixture was stirred at r.t. for one hour before Na2SO4 (anh) was added, the mixture was filtered, and the solution evaporated to give a product which was dried under vacuo overnight. This product was dissolved in 600 ml of DCM and the solution was added into a solution of oxalyl chloride (37.3 ml) and DMSO (60.8 ml) in 1.4 L of DCM at −78° C. over 40 min before Diisopropylethylamine (299 ml) was added at −78° C. The reaction was allowed to reach −10° C. The reaction was quenched with 1 L H2O at −10° C. and the mixture was extracted with DCM. After removal of solvent, P2 (R23=Pr, 106 g) was obtained. The crude material was used for next step without purification.


Method P, Step 2:


To a 1.5 L DCM solution of P2 (R23=Pr, 106 g) was added p-Boc-aminomethylbenzylamine (1.1 eq) and sodium triacetoxyborohydride (1.1 eq) and the reaction was stirred at r.t. overnight. The reaction was quenched with H2O and content extracted with DCM. After removal of solvents the residue was chromatographed using a silica gel column eluted with 3% MeOH in DCM to give 42.5 g of P3 (R23=Pr).


Method P, Step 3:


A 10 ml MeOH solution of P3 (R23=Pr, 110 mg) was hydrogenated using Pd/C (5%, 11 mg) at 1 atm of hydrogen to give product P4 (R23=Pr) after removal of solvent and catalyst.


Method P, Step 4:


To a 10 ml DCM solution of P4 at 0° C. (R23═Pr) was added triphosgene (1.2 eq) and triethylamine (2.4 eq) and the solution was stirred at 0 C for 2 h before the reaction was extracted with DCM/H2O. After removal of the solvent, the residue was chromatographed using a silica gel column eluted with EtOAc/Hexane to give a white solid which was treated with 2N HCl in dioxane for 2 h. After removal of the solvent, compound P5 (R23═Pr) as a white solid was obtained (80 mg).


The following compounds were synthesized using similar methods:












Method O, Step 1


At room temperature, Q1 (R3=Me; R4=iBu) (1.00 g) and Q8 (n=1, p=2, m=1) (1.24 g) in dichloromethane (30 mL) were stirred for 42 h. This mixture was concentrated in vacuo to give an amber oil which was purified on a column of silica gel (200 mL) eluted with ethylacetate/hexane to give Q2 (n=1, p=2, m=1, R3=Me; R4=iBu), a colorless oil (1.59 g).


Method Q, Step 2


Compound Q3 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu) was prepared from Q2 (n=1, p=2, m=1, R3=Me; R4=iBu) using method similar to method A step 3.


Method Q, Step 3


Compound Q3 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu) (1.37 g) in anhydrous dichloromethane (25 mL) was treated with di-tert-butyl dicarbonate (0.68 g, 1.1 equiv.) and diisopropylethylamine (0.66 mL, 1.1. equiv.). The resulting solution was stirred at room temperature for 20 h before it was diluted with dichloromethane and washed with 1N hydrochloric acid. The dried dichloromethane solution was concentrated in vacuo to give a colorless film (1.32 g) which was purified on a column of silica gel (125 mL) and eluted with hexane:ethyl acetate to give compound Q4 (n=1, p=2, m=1, R2═H, R3=Me; R4=i-Bu) as a white foam (0.74 g).


Method O, Step 4


Compound Q4 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu) (0.540 g) in absolute EtOH (20 mL) was hydrogenated with 10% Pd/C (0.400 g) at 1 atm for 2 h. The reaction mixture was filtered and the filtrate was concentrated in vacuo to give Q5 (n=1, p=2, m=1, R2═H, R3=Me; R4=Bu) as a colorless oil (0.35 g).


Method O, Step 5


Compound Q5 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu) (0.012 g) and HOBt (0.005 g) dissolved in acetonitrile (0.8 mL) and tetrahydrofuran (0.25 mL) was treated with EDC resin (0.080 g, 3 eq., 1.53 mmol/g) in a microtiter plate well followed by addition of a 1M dichloroethane solution (40 uL, 1.25 eq.). After the well was capped and shaken for 18 h, the mixture was filtered and the resin washed with acetonitrile (0.5 mL). The combined solution was treated with Trisamine resin (0.050 g, 6 eq., 4.23 mmol/g) and Isocyanate resin (0.067 g, 3 eq., 1.53 mmol/g) for 18 h before the solution was filtered and the solvent was removed in vacuo to give Q6 (n=1, p=2, m=1, R2═H, R3=Me; R4=Bu, R1=Me).


Method Q, Step 6.


A dichloromethane solution (1.0 mL) of Q6 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu, R16=Me) was mixed with trifluoroacetic acid (1.0 mL) and the solution was shaken for 2 h before it was concentrated. Diethyl ether (0.5 mL) was added and then concentrated in vacuo to give a residue, which was purified on a Prep LCMS unit to give Q7 (=1, p=2, m=1, R2═H, R3=Me; R4=iBu, R15=Me). NMR (CDCl3): δ 8.38, br, 2H; δ 4.56, m, 1H; δ 3.79, m, 1H; δ 3.57, m, 2H; δ 2.99, m, 1H; δ 2.48, m, 1H; δ 2.04, s, 3H, δ 1.95, m, 1H, δ 1.5-1.8, m, 5H; δ 1.5, s, 3H, 1.25, m, 2H; δ 0.95, m, 3H; δ 0.85, m, 3H. ES_LCMS (m/e) 309.17.


The following compounds were prepared using similar methods:


















Obs.


#
Structure
MW
m/e


















971





308
309





972





308
309





973





310
311





974





322
323





975





324
325





976





334
335





977





336
337





978





348
349





979





348
349





980





 0
351





981





350
351





982





350
351





983





360
361





984





360
361





985





362
363





986





362
363





987





364
365





988





364
365





989





364
365





990





370
371





991





370
371





992





376
377





993





376
377





994





376
377





995





378
379





996





378
379





997





378
379





998





378
379





999





379
380





1000





384
385





1001





384
385





1002





384
385





1003





386
387





1004





388
389





1005





389
390





1006





390
391





1007





390
391





1008





390
391





1009





390
391





1010





390
391





1011





390
391





1012





390
391





1013





390
391





1014





390
391





1015





392
393





1016





392
393





1017





392
393





1018





394
395





1019





398
399





1020





398
399





1021





398
399





1022





398
399





1023





398
399





1024





400
401





1025





400
401





1026





400
401





1027





400
401





1028





400
401





1029





400
401





1030





400
401





1031





400
401





1032





402
403





1033





402
403





1034





404
405





1035





404
405





1036





404
405





1037





404
405





1038





404
405





1039





404
405





1040





404
405





1041





404
405





1042





409
410





1043





410
411





1044





 0
411





1045





410
411





1046





412
413





1047





412
413





1048





412
413





1049





414
415





1050





414
415





1051





414
415





1052





414
415





1053





414
415





1054





414
415





1055





414
415





1056





416
417





1057





416
417





1058





417
418





1059





418
419





1060





418
419





1061





418
419





1062





418
419





1063





418
419





1064





420
421





1065





423
424





1066





424
425





1067





424
425





1068





426
427





1069





426
427





1070





426
427





1071





426
427





1072





426
427





1073





427
428





1074





428
429





1075





428
429





1078





428
429





1077





428
429





1078





428
429





1079





430
431





1080





430
431





1081





430
431





1082





432
433





1083





432
433





1084





432
433





1085





432
433





1086





432
433





1087





432
433





1088





438
439





1089





438
439





1090





438
439





1091





438
439





1092





438
439





1093





440
441





1094





440
441





1095





440
441





1096





440
441





1097





442
443





1098





442
443





1099





442
443





1100





442
443





1101





442
443





1102





444
445





1103





444
445





1104





444
445





1105





446
447





1106





446
447





1107





446
447





1108





449
450





1109





451
452





1110





452
453





1111





452
453





1112





452
453





1113





456
457





1114





456
457





1115





456
457





1116





458
459





1117





460
461





1118





460
461





1119





460
461





1120





460
461





1121





462
463





1122





462
463





1123





462
463





1124





462
463





1125





462
463





1126





464
465





1127





466
467





1128





466
467





1129





470
471





1130





472
473





1131





474
475





1132





474
475





1133





476
477





1134





476
477





1135





478
479





1136





482
483





1137





482
483





1138





482
483





1139





488
489





1140





490
491





1141





500
501





1142





502
503





1143





502
503





1144





504
505





1145





504
505





1146





504
505





1147





511
512





1148





512
513





1149





512
513





1150





520
521





1151





520
521





1152





520
521





1153





520
521





1154





522
523





1155





522
523





1156





536
537





1157





536
537





1158





536
537





1159





538
539





1160





538
539





1161





540
541





1162





541
542





1163





542
543





1164





546
547





1165





546
547





1166





550
551





1167





550
551





1168





569
570





1169





582
583





1170





582
583





1171





584
585





1172





584
585





1173





594
595





1174





596
597





1175





596
597














Method R, Step 1.


A solution of R1 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu) (0.010 g) in acetonitrile (0.85 mL) and dichloroethane (0.15 mL) was put into a microtiter plate well followed by addition of 0.12 ml of 0.5M phenylisocyanate solution in dichloroethane. The well was sealed and the plate shaken for 20 h before the mixture was filtered and the solid washed with acetonitrile (0.5 ml). The combined solution was treated with Trisamine resin (0.050 g, 6 eq., 4.23 mmol/g) and Isocyanate resin (0.067 g, 3 eq., 1.53 mmol/g) and the mixture was shaken for 18 h. The mixture was filtered and the solution was evaporated to give the R2 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu and R5=Ph).


Method R, Step 2.


Procedure similar to Method Q, step 6 was used for the transformation of R2 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu and R5=Ph) to R3 (n=1, p=2, m=1, R2═H, R3=Me; R4iBu and R5=Ph).


The following compounds were prepared using similar methods:


















Obs.


#
Structure
MW
m/e







1176





309
310





1177





309
310





1178





311
312





1179





325
326





1180





337
338





1181





346
347





1182





351
352





1183





351
352





1184





351
352





1185





365
366





1186





365
366





1187





365
366





1188





367
368





1189





377
378





1190





381
382





1191





385
386





1192





391
392





1193





393
394





1194





395
396





1195





399
400





1196





399
400





1197





399
400





1198





399
400





1199





399
400





1200





401
402





1201





403
404





1202





403
404





1203





407
408





1204





407
408





1205





410
411





1206





410
411





1207





413
414





1208





413
414





1209





415
416





1210





415
416





1211





415
416





1212





415
416





1213





417
418





1214





419
420





1215





419
420





1216





419
420





1217





421
422





1218





421
422





1219





425
426





1220





427
428





1221





427
428





1222





429
430





1223





429
430





1224





431
432





1225





431
432





1226





433
434





1227





435
436





1228





441
442





1229





441
442





1230





441
442





1231





445
446





1232





449
450





1233





453
454





1234





453
454





1235





453
454





1236





453
454





1237





453
454





1238





455
456





1239





455
456





1240





457
458





1241





461
462





1242





463
464





1243





467
468





1244





467
468





1245





471
472





1246





475
476





1247





477
478





1248





477
478





1249





487
488





1250





487
488





1251





487
488





1252





491
492














Method S, Step 1.


A solution of S1 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu) (0.010 g) in acetonitrile (0.85 mL) and dichloroethane (0.15 mL) was put into a microtiter plate followed by addition of DIPEA-MP resin (0.030 g, 4 eq) and phenylsulfonyl chloride in dioxane (1M, 45 μL, 0.045 mmol. The well was capped and shaken for 18 h before it was filtered and residue washed with acetonitrile (0.5 mL). The combined solution was treated with Trisamine resin (0.040 g, 6 eq., 4.23 mmol/g) and Isocyanate resin (0.060 g, 3 equiv., 1.53 mmol/g) and shaken for 18 h before the mixture was filtered and the solvent removed to give S2 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu and R15=Ph).


Method S, Step 2.


Procedure similar to Method Q, step 6 was used for the transformation of S2 to S3 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu and R15=Ph).


The following compounds were prepared using similar methods:


















Obs.


#
Structure
MW
m/e







1253





344
345





1254





344
345





1255





358
359





1256





358
359





1257





360
361





1258





372
373





1259





372
373





1260





386
387





1261





406
407





1262





406
407





1263





406
407





1264





412
413





1265





416
417





1266





420
421





1267





420
421





1268





420
421





1269





420
421





1270





420
421





1271





420
421





1272





424
425





1273





424
425





1274





424
425





1275





431
432





1276





432
433





1277





434
435





1278





434
435





1279





436
437





1280





436
437





1281





438
439





1282





440
441





1283





440
441





1284





440
441





1285





442
443





1286





442
443





1287





442
443





1288





442
443





1289





442
443





1290





446
447





1291





448
449





1292





448
449





1293





448
449





1294





454
455





1295





456
457





1296





456
457





1297





458
459





1298





458
459





1299





458
459





1300





462
463





1301





464
465





1302





466
467





1303





466
467





1304





466
467





1305





466
467





1306





470
471





1307





474
475





1308





474
475





1309





474
475





1310





474
475





1311





474
475





1312





474
475





1313





474
475





1314





474
475





1315





474
475





1316





474
475





1317





476
477





1318





480
481





1319





482
483





1320





484
485





1321





484
485





1322





488
489





1323





490
491





1324





490
491





1325





492
493





1326





498
499





1327





508
509





1328





508
509





1329





508
509





1330





508
509





1331





542
543





1332





557
558














Method T, Step 1.


To a microtiter plate well containing 1 ml solution of T1 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu) in DCM (0.010 g) and R15C(O)R16 (5 equiv, R15═H, R16=Ph) was added Sodium cyanoborohydride in dichloroethane (14.3 mg/mL, 2 equiv.). The well was capped and shaken for 20 h before MP-TsOH Resin (100 mg, 1.29 mmol/g) was added to the well followed by additional MP-TsOH resin (50 mg) after 2 h. After the mixture was shaken for another 1 h, the mixture was filtered and the resin washed with dichloroethane (1 mL) (3×), then MeOH (1 mL) (2×). The resin was treated with 7N ammonia in MeOH (1 mL) for 30 min (2×) followed by filtration and evaporation of solvent to give T2 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu and R15=Ph and R16═H).


Method T, Step 2.


Procedure similar to Method Q, step 6 was used for the transformation of T2 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu and R15=Ph and R15═H) to T3 (n=1, p=2, m=1, R2═H, R3=Me; R4=iBu and R15=Ph and R16═H).


The following compounds were prepared using similar methods:


















Obs.


#
Structure
MW
m/e







1333





348
349





1334





350
351





1335





350
351





1336





356
357





1337





362
363





1338





370
371





1339





384
385





1340





384
385





1341





400
401





1342





446
447





1343





448
449














In a microwave vial was charged U1 (R2═H; R3=i-Bu, R4=Me) (0.025 g) in toluene (4 mL), potassium carbonate (0.035 g), Pd(dppf)Cl2 (0.020 g). water (0.02 mL) and R21B(OH)2 (R21=m-Methoxyphenyl) (3 eq.) were placed. The vial was placed in a microwave for 10 min. at 150° C. The reaction mixture was diluted with dichloromethane and extracted with 2.5N NaOH. The dried (MgSO4) dichloromethane solution was concentrated in vacuo to give a brown residue which was purified via a RP Prep LCMS system to give product U2 (R2═H; R3=Bu: R4=Me; R21=m-methoxyphenyl).


The following compounds were prepared using similar methods:


















Obs.


#
Structure
MW
m/e







1344





279
280





1345





285
286





1346





293
294





1347





299
300





1348





299
300





1349





304
305





1350





309
310





1351





313
314





1352





318
319





1353





323
324





1354





323
324





1355





323
324





1356





329
330





1357





335
336





1358





335
336





1359





337
338





1360





343
344





1361





347
348





1362





347
348





1363





347
348





1364





347
348





1365





347
348





1366





349
350





1367





349
350





1368





350
351





1369





351
352





1370





352
353





1371





357
358





1372





359
360





1373





360
361





1374





360
361





1375





360
361





1376





360
361





1377





360
361





1378





360
361





1379





365
366





1380





365
366





1381





365
366





1382





365
366





1383





366
367





1384





371
372





1385





371
372





1386





371
372





1387





372
373





1388





372
373





1389





375
376





1390





377
378





1391





377
378





1392





377
378





1393





377
378





1394





379
380





1395





379
380





1396





380
381





1397





381
382





1398





383
384





1399





384
385





1400





385
386





1401





385
386





1402





386
387





1403





387
388





1404





389
390





1405





389
390





1406





392
393





1407





395
396





1408





403
404





1409





403
404





1410





405
406





1411





406
407





1412





413
414





1413





419
420





1414





497
498





1415





398
TBD





1416





399
TBD














Method V, Step 1:


Compound V1 (R3═R4=Me) (14.76 mmole), EDCl (14.76 mmole), HOAt (14.76 mmole), and DIEA (14.76 mmole) were mixed with 36 ml DCM. This mixture was stirred at RT for 15 min before 3-chlorobenzylamine was added. After the reaction solution was stirred at RT overnight, it was washed with sodium carbonate (3×), water, 1N HCl (4×), and aq sodium bicarbonate and dried over anhydrous sodium sulfate. The solvent was evaporated and the residue was purified on flash column to give the amide product V2 (R1=3-chlorobenzyl; R3═R4=Me).


Method V, step 2


Compound V2 (R1=3-chlorobenzyl; R3═R4=Me) (8.33 mmole) was dissolved in 35 ml anhydrous DCM, and cooled to 0-5° C. Thiophosgene (9.16 mmole) in 10 ml DCM was added dropwise under N2 followed by addition of DIEA (11.96 mmole). The solution was stirred in ice bath for 0.5 h before the reaction mixture was washed with saturated sodium bicarbonate (3×), brine, and dried over anhydrous sodium sulfate. The solvent was evaporated and residue purified on flash column using ethylacetate/hexane to give the thiohydantoin V3 (R1=3-chlorobenzyl; R3═R4=Me).


Method V, step 3:


The thiohydantoin V3 (R1=3-chlorobenzyl; R3═R4=Me) was treated with t-butyl hydroperoxide and ammonium hydroxide in MeOH at RT for 48 h to give compound V4 (R1=3-chlorobenzyl; R2═H; R3═R4=Me).


The following compounds were prepared using similar method.





















Obs.



#
Structure
MW
m/e









1417





251
252







1418





265
266







1419





293
294







1420





307
308







1421





357
358







1422





371
372















Compound W1 obtained using method A (n=1, R2=m-Cl—Bn, R=Me) was hydrolyzed to W2 (n=1, R2=m-Cl—Bn, R3=Me) using two equivalent of LiOH in MeOH.


The following compounds were synthesized in similar fashion:


















Obs.


#
Structure
MW
m/e







1423





295
296





1424





311
312





1425





325
326





1426





411
412





1427





425
426














(In the scheme, -Z-NH—C(O)—N(R16)(R17)— is equivalent to R1 substituted by R21, or R1 Substituted by alkyl-R22, wherein R21 and R22 are —NH—C(O)—N(R16)(R17) and R15 is H, and wherein Z is optionally substituted alkylene-arylene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene-alkylene, alkylene-cycloalkylene, alkylene-cycloalkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene-alkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)


Method X, Step 1:


To a mixture of the amine X1 obtained using method L (R3=Me; R4=i-Bu; Z=para-(CH2)C6H4(CH2)—) (10 mg) in DCM and sat. NaHCO3 (1:1 by volume) was added triphosgene (0.33 eq) at r.t. The solution was stirred vigorously for 40 minutes before the organic layer was separated and dried over anhydrous Na2SO4. The organic solution was evaporated to give compound X2 (R3=Me; R4=i-Bu; Z=para-(CH2)C6H4(CH2)—).


Method X, Step 2:


Compound X3 (R15═H; R16=cyclopropylmethyl; R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—) was prepared from X2 (R3=Me; R4=i-Bu; Z=para-(CH2)C6H4(CH2)—) using method similar to method M, step 1.


Method X, Step 3:


Compound X4 (R16═H; R17=cyclopropylmethyl; R2═H; R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—) was prepared from X3 (R16═H; R17=cyclopropylmethyl; R2═H; R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—) using method similar to method A Step 3. NMR (CD3OD): δ 7.25, s, 4H; δ 4.8, m, 2H; δ 4.25, s, 2H; δ 2.9, m, 2H; δ 1.68, m, 2H; δ 1.44, m, 1H; δ 1.36, s, 3H; δ 0.9, m, 1H; δ 0.82, m, 3H; δ 0.66, m, 3H; δ 0.4, m, 2H; δ 0.12, m, 2H. ES_LCMS (m/e) 386.1.


The following compounds were prepared using a similar method.




















Obs.


#
Structure
MW
m/e





1428





385
386





1429





401
402





1430





401
402





1431





415
416





1432





427
428





1433





435
436





1434





435
436





1435





443
444





1436





449
450





1437





463
464





1438





471
472





1439





485
486





1440





496
497





1441





504
505





1442





513
514





1443





518
519





1444





518
519





1445





524
525





1446





524
525





1447





526
527





1448





532
533





1449





533
534





1450





537
538





1451





537
538





1452





545
546





1453





559
560





1454





570
571





1455





572
573





1456





598
599














(In the scheme,







is equivalent to R1 substituted by R21, or R1 Substituted by alkyl-R22, wherein R21 and R22 are —N(R15)—C(O)—N(R16)(R17) and R15 and R16 form a ring as defined above, and wherein Z is optionally substituted alkylene-arylene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene-alkylene, alkylene-cycloalkylene, alkylene-cycloalkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene-alkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)


Method Y, Step 1:


The reaction mixture of compound Y1 obtained from Method L (R3=Me; R4=i-Bu; Z=para-(CH2)C6H4(CH2)—) (0.1639 mmole), Y2 (R23═H; R23=Pr) (0.1967 mmole), PS-EDC resin (0.4917 mmole) and HOBT (0.2459 mmole) in 3.5 ml of mixture of THF, MeCN and DMF (1:1:0.3) was shaken overnight at RT before 6 eq of PS-trisamine resin 3 eq of PS-isocyanate resin were added. After 6 hrs the reaction mixture was filtered and the resin was washed with THF, DCM and MeOH. The combined filtrate was evaporated and the crude was treated with 40% TFA in DCM for 40 min before the solvent was evaporated and residue purified on RP HPLC system to give product Y3 (R3=Me; R4=i-Bu; Z=para-(CH2)C6H4(CH2)—, R23═H; R23=Pr).


Method Y, Step 2:


The reaction solution of Y3 (R3=Me; R4=i-Bu; Z=para-(CH2)C6H4(CH2)—, R23═H; R23=Pr) (0.030 mmole), carbonyl diimidazole (0.032 mmole), and DIEA (0.09 mmole) in 0.5 ml DCM was shaken over weekend at RT. The crude was then purified on reverse column to give the thiohydantoin product which was converted into Y4 (R2═H; R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—, R23═H; R23=Pr).


The following compounds were prepared using similar method.


















Obs.


#
Structure
MW
m/e







1457





413
414





1458





413
414





1459





427
428














(In the scheme, -Z-NH—C(O)—N(R16)(R17)— is equivalent to R1 substituted by R21, or R1 Substituted by alkyl-R22, wherein R21 and R22 are —N(R15)—C(O)—N(R16)(R17) and R15 is H, and wherein Z is optionally substituted alkylene-arylene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene-alkylene, alkylene-cycloalkylene, alkylene-cycloalkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene-alkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)


Method Z, Step 1:


To the solution of the Phoxime™ resin (1.23 mmol/g) in DCM was added the amine Z1 obtained from method L (R3=Me; R4=Bu; Z=para-(CH2)C6H4(CH2)—) (2 eq). The mixture was shaken overnight before the resin was filtered and washed with DCM, MeOH, THF (3 cycles), then DCM (×2), dried in vacuum to get resin Z2 (R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—).


Method Z, Step 2:


To the resin Z2 (R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—), swelled in DCM, in toluene was added N-methylbenzylamine (4 eq). The mixture was heated at 80-90° C. overnight before MP-TSOH resin (1.3 mmol/g, 12 eq) was added. The mixture was shaken for 1.5 hours, the solution was filtered and the resin washed with DCM and MeOH. The combined organic solution was concentrated in vacuo to get Z3 (R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—; R16=Me; R17=Bn).


Method Z, Step 3:


Compound Z4 (R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—; R16=Me; R17=Bn) was generated from Z3 (R3=Me; R4=iBu; Z=para-(CH2)C6H4(CH2)—; R16=Me; R17=Bn) using method similar to Method A step 3.


The following compounds were prepared using similar method.


















Obs.


#
Structure
MW
m/e







1460





457
458





1461





469
470





1462





471
472





1463





471
472





1464





483
484





1465





485
486





1466





485
486





1467





495
496





1468





499
500





1469





501
502





1470





507
508





1471





509
510





1472





517
518





1473





517
518





1488





364
365





1489





377
377





1490





513
514





1474





531
532





1475





533
534





1476





533
534





1477





538
539





1478





545
546





1479





547
548





1480





547
548





1481





547
548





1482





551
552





1483





568
569





1484





571
572





1485





593
594





1486





596
597





1487





607
608














8,11-Dichloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine (AA2) (18 mg) was reacted with AA1, obtained from method Q, and diisopropylethylamine (14 uL) in acetonitrile (2.5 mL). The resulting mixture was heated at 65° C. for 18 h. The reaction mixture was placed on a preparative silica gel plate and eluted with hexane:ethyl acetate 3:1 to give the desired product which was treated with 40% TFA. Evaporation of the solvent followed by purification afforded compound AA3.


















Obs.


#
Structure
MW
m/e







187





491
492





188





493
494









The following compounds were prepared using similar method.







Method AB, Step 1:


To a solution of (R)-(+)-2-methyl-2-propane sulfonamide (1.0 g, 8.3 mmol, 1 eq) and AB1 (R3=Ph, R4=n-Bu) (3 mL, 9.1 mmol, 1.1 eq) in anhydrous THF (30 mL) at room temperature was added Ti(OEt)4 (7 mL, 17 mmol, 2 eq). The mixture was heated at 70° C. for 24 h. After cooling to room temperature, the mixture was poured into 30 mL of brine under vigourous stirring. The resulting suspension was filtered through a pad of Celite and the solid was washed with EtOAc (2×20 mL). The filtrate was washed with brine (30 mL), dried (Na2SO4), and concentrated in vacuo. The residue was chromatographed on silica by eluting with hexane/Et2O (5:1) to give 1.9 g (85%) of (R)-2-methyl-N-(1-phenylpentylidene)propane-2-sulfinamide. 1HNMR (CDCl3, 300 MHz): δ 7.91 (m, 2H), 7.52-7.37 (m, 3H), 3.27 (m, 1H), 3.15 (m, 1H), 1.73-1.61 (m, 2H), 1.47-1.38 (m, 2H), 1.31 (s, 9H), 0.95 (m, 3H). MS (ESI): MH+=265.9. HPLC tR=7.24, 7.58 min (E/Z=5.5:1).


To a solution of methyl acetate (0.6 mL, 6.9 mmol, 2 eq) in THF (5 mL), LDA (2M in heptane/THF, 3.4 mL, 6.9 mmol, 2 eq) was added dropwise via a syringe at −78° C. After stirring at −78° C. for 30 min, a solution of CITi(Oi-Pr)3 (1.8 mL, 7.6 mmol, 2.2 eq) in THF (5 mL) was added dropwise. After stirring for another 30 min, a solution of (R)-2-methyl-N-(1-phenylpentylidene)propane-2-sulfinamide (0.9 g, 3.4 mmol, 1 eq) in THF (2 mL) was added dropwise via a syringe. The mixture was stirred at −78° C. for 3 h and TLC showed no starting material left. A saturated aqueous solution of NH4Cl (10 eq) was added and the suspension was warmed to room temperature. The mixture was diluted with H2O (50 mL) and stirred for 10 min. The mixture was then partitioned between H2O (50 mL) and EtOAc (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine, dried (MgSO4) and concentrated to give 1.1 g of a brown oil. Chromatography on silica gel using 50% EtOAc/hexanes as eluent gave 0.8 g (76%) of methyl 3-((R)-2-methylpropan-2-ylsulfinamido)-3-phenylheptanoate as a yellow oil. 1HNMR (CDCl3, 300 MHz): δ 7.15-7.07 (m, 5H), 3.35 (s, 1H), 3.19 (dd, J=16, 5.6 Hz, 1H), 3.01 (dd, J=15.8, 5.5 Hz, 1H), 2.07 (m, 2H), 1.71 (m, 2H), 1.35-1.26 (m, 4H), 1.17 (s, 9H), 0.89 (m, 3H). MS (ESI): MH+=339.9. HPLC tR=7.50, 7.6 min (E/Z=1.5:1)


To a solution of methyl 3-((R)-2-methylpropan-2-ylsulfinamido)-3-phenylheptanoate (0.4 g, 1.1 mmol) in 12 mL of MeOH was added 16 mL of 4N HCl/dioxane. After stirring for 30 min, the volatiles were removed in vacuo. The residue was re-dissolved in MeOH (6 mL), stirred for 5 min, and evaporated again to afford 0.30 g (97%) of AB2 (R3=Ph, R4=n-Bu) as a yellow solid. 1HNMR (CDCl3, 300 MHz): δ 9.01 (br s, 2H), 7.37-7.12 (m, 5H), 3.64 (m, 1H), 3.54 (s, 3H), 3.31 (m, 1H), 2.09 (m, 2H), 1.8 (m, 2H), 1.1 (m, 4H), 1.07 (s, 9H), 0.7 (m, 3H). MS (ESI): MH+=235.9. HPLC tR=4.72 min.


Method AB, Step 2:


Treatment of compound AB2 (R3=Ph, R4=n-butyl) with thiophosgene in CH2Cl2 in the presence of aqueous NaHCO3 at 0° C. generates isothiocyanate AB3 (R3=Ph, R4=n-butyl) which was converted into final product using method similar to Method A Step 2 and Method A Step 3 to give product AB5 (R3=Ph, R4=n-butyl, R1=Me). 1HNMR (CDCl3, 300 MHz): δ 10.4 (br s, 1H), 7.25-7.11 (m, 5H), 3.23 (dd, J=16, 5.6 Hz, 1H), 3.03 (s, 3H), 2.8 (dd, J=15.8, 5.5 Hz, 1H), 2.49 (s, 1H), 1.78 (m, 2H), 1.1-1.0 (m, 4H), 0.99 (m, 3H). MS (ESI): MH+=260.2. HPLC tR=5.09 min.


The following compounds were synthesized using similar methods:


















Obs.


#
Structure
MW
m/e







189





239
240





190





253
254





191





259
260





192





333
334





193





333
334





194





349
350





195





443
444





196





463
464





197





537
538





198





537
538





199





295
296





200





295
296














The synthesis was adapted from a procedure by Hull, R. et al, J. Chem. Soc. 1963, 6028-6033. Thus, to a solution of AC2 (R1=Benzyl) (0.72 g, 5.9 mmol) in AC1 (R4=Me, R3=Me) (1.4 mL) was added a 50% aqueous solution of cyanamide (0.31 mL, 8.0 mmol). The reaction was heated with stirring at reflux (˜40° C.) for 0.5 h, then cooled to 25° C. and stirred for an additional 16 h. The volatiles were removed in vacuo and the residue was partitioned between ether and H2O. The organic layer was dried over Na2SO4, filtered and the volatiles were removed in vacuo. The residue was purified by column chromatography using 5-10% CH3OH/CH2Cl2 as eluent followed by reverse phase preparative HPLC to give 0.15 g (8.0%) of AC3 (R1=benzyl, R4=Me and R3=Me) as a white solid. 1H NMR (CH3OH, 300 MHz): δ7.35-7.33 (m, 5H), 4.71 (s, 2H), 1.46 (s, 6H); 13C NMR (CDCl3, 75 MHz) δ 157.8, 135.6, 129.1, 128.5, 127.9, 104.2, 59.6, 28.8. MS (ESI) m/e 206.1 (M+H)+.


















#
Structure
MW
Obs. m/e









201





205
206















Method AD, Step 1:


AD2 (R3=Ph, R4=tButyl) was prepared from AD1 using method similar to Method AB, step 2.


Method AD, Step 2:


The synthesis was adapted from a procedure by Hussein, A. Q. et al, Chem. Ber. 1979, 112, 1948-1955. Thus, to a mixture of AD2 (R3=Ph, R4=tert-Butyl) (0.56 g, 2.7 mmol) and boiling chips in CCl4 (25 mL) was added N-bromosuccinimide (0.49 g, 2.7 mmol). The mixture was irradiated with a 200 watt light source for 1 h. The reaction was cooled, the solid filtered off and the volatiles were removed in vacuo. Chromatography on silica gel by eluting with 5% EtOAc/hexane gave 0.57 g (73%) of 1-(1-bromo-1-isothiocyanato-2,2-dimethylpropyl)benzene as a beige powder. 1H NMR (CDCl3, 300 MHz): δ 7.63-7.61 (m, 2H), 7.37-7.26 (m, 3H), 1.17 (s, 9H); 13C NMR (CDCl3, 75 MHz): δ 139.1, 129.0, 128.9, 128.6, 127.5, 91.2, 45.6, 26.6. MS (ESI) m/e284.9 (M+H)+.


To a solution of 1-(1-bromo-1-isothiocyanato-2,2-dimethylpropyl)benzene (0.13 g, 0.47 mmol) and the hydrochloride salt of N-methylhydroxylamine (0.047 g, 0.57 mmol) in THF (3 mL) was added triethylamine (0.18 mL, 1.32 mmol). The mixture was stirred at 25° C. for 16 h, filtered and the volatiles were removed in vacuo. The residue was purified by column chromatography using CH3OH/CH2Cl2 as eluent to give 0.050 g (42%) of AD3 (R3=Ph, R4=tert-Butyl) as a glassy solid. 1H NMR (CDCl3, 300 MHz): δ 7.35-7.26 (m, 5H), 3.38 (s, 3H), 1.0 (s, 9H); MS (ESI) m/e 251.1 (M+H)+.


Method AD, Step 2:


To a solution of AD3 (R3=Ph, R4=tert-Butyl) (0.065 g, 0.26 mmol) in CH3OH (5 mL) at 0° C. was added a solution of aqueous ammonia (2 mL) followed by a 70% aqueous solution of t-butylhydroperoxide (2 mL). The reaction was allowed to warm to 25° C. and stirred for 16 h, The volatiles were removed and the residue was purified by reverse phase HPLC to give 2.0 mg (2.2%) of AD4 (R3=Ph, R4=tert-Butyl) as a colorless oil. 1H NMR (CDCl3, 300 MHz) δ 7.47-7.43 (m, 2H), 7.39-7.35 (m, 3H), 3.23 (s, 3H), 1.0 (s, 9H); MS (ESI) m/e 234.2 (M+H)+.


The following compounds were synthesized using similar methods:





















Obs.



#
Structure
MW
m/e









202





213
214







203





233
234







204





309
310















Method AE, Step 1:


TBDMS-Cl (5.3 g, 35.19 mmole) and imidazole (2.4 g, 35.19 mmole) were added to a suspension of H2 (R1=Me, R3=cyclohexylmethyl) (8.2 g, 31.99 mmole) in 220 ml DCM. The reaction mixture was stirred at room temperature overnight. The reaction mixture was filtered, and the filtrate was diluted with 1200 ml EtOAc. The organic phase was washed with saturated NaHCO3 3× and brine 3×, and dried over anhydrous Na2SO4 to give 12 g of AE2 (R1=Me, R3=cyclohexylmethyl), which was used for next step without further purification.


Method AE, Step 2:


AE2 (R1=Me, R3=cyclohexylmethyl; 12 grams crude) was converted to iminohydantoin using conditions similar to Method A Step 3, which was subsequently treated with 75% TFA in DCM at room temperature for 24 hrs. The solvent was evaporated in vacuo to give 13.6 g of a product that was reacted with Boc anhydride to give 5.8 g AE3 (R1=Me, R3=cyclohexylmethyl) after column purification.


Method AE, Step 3:


AE4 (R1=Me, R3=cyclohexylmethyl)(8.2 g) was obtained from AE3 (5.8 g) according to the step 4 of the method H.


Method AE, Step 4:


To a solution of AE4 (R1=Me, R3=cyclohexylmethyl) ((3.95 g, 8.38 mmol) in anhydrous THF (98 mL) was added diisopropylethylamine (7 mL, 40 mmol). The reaction was stirred under N2 (gas) at room temperature. After 5.5 h, the reaction was concentrated and the crude material was purified via flash chromatography eluting with a gradient of 0 to 75% ethyl acetate in hexane to afford AE5 (R1=Me, R3=cyclohexylmethyl) (2.48 g, 92%).


Method AE, Step 4:


To a solution of R15OH(R15=cyclobutyl) (10 μl) and HBF4 (1 equiv) in anhydrous methylene chloride (0.5 mL) was added a solution of AE5 (R1=Me, R3=cyclohexylmethyl) (20 mg, 0.062 mmol) in methylene chloride (0.5 mL). The reaction was agitated overnight at rt. Trifluoroacetic acid (1 mL) was added to the reaction mixture and the solution was agitated for 1 h at rt. The reaction was concentrated and the crude material was purified via reverse phase preparative HPLC/MS eluting with a 7 min gradient of 5 to 95% CH3CN in H2O with 0.1% formic acid to afford AE5 (R1=Me, R3=cyclohexylmethyl, R15=cyclobutyl).


The following compounds were synthesized using similar method:


















Obs.


#
Structure
MW
m/e







205





267
268





206





293
294





207





295
296





208





295
296





209





295
296





210





295
296





211





305
306





212





307
308





213





307
308





214





309
310





215





309
310





216





309
310





217





309
310





218





321
322





219





321
322





220





321
322





221





322
323





222





329
330





223





333
334





224





335
336





225





335
336





226





335
336





227





335
336





228





335
336





229





335
336





230





335
336





231





335
336





232





335
336





233





337
338





234





337
338





235





349
350





236





349
350





237





349
350





238





349
350





239





353
354





240





361
362





241





363
364





242





363
364





243





363
364





244





389
390





245





321
NA














To a solution of tBuOK (9.5 mg, 0.0848 mmole) in 0.5 ml anhydrous THF was added ArOH (Ar=m-Chlorophenyl)(13 μl, 0.1273 mmole) in 0.5 ml anhydrous THF followed by addition of AE4 (R1=Me, R3=cyclohexylmethyl) (20 mg, 0.0424 mmole) in 0.5 ml anhydrous THF. The reaction mixture was stirred at room temperature for 2 days before it was diluted with 1 ml MeCN, treated with 100 mg MP-TsOH resin and 100 mg Amberlyst A26 resin. The resin was removed by filtration and the filtrate was evaporated down to give a product that was treated with 50% TFA for 1 hr. After evaporation of TFA in vacuo, the residue was dissolved in 2 ml MeCN, and treated with 100 mg MP-TsOH resin. The resin was washed thoroughly with THF, MeCN and MeOH, and then treated with 2M NH3 in MeoH to give AF2 (R1=Me, R3=cyclohexylmethyl and R15=3-chlorophenyl).


The following compounds were synthesized using similar method:


















Obs.


#
Structure
MW
m/e


















246





316
317





247





316
317





248





316
317





249





329
330





250





329
330





251





329
330





252





330
331





253





331
332





254





331
332





255





333
334





256





333
334





257





333
334





258





333
334





259





333
334





260





340
341





261





340
341





262





340
341





263





343
344





264





343
344





265





343
344





266





343
344





267





344
345





268





344
345





269





345
346





270





345
346





271





345
346





272





345
346





273





347
348





274





347
348





275





349
350





276





349
350





277





349
350





278





349
350





279





351
352





280





351
352





281





351
352





282





351
352





283





351
352





284





351
352





285





351
352





286





351
352





287





355
356





288





355
356





289





357
358





290





357
358





291





357
358





292





357
358





293





358
359





294





358
359





295





358
359





296





358
359





297





359
360





298





359
360





299





359
360





300





359
360





301





359
360





302





360
361





303





360
361





304





360
361





305





363
364





306





363
364





307





363
364





308





363
364





309





365
366





310





365
366





311





366
367





312





366
367





313





366
367





314





366
367





315





366
367





316





366
367





317





366
367





318





367
368





319





367
368





320





367
368





321





369
370





322





371
372





323





371
372





324





371
372





325





372
373





326





372
373





327





372
373





328





372
373





329





373
374





330





373
374





331





375
376





332





375
376





333





375
376





334





377
378





335





377
378





336





377
378





337





383
384





338





383
384





339





383
384





340





383
384





341





383
384





342





383
384





343





383
384





344





383
384





345





383
384





346





383
384





347





385
386





348





385
386





349





386
387





350





387
388





351





387
388





352





393
394





353





393
394





354





393
394





355





393
394





356





399
400





357





399
400





358





400
401





359





400
401





360





400
401





361





401
402





362





401
402





363





401
402





364





405
406





365





411
412





366





414
415





367





417
418





368





417
418





369





421
422





370





434
435





371





451
452














Method AG, Step 1:


R21—H(R21=PhS—) (33 μl, 0.318 mmole) was treated with NaH (10.2 mg, 60% in mineral oil) in 0.5 ml anhydrous THF. A solution of AE4 (R1=Me, R3=Cyclohexylmethyl) (20 mg, 0.0424 mmol) in 0.5 ml anhydrous THF was added. The reaction mixture was stirred at room temperature overnight before it was partitioned between ether and saturated NaHCO3 water solution. The aqueous phase was extracted with ether 2 times. The combined organic phase was washed with brine 2 times, and dried over anhydrous NaSO4. The crude was purified on flash column with EtOAc/hexane to give 9 mg of AG1 (R21=PhS—, R1=Me, R3=cyclohexylmethyl) (49.2% yield).


Method AG, Step 2:


AG1 (R21=PhS—, R1=Me, R3=cyclohexylmethyl) was treated with 50% TFA according to the Step 6 of the method H to give AG2 (R21=PhS—, R1=Me, R3=cyclohexylmethyl).


The following compounds were synthesized using similar method:





















Obs.



#
Structure
MW
m/e





















372





315
316







373





331
332







374





337
338















Method AH, Step 1:


Benzophenone imine (3.27 g, 18.04 mmole) was added to a suspension of AH1 (R3=cyclohexylmethyl) (4 g, 18.04 mmole) in 65 ml DCM. The reaction mixture was stirred at room temperature overnight under N2 before the solid was filtered, and the solvent was evaporated. The residue was dissolved in 100 ml ether, washed with water 2× and dried over anhydrous MgSO4. The crude was purified on flash column to give 5.08 g (80.57% yield) of AH2 (R3=cyclohexylmethyl).


Method AH, Step 2:


A solution of AH2 (R3=cyclohexylmethyl) (1 g, 2.86 mmole) in 12 ml anhydrous THF was added to a suspension of 18-crown-6 (0.76 g, 2.86 mmole) and 30% KH in mineral oil (1.16 g, 8.58 mmole) in 4 ml anhydrous THF under N2. The mixture was cooled in ice-bath and R4Br (R4=3-pyridylmethyl, as a hydrobromide salt) was then added. The reaction mixture was stirred in ice-bath for 30 min and at room temperature for 2 more hrs before the reaction was quenched with 2 ml of HOAc/THF/H2O (0.25:0.75:1). The mixture was diluted with 40 ml EtOAc/H2O (1:1). The aqueous phase was extracted with EtOAc 3 times. The combined organic phase was washed with brine 3 times and dried over anhydrous MgSO4. The crude was purified on flash column to give 0.44 g (35.14% yield) of product which was treated with 1N HCl (2.2 ml, 2.22 mmole) in 3 ml ether in ice-bath followed by stirred at r.t. overnight. The aqueous phase was evaporated and purified on C-18 reverse phase column to give 0.22 g (66% yield) of AH3 (R4=3-pyridylmethyl; R3=cyclohexylmethyl).







To a solution of compound AI1 (R1=Me, R3=n-Bu) (34 mg, 0.105 mmol) in methanol (1 ml) was added 10% Pd/C (5 mg). The mixture was kept under an H2 balloon for 1 hr. After filtration of the catalyst, the filtrate was concentrated to get crude product. This residue was purified by RP HPLC to get compound AI2 (R1=Me, R3=n-Bu) (25 mg, 100%). Observed MW (M+H) 246.1; exact mass 245.15. 1H NMR (400 MHz, CD3OD): δ=7.59 (m, 2H), 7.36 (m, 3H), 3.17 (s, 3H), 2.17 (m, 2H), 1.27 (m, 4H), 0.86 (t, 3H, J=7.2 Hz).


The following compounds were synthesized using similar method:


















Obs.


#
Structure
MW
m/e


















375





283
284





376





285
286





377





299
300





378





450
451





379





462
463





380





463
464





381





487
488





382





489
490





383





503
504





384





516
517














To a mixture of compound AJ1 (R1=Me, R3=n-Bu) (70 mg, 0.165 mmol) and butylzincbromide (1.32 ml, 0.6 mmol) was added Pd(dppf)Cl2. The mixture was degassed, sealed and heated at 55° C. for 1 day. The mixture was diluted with CH2Cl2 and NH3/H2O. The organic layer was separated, dried, concentrated, and purified by RP HPLC to get product which was then treated with 4N HCl/dioxane for 30 min to give compound AJ2(R1=Me, R3=n-Bu) (12 mg, 25%). Observed MW (M+H) 302.1; 1H NMR (400 MHz, CD3OD): δ=7.32 (m, 3H), 7.22 (m, 1H), 3.19 (s, 3H), 2.65 (m, 2H), 2.20 (m, 2H), 1.60 (m, 2H), 1.38 (m, 4H), 1.24 (m, 2H), 0.92 (m, 6H).


The following compound was synthesized in a similar fashion:


















Obs.


#
Structure
MW
m/e


















386





518
519





385





301
302














To a solution of AK1 (R1=Me, R3=n-Butyl, R21=n-Bu) (9 mg, 0.03 mmol) in methanol (1 ml) was added 5% Pt/C (5 mg), Rh/C (5 mg) and conc. HCl (0.05 ml). The mixture was kept under H2 (50 psi) for 2 days. After the filtration of the catalyst, the filtrate was concentrated to get compound AK2 (R1=Me, R3=n-butyl, R21=n-Bu) Observed MW (M+H) 308.1. 1H NMR (CD3OD): δ=3.16 (s, 3H), 1.80 (m, 6H), 1.26 (m, 16H), 0.88 (m, 6H).


The following compounds were synthesized using similar method:


















Obs.


#
Structure
MW
m/e


















387





277
278





388





291
292





389





305
306





390





307
308





391





391
392





392





391
392





393





468
469














Method AL, Step 1:


To a solution of compound AL1 (R3=n-Bu) (418 mg, 1.39 mmol) in methanol (8 ml) was added PtO2 (40 mg) and conc. HCl (0.4 ml). The mixture was hydrogenated (50 psi) for 1 day. After filtration of the catalyst, the filtrate was concentrated. The crude residue was basified to pH=11-12 by 1N NaOH. This mixture was extracted with ethyl acetate. The organic layer was separated, dried and concentrated to get compound AL2 (R3=n-Bu) (316 mg, 100%).


Method AL, Step 2:


To a solution of compound AL2 (R3=n-Bu) (300 mg, 1.32 mmol) in dichloromethane (6 ml) was added (BOC)2O (316 mg, 1.45 mmol). The mixture was stirred at RT for 1.5 hr. It was diluted with water and dichloromethane. The organic layer was separated, dried and concentrated to get compound AL3 (R3=n-Bu) (464 mg, 100%).







Method AM, Step 1:


Compound AM1 (R1=Me, R3=n-Butyl) was treated with 4N HCl in dioxane for 2 hr. The mixture was concentrated to get compound AM2 as an HCl salt (R1=Me, R3=n-Butyl). Observed MW (M+H) 470.1; 1H NMR (CD3OD): δ=7.28 (m, 2H), 6.96 (m, 3H), 4.80 (m, 2H), 4.56 (m, 1H), 4.00 (m, 1H), 3.64 (m, 4H), 3.37 (m, 2H), 3.12 (m, 1H), 3.00 (m, 1H), 2.90 (m, 1H), 2.72 (m, 1H), 2.38 (m, 1H), 2.12-1.62 (m, 8H), 1.35 (m, 6H), 1.12 (m, 1H), 0.91 (m, 3H).


Method AM, Step 2:


To a solution of compound AM2 (R1=Me, R3=n-Butyl) (32 mg, 0.068 mmol) in dichloromethane (1 ml) was added acetyl chloride (5 ul, 0.072 mmol). The mixture was stirred for 2 hr. It was then diluted with CH2Cl2 and water. The organic layer was separated, dried, concentrated and purified by RP HPLC to get compound AM3 (R1=Me, R3=n-Butyl and R5=Me) Observed MW (M+H) 512.3; 1H NMR (400 MHz, CDCl3): δ=7.27 (m, 2H), 6.98 (m, 1H), 6.92 (m, 2H), 4.65 (s, 2H), 4.50 (m, 2H), 3.98 (m, 1H), 3.70 (m, 1H), 3.41 (m, 2H), 2.98 (m, 2H), 2.62 (m, 1H), 2.50 (m, 1H), 2.47 (m, 1H), 2.02 (m, 5H), 1.75 (m, 6H), 1.26 (m, 7H), 0.84 (m, 3H).


The following compounds were synthesized using similar method:


















Obs.


#
Structure
MW
m/e


















394





252
253





395





252
253





396





456
457





397





469
470





398





498
499





399





511
512














To a solution of compound AN2 (R1=4-N-(α-phenoxyacetyl)piperidinylmethyl, R3=n-Butyl) (28 mg, 0.06 mmol) in dichloroethane (2 ml) was added butyraldehyde (5.3 ul, 0.06 mmol), triethylamine (8.4 μl, 0.06 mmol) and NaBH(OAC)3 (18 mg, 0.084 mmol). The mixture was stirred overnight. It was then diluted with dichloromethane and water. The organic layer was separated, dried, concentrated and purified by RP HPLC to get AN2 (R1=4-N-(a-phenoxyacetyl)piperidinylmethyl, R3=n-Butyl, R15=propyl and R16═H) (5.4 mg, 17%). Observed MW (M+H) 526.1; exact mass 525.37. 1H NMR (CD30D): δ=7.28 (m, 2H), 6.96 (m, 3H), 4.76 (m, 2H), 4.55 (m, 1H), 4.05 (m, 1H), 3.77 (m, 1H), 3.61 (m, 3H), 3.50 (m, 1H), 3.11 (m, 4H), 2.85 (m, 1H), 2.68 (m, 1H), 2.38 (m, 1H), 2.05 (m, 2H), 1.95 (m, 2H), 1.73 (m, 5H), 1.39 (m, 8H), 1.10 (m, 1H), 0.99 (m, 3H), 0.92 (m, 3H).


The following compound was synthesized using similar method:


















Obs.


#
Stucture
MW
m/e







400





308
309





401





308
309





402





525
526














A mixture of copper chloride (2.06 g, 20.8 mmol) and lithium chloride (1.76 g, 41.6 mmol) in 100 ml of THF was cooled down to −78° C. To this mixture, a 2.0M solution of AO1 (R3=n-butyl) (10 ml, 20 mmol) was added gradually. The reaction was warmed up to −60° C., and AO2 (R4=m-Br-Ph) (2.9 ml, 22 mmol) was injected. The mixture was stirred at −60° C. for 15 minutes and then quickly warmed up to RT by removing the dry-ice bath. The reaction was quenched with water and sat. NaHCO3. After addition of diethyl ether, a lot of precipitate formed and was filtered. From the biphasic filtrate, the organic layer was separated, dried, concentrated and purified by silica gel chromatography (10% EtOAc/hexane) to get ketone AO3 (R4=m-BrPh, R3=n-Bu) (3.93 g, 82%). Observed MW (M+H) 241.1; exact mass 240.01. 1H NMR (400 MHz, CDCl3): δ=8.07 (m, 1H), 7.88 (m, 1H), 7.64 (m, 1H), 7.34 (m, 1H), 2.94 (t, 3H, J=7.2 Hz), 1.71 (m, 2H), 1.40 (m, 2H), 0.95 (t, 3H, J=7.6 Hz).


The following ketones were made according to Method 9:















Observed MW



Structure
(M + H)
Exact mass












242.1
241.01









Method AP






Method AP, Step 1:


To a solution of AP1 (R4=3-Bromophenyl) (5 g, 25 mmol) in dichloromethane (10 ml) were added N,O-dimethylhydroxylamine hydrochloride (2.56 g, 26.25 mmol) and 4-methylmorpholine (2.95 ml, 26.25 mmol). EDCl (5.04 g, 26.25 mmol) was then added portionwise. The reaction mixture was stirred at RT overnight and was then quenched with 1N HCl (60 ml). The mixture was extracted with dichloromethane. The organic layer was washed with 1N HCl and brine, dried over Na2SO4, and concentrated to give the Weinreb amide AP2 (R4=m-Bromophenyl) (5.96 g, 98%). Observed MW (M+H) 244.1; exact mass 243.99. 1H NMR (CDCl3): δ=7.78 (m, 1H), 7.58 (m, 2H), 7.24 (m, 1H), 3.51 (s, 3H), 3.32 (s, 3H). This material was used in the next step without purification.


Method AP, Step 2:


To a suspension of magnesium turnings (1.19 g, 48.8 mmol) in 30 ml of THF was added dropwise a solution of R3Br (R3=cyclohexylethyl) (5.73 ml, 36.6 mmol) in 24 ml of THF. After addition of half of the solution of bromide, several crystals of iodine were added to initiate the reaction. The mixture became cloudy and heat evolved. The rest of the solution of bromide was added dropwise. The mixture was stirred at RT for 30 minutes and then was cooled to 0° C., and the AP2 (R4=m-Bromophenyl) (5.96 g, 24.4 mmol) was added. The mixture was stirred at RT for 3 hr and then quenched with 1N HCl until no residual Mg(0) was left. The phases was separated, and the water layer was extracted with ether. The combined organic layers were washed with brine, dried, and concentrated. The crude was purified by silica chromatography (15% EtOAc/hexane) to get ketone AP3 (R4=m-Bromophenyl, R3=Cyclohexylethyl) (8.06 g, 100%). Observed MW (M+H) 295.2; exact mass 294.06. 1H NMR (400 MHz, CDCl3): δ=8.18 (m, 1H), 7.85 (m, 1H), 7.64 (m, 1H), 7.33 (m, 1H), 2.94 (t, 3H, J=7.2 Hz), 1.70 (m, 9H), 1.63 (m, 4H).







To a −78° C. solution of AQ1 (R4=cyclopropyl) (2.55 g, 38.0 mmol) in diethyl ether (100 ml) was added AQ2 (R3=n-BuLi) (38 ml, 1.5 M in hexanes, 57 mmol). After 45 min, the cooling bath was removed. After 3 h at RT, the reaction was quenched by dropwise addition of water and then diluted further with EtOAc and water. The phases were separated and the aqueous layer was extracted with EtOAc (2×). The organic portions were combined, washed with brine, dried over MgSO4, and concentrated. This crude residue was subjected to column chromatography (silica gel, 0%→100% CH2Cl2/hexanes) to provide the desired ketone AQ4 (R4=cyclopropyl, R3=n-Butyl) (2.57 g, 20.4 mmol, 54%). 1H NMR (CDCl3) δ 2.52 (t, J=7.2 Hz, 2H), 1.90 (m, 1H), 1.57 (m, 2H), 1.30 (m, 2H), 0.98 (m, 2H), 0.89 (t, J=7.6 Hz, 3H), 0.83 (m, 2H).







Method AR:


Compound B2 (R1=m-Cl-Phenethyl, R3=Me, R4=i-butyl and R5=benzyl) was converted into AR2 (R1=m-Cl-Phenethyl, R3=Me, R4=i-butyl and R5=benzyl) using method A step 3.


The following compounds were synthesized using similar methods:


















Obs.


#
Structure
MW
m/e


















403





396
397





404





354
NA





405





477
NA





406





460
NA





407





340
NA





408





382
NA





409





446
NA














Method AS, Step 1:


To a mixture of AS1 (R3=Ph) (3.94 g) in toluene (10 ml) was added thionyl chloride (1.61 ml) and the resulting mixture as heated under reflux for 6 h (until HCl evolution ceased). The reaction mixture was kept overnight at rt before it was concentrated in vacuo. Toluene (10 ml) was added and the mixture was concentrated in vacuo again. The reaction mixture was dissolved in CH2Cl2, solid sodium bicarbonate added, filtered and then the CH2Cl2 solution was concentrated in vacuo to give AS2 (R3=Ph).


Method AS, Step 2:


To AS2 (R3=Ph) (0.645 g) and AS5 (R4=4-chlorophenyl) (0.464 g), and 1,3-dimethylimidazolium iodide (0.225 g) in anhydrous THF (20 ml) was added 60% sodium hydride in oil (0.132 g). The resulting mixture was stirred at rt for 18 h. The reaction mixture was concentrated and partitioned between H2O and Et2O. The dried Et2O solution was concentrated in vacuo to give a yellow residue which was placed on preparative silica gel plates and eluted with CH2Cl2 to give AS3 (R3=Ph, R4=p-ClPh). (Miyashita, A., Matsuda, H., Hiagaskino, T., Chem. Pharm. Bull., 1992, 40 (10), 2627-2631).


Method AS, Step 3:


Hydrochloric acid (1N, 1.5 ml) was added to AS3 (R3=Ph, R4=p-ClPh) in THF (10 ml) and the resulting solution was stirred at rt for 20 h. The reaction mixture was concentrated in vacuo and then partitioned between CH2Cl2 and H2O. The dried CH2Cl2 was concentrated in vacuo to give a residue which was placed on preparative silica gel plates and eluted with CH2Cl2:hexane 1:1 to afford AS4 (R3=Ph, R4=p-ClPh).


Method AS, Step 4:


AS4 (R3=Ph, R4=p-ClPh) (0.12 g) and methylguanidine, HCl (AS6, R1=Me) (0.055 g) were mixed in absolute EtOH (5 ml) with triethylamine (0.2 ml) and then heated under reflux for 20 h. The resulting mixture was concentrated and then partitioned between CH2Cl2 and H2O. The dried CH2Cl2 was concentrated in vacuo to give a residue which was placed on preparative silica gel plates and eluted with CH2Cl2:MeOH 9:1 to afford AS5 (R3=Ph, R4=p-ClPh and R1=Me).


The following compounds were synthesized using similar methods:


















Obs.


#
Structure
MW
m/e


















411





265
266





412





265
266





413





271
272





414





271
272





415





279
280





416





295
296





417





295
296





418





299
300





419





299
300





420





309
310





421





325
326





422





343
344





423





343
344





424





421
422





425





482
483





426





512
513





427





560
561














Method AT, Step 1:


AT1, prepared using a method similar to Method H, Step 1, 2 and 3, (n=4, R3═R4=n-Bu) (0.146 g) in MeOH (3 ml) and 1N NaOH (0.727 ml) were stirred overnight at rt. The mixture was concentrated and then partitioned in water (pH ˜3, adjusted using conc. HCl) and EtOAc. The dried EtOAc layer was concentrated in vacuo to afford AT2 (n=4, R3═R4=n-Bu).


Method AT, Step 2:


Compound AT2 (n=4, R3═R4=n-Bu) (0.012 g) in MeCN (1 ml) was treated with EDC resin (0.12 g, 1.44 mmol/g), HOBT (0.004 g) in THF (1 ml), and n-butylamine (R15═H, R16=n-butyl) (0.007 ml). The reaction was carried out overnight at rt. before Argonaut PS-NCO resin (0.150 g), PS-polyamine resin (0.120 g) and THF (2 ml) were added and the mixture shaken for 4 h. The reaction mixture was filtered and resin washed with THF (2 ml). The combined organic phase was concentrated in vacuo before the residue was treated with 1N HCl in MeOH (1 ml) for 4 h followed by evaporation of solvent to give AT3 (n=4, R3═R4=n-Bu, R15═H and R16=n-Butyl).


The following compounds were synthesized using similar method:


















Obs.


#
Structure
MW
m/e


















428





324
325





429





325
326





430





338
339





431





339
340





432





366
367





433





368
369





434





380
381





435





382
383





436





400
401





437





406
07





438





414
15





439





414
15





440





420
21





441





428
29





442





444
45





443





458
59














A published procedure was adapted (Varga, I.; Nagy, T.; Kovesdi, I.; Benet-Buchholz, J.; Dormab, G.; Urge, L.; Darvas, F. Tetrahedron, 2003, (59) 655-662).


AU1 (R15═H, R16═H) (0.300 g), prepared according to procedure described by Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R., (Vogel's Textbook of Practical Organic Chemistry. 5th ed. Longman: new York, 1989; pp 034-1035), AU2 (HCl salt, R1=Me) (0.237 g), 50% KOH (0.305 ml), 30% H2O2 (0.115 ml) and EtOH (4.6 ml) were heated in a sealed tube for 2 h. Reaction mixture was concentrated and extracted with CH2Cl2. The dried organic solution was concentrated in vacuo to give a residue which was placed on preparative silica gel plates eluting with CH2Cl2:MeOH 9:1 to afford AU3 (R15═H, R16═H, R1=Me).


The following compounds were synthesized using similar method:


















Obs.


#
Structure
MW
m/e







444





265
266





446





280
281





447





285
286





448





285
286





449





309
310





450





309
310














Method AV, Step 1:


In a microwave tube, AV1 (R3=Me, R4=Bu-i) (0.0012 g) and AV2 (R22═OPh) (0.0059 ml) in isopropanol (2 ml) was placed in a microwave at 125° C. for 5 min. The reaction mixture was concentrated in vacuo to give AV3 (R3=Me, R4=i-Bu, R22═OPh).


Method AV, Step 2:


AV3 (R3=Me, R4=i-Bu, R22═OPh) in CH2Cl2 (1 ml) and TFA (1 ml) was shaken for 2 h and the concentrated in vacuo and purified on Prep LCMS to afford AV4 (R3=Me, R4=i-Bu, R22═OPh).


The following compounds were synthesized in a similar fashion.


















Obs.


#
Structure
MW
m/e







451





378
379





452





396
397





453





416
417














Method similar to Method U was used for this transformation. The following compounds were generated using similar methods.


The following compounds were synthesized in a similar fashion:


















Obs.


#
Structure
MW
m/e


















454





341
342





455





341
342





456





342
343





457





342
343





458





347
348





459





359
360





460





323
324





461





294
295














Method AX, Step 1.


A literature procedure was adapted.(J-Q Yu and E. J. Corey, Organic Letters, 2002, 4, 2727-2730).


To a 400 ml DCM solution of AX1 (n=1, R4=phenethyl) (52 grams) in a ice bath was added 5 g of Pd/C (5% w/w), 50 g of potassium carbonate and 100 ml of anhydrous t-BuOOH. The mixture was stirred in air for overnight before it was diluted with DCM and washed with water. The residue after removal of organic solvent and drying was chromatographed using ethylacetate/hexane to give 25 g of AX2 (n=1, R4=phenethyl).


Method AX, Step 2.


A solution of AX2 (4.5 g, n=1, R4=phenethyl) in MeOH (50 ml) was treated with 0.4 g of Sodium borohydride and the reaction was stirred for 30 min before the solvent was removed and residue chromatographed to give a mixture of AX3 (n=1, R4=phenethyl) and AX4 (n=1, R4=phenethyl) which was separated using an AS chiralpak column eluted with 8% IPA in Hexane (0.05% DEA) to give 2.1 g of AX3 (n=1, R4=phenethyl) as the first fraction and 2.2 g of AX4 (n=1, R4=phenethyl) as the second fraction.


Method AX, Step 3.


A 100 ml methanolic solution of AX4 (n=1, R4=phenethyl) (2.2 g) and 1,1′-bis(di-i-propylphosphino)ferrocene (1,5-cyclooctadiene)rhodium (I) tetrafluoroborate (0.4 g, 0.57 mmol) was hydrogenated at 55 psi overnight. The reaction was concentrated, and the brown oil was purified by silica gel chromatography to yield AX6 (n=1, R4=phenethyl) (1.7 g).


The following compounds were generated using similar method.












A solution of AY1 (n=1; 1.5 g, 3.4 mmol), 5% Rh/C (1.5 g), 5% Pd/C (0.5 g) in AcOH (30 mL) was shaken in a Parr apparatus at 55 psi for 18 hours. The vessel was flushed with N2, and the reaction was filtered through a pad of celite. After concentration AY2 was obtained which was carried on without purification. MS m/e: 312.0 (M+H).


AY3 was generated using similar method.












Method AZ, Step 1


To a solution of AZ1 (n=1, R1=Me, R3=2-cyclohexylethyl) (0.441 g, 1.01 mmol), generated from AY2 using Method C and Method H Step 3, in DCM was added Dess-Martin Periodinane (0.880 g, 2.07 mmol). The reaction was stirred for 3 hours at room temperature. The reaction was quenched with H2O and diluted with EtOAc. After removal of the organic phase, the aqueous layer was extracted with EtOAc (3×). The combined organics were dried (Na2SO4), filtered, and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc/hexanes) to yield AZ2 (n=1, R1=Me, R3=2-cyclohexylethyl) (0.408 g, 0.94 mmol, 93% yield). MS m/e: 434.1 (M+H).


Method AZ Step 2:


To a solution of AZ2 (n=1, R1=Me, R3=2-cyclohexylethyl) (0.011 g, 0.025 mmol) and AZ5 (R15═H and R16=m-pyridylmethyl) (0.0067 mL, 0.066 mmol) in DCE (1.8 mL) and MeOH (0.2 mL) was added AcOH (4 drops) and MP-cycanoborohydride resin (0.095 g, 2.42 mmol/g). The reaction was agitated for 40 hours at room temperature. The reaction was treated with 7N NH3/MeOH, and solution was filtered. After concentration, the residue was purified by silica gel HPLC (0-4% [(5% 7N NH3/MeOH)/MeOH]/(50% DCM/hexanes) to furnish fraction 1 and fraction 2 which, after removal of solvent, were treated with 20% TFA in DCM for 3 h at r.t. to give AZ4 (n=1, R1=Me, R3=2-cyclohexylethyl, R15═H and R16=m-pyridylmethyl) (0.005 g, 0.009 mmol) and the AZ3 (n=1, R1=Me, R3=2-cyclohexylethyl, R15═H and R16=m-pyridylmethyl) (0.012 g, 0.022 mmol) respectively.


The following compounds were generated using similar methods:


















Obs.


#
Structure
MW
m/e







462





333
334





463





348
349





464





374
375





465





374
375





466





374
375





467





374
375





468





376
377





469





376
377





470





376
377





471





376
377





472





377
378





473





377
378





474





378
379





475





378
379





476





388
389





477





388
389





478





388
389





479





388
389





480





388
389





481





388
389





482





388
389





483





388
389





484





390
391





485





390
391





486





390
391





487





390
391





488





391
392





489





391
392





490





391
392





491





391
392





492





392
393





493





392
393





494





392
393





495





392
393





496





402
403





497





402
403





498





402
403





499





405
406





500





406
407





501





406
407





502





406
407





503





406
407





504





406
407





505





410
411





506





410
411





507





410
411





508





411
412





509





411
412





510





411
412





511





416
417





512





416
417





513





416
417





514





416
417





515





417
418





516





417
418





517





424
425





518





424
425





519





424
425





520





424
425





521





425
426





522





425
426





523





425
426





524





425
426





525





425
426





526





425
426





527





425
426





528





425
426





529





425
426





530





425
426





531





425
426





532





425
426





533





428
429





534





428
429





535





439
440





536





439
440





537





442
443





538





442
443





539





442
443





540





442
443





541





444
445





542





445
446





543





459
460





544





459
460














Method BA, Step 1:


BA1, prepared according to a literature procedure (Terao, Y; Kotaki, H; Imai, N and Achiwa K. Chemical and Pharmaceutical Bulletin, 33 (7), 1985, 2762-2766) was converted to BA2 using a procedure described by Coldham, I; Crapnell, K. M; Fernandez, J-C; Moseley J. D. and Rabot, R. (Journal of Organic Chemistry, 67 (17), 2002, 6185-6187).



1H NMR (CDCl3) for BA2: 1.42 (s, 9H), 4.06 (d, 4H), 4.09 (s, 1H), 4.18 (s, 2H), 5.62 (d, 1H).


Method BA, Step 2:


BA3 was generated from BA2 using a literature procedure described by Winkler J. D.; Axten J.; Hammach A. H.; Kwak, Y-S; Lengweiler, U.; Lucero, M. J.; Houk, K. N. (Tetrahedron, 54 1998, 7045-7056). Analytical data for compound BA3: MS m/e: 262.1, 264.1 (M+H). 1H NMR (CDCl3) 1.43 (s, 9H), 3.98 (s, 2H), 4.11 (d, 4H), 5.78 (d, 1H).







Method BB, Step 1;


Compound BB1 (n=1, R1=Me, R3=cyclohexylethyl) was converted to BB2 (n=1, R1=Me, R3=cyclohexylethyl) and BB3 (n=1, R1=Me, R3=cyclohexylethyl) which were separated via a silica gel column eluted with EtOAc in Hexane (0-15%).


Method BB, Step 2;


Compound BB4 (n=1, R1=Me, R3=cyclohexylethyl) was generated from BB2 (n=1, R1-=Me, R3=cyclohexylethyl) using 20% TFA in DCM.


The following compounds were generated using similar method:












Method BC, Step 1;


Compound BC2 (n=1, R1=Me, R3=cyclohexylethyl and R15=m-Pyridyl) was obtained from BC1 (n=1, R2=Me, R3=cyclohexylethyl) using method L step 2.


Method BC, Step 2;


Compound BC3 (n=1, R1-=Me, R3=cyclohexylethyl and R15=m-Pyridyl) was obtained from BC2 (n=1, R1=Me, R3=cyclohexylethyl and R15=m-Pyridyl) using method L step 3.


The following compounds were generated using a similar method:


















Obs.


#
Structure
MW
m/e







552





374
375





553





388
389





554





388
389





555





388
389





556





388
389





557





390
391





558





390
391





559





402
403





560





402
403





561





402
403





562





402
403





563





404
405





564





404
405





565





404
405





566





404
405





567





410
411





568





410
411





569





411
412





570





411
412





571





411
412





572





411
412





573





411
412





574





411
412





575





416
417





576





416
417





577





416
417





578





416
417





579





424
425





580





424
425





581





424
425





582





424
425





583





425
426





584





425
426





585





425
426





586





425
426





587





425
426





588





425
426





589





425
426





590





430
431





591





430
431





592





438
439





593





438
439





594





439
440














Method BD, Step 1;


Compound BD2 (n=1, R1=Me, R3=cyclohexylethyl and R15=Ph) was obtained from BD1 (n=1, R2=Me, R3=cyclohexylethyl) using Method N, Step 1.


Method BD, Step 2;


Compound BD3 (n=1, R1=Me, R3=cyclohexylethyl and R15=Ph) was obtained from BD2 (n=1, R1=Me, R3=cyclohexylethyl and R15=m-Pyridyl) using Method N, Step 2.


The following compounds were generated using a similar method:


















Obs.


#
Structure
MW
m/e







595





440
441





596





460
461














Method similar to Method M was adapted for these transformations. The following compounds were generated similar methods.


















Obs.


#
Structure
MW
m/e







597





405
406





598





439
440














Method BF, Step 1:


Method similar to Method T, Step 1 was used for the synthesis of BF2 (n=1, R1=Me and R3=phenethyl, R15═H and R16=n-propyl).


Method BF, Step 2:


Method similar to method L Step 3 was adapted for this transformation.


The following compounds were generated using similar methods.















#
Structure
MW
Obs. m/e







599





376
377





600





390
391





601





390
391





602





390
391





603





397
398





604





397
398





605





397
398





606





397
398





607





411
412














Method BG:


To a solution of BG1 (n=1, R3=cyclohexylethyl) (0.136 g, 0.31 mmol) in CH2Cl2 was added 2,6-lutidine, AgOTf, and butyl iodide. The reaction was stirred at room temperature for 96 hours. The reaction was filtered through a pad of Celite, and the solution was concentrated. The residue was purified by silica chromatography (0-100% EtOAc/hexanes) to furnish BG2 (n=1, R3=cyclohexylethyl, R15=n-butyl) (0.124 g, 0.25 mmol, 80% yield). MS m/e: 426.1 (M-OBu).


The following compound was prepared using similar method:












Method BH, Step 1.


Compound BH1 (n=1, R3=cyclohexylethyl and R15=n-butyl) (0.060 g, 0.12 mmol) and 5% Pd(OH)2/C (0.040 g) in EtOAc (1 mL)/MeOH (0.2 mL) was stirred under an atmosphere of H2 for 20 hours at room temperature. The reaction was filtered through a pad of Celite, and the solution was concentrated. The crude product mixture BH2 (n=1, R3=cyclohexylethyl and R15=n-butyl) was carried on to the next step without purification.


Method BH, Step 2.


A solution of BH2 (n=1, R3=cyclohexylethyl and R15=n-butyl) was converted to a product mixture of BH4 and BH3 using a method similar to Method C Step 1. The mixture was purified by silica gel chromatography using EtOAc/hexanes to yield BH4 (n=1, R2=Me, R3=cyclohexylethyl and R15=n-butyl) (0.032 g, 0.078 mmol, 56% yield) and BH3 (n=1, R2=Me, R3=cyclohexylethyl and R15=n-butyl) (0.008 g, 0.020 mmol, 14% yield). For BH4 (n=1, R2=Me, R3=cyclohexylethyl and R15=n-butyl), MS m/e: 409.1M+H). For BH3 (n=1, R2=Me, R3=cyclohexylethyl and R15=n-butyl), MS m/e: 409.1 (M+H).


Method BH, Step 3.


Compound BH4 (n=1, R2=Me, R3=cyclohexylethyl and R5=n-butyl) (0.032 g, 0.078 mmol) was converted to BH5 (n=1, R2=Me, R3=cyclohexylethyl and R15=n-butyl) (0.016 g, 0.043 mmol, 57% yield) using a method similar to Method A, step 3. MS m/e: 392.1 (M+H).


The following compound was generated using a similar method:





















Obs.



#
Structure
MW
m/e









608





391
392







609





391
392







610





391
392















A solution of BI1(0.020 g, 0.040 mmol) in DCM (1 mL) was degassed using freeze/pump/thaw (4×) method. At the end of the fourth cycle Crabtree's catalyst was added and the system was evacuated. While thawing, the system was charged with hydrogen gas, and the reaction was stirred at room temperature for 16 hours under an H2 atmosphere. The reaction was concentrated, and the brown oil was purified by reverse phase HPLC to furnish BI2 (0.011 g, 0.022 mmol, 55% yield). MS m/e: 368.2 (M+H).







Method BJ, Step 1


A mixture of 2 ml dioxane solution of BJ1 (R1=Me, R3=Me) (140 mg, 0.5 mmol) generated using Method BK Steps 1 & 2, indole (1.2 eq), potassium t-Butoxide (1.4 eq), Pd2(dba)3 (0.02 eq) and 2-di-t-butylphospinobiphenyl (0.04 eq) in a sealed tube was irradiated in a microwave oven at 120° C. for 10 min and the mixture was separated via a silica gel column to give BJ2 (R1=Me, R3=Me) (0.73 mg).


Method BJ, Step 2


BJ2 (R1=Me, R3=Me) was converted to BJ3 (R1=Me, R3=Me) using Method BK, Steps 3 & 4. Obs. Mass for BJ3 (R1=Me, R3=Me): 319.2.





















Obs.



#
Structure
MW
m/e









614





318
319















Method BK, Step 1:


Hydantoin BK2 (R3═N-benzyl-3-piperidyl, R4=n-Bu) was prepared according to Method D, Step 1 from the corresponding ketone BK1 (R3═N-benzyl-3-piperidyl, R4=n-Bu). Analytical data for BK2 (R3═N-benzyl-3-piperidyl, R4=n-Bu): (M+H)=330.1.


Method BK, Step 2:


To a suspension of hydantoin BK2 (R3═N-benzyl-3-piperidyl, R4=n-Bu) (138 mg, 0.419 mmol) in DMF (1.5 ml) was added dimethylformamide dimethylacetal (0.11 ml, 0.84 mmol). The resulting mixture was heated in a 100° C. oil bath for 16 h and then cooled to RT and concentrated under vacuum. This crude residue was purified by column chromatography (MeOH/DCM) to give product BK3 (R3═N-benzyl-3-piperidyl, R4=n-Bu) (140 mg, 0.408 mmol, 97%), (M+H)=344.1.


Method BK, Step 3:


To a solution of a portion of BK3 (R3═N-benzyl-3-piperidyl, R4=n-Bu) (70 mg, 0.20 mmol) in toluene (1 ml) was added Lawesson's reagent (107 mg, 0.26 mmol). The resulting mixture was placed in an oil bath at 60° C. for 16 h and then at 100° C. for 24 h. After cooling to RT, the reaction was quenched by addition of several drops of 1 N HCl and then diluted with EtOAc and 1 N KOH. The phases were separated and the aqueous layer extracted with EtOAc (2×). The organic portions were combined, washed with brine, dried over MgSO4, filtered, and concentrated. This crude residue was purified by preparative TLC (1000 μm silica, 15% EtOAc/DCM) to give two separated diastereomers BK4 (R3═N-benzyl-3-piperidyl, R4=n-Bu) (24 mg, 0.067 mmol, 33%, MS: (M+H)=360.2) and BK5 (R3═N-benzyl-m-piperidyl, R4=n-Bu) (22 mg, 0.062 mmol, 31%, MS: (M+H)=360.2).


Method BK, Step 4:


Diastereomer BK5 (R3═N-benzyl-3-piperidyl, R4=n-Bu) was treated with NH4OH (2 ml) and t-butyl hydrogen peroxide (70% aqueous, 2 ml) in MeOH (4 ml) for 24 h. After concentration, the crude sample was purified by preparative TLC (1000 mm silica, 7.5% 7N NH3/MeOH in DCM). The resulting sample was dissolved in DCM (1 ml), treated with 4N HCl in dioxane for 5 min, and finally concentrated to give diastereomeric products BK7 (R3═N-benzyl-3-piperidyl, R4=n-Bu) (12 mg, 0.029 mmol, 43%). 1H NMR (CD3OD) δ7.60 (m, 2H), 7.49 (m, 3H), 4.39 (ABq, JAB=12.8 Hz, ΔνAB=42.1 Hz, 2H), 3.69 (m, 1H), 3.39 (br d, J=13.6 Hz, 1H), 3.20 (s, 3H), 2.96 (m, 2H), 2.45 (m, 1H), 1.99 (m, 1H), 1.92-1.78 (m, 3H), 1.68 (br d, J=12.4 Hz, 1H), 1.50 (dq, Jd=3.6 Hz, Jq=12.8 Hz, 1H), 1.36-1.22 (m, 4H), 1.03 (m, 1H), 0.90 (t, J=7.2 Hz, 3H). LCMS: tR (doubly protonated)=0.52 min, (singly protonated)=2.79 min; (M+H) for both peaks=343.2.


The following compounds were synthesized using similar methods:





















Obs.



#
Structure
MW
m/e









615





281
282















To a 2 ml Methanolic solution of BL1 (n=1, R3=cyclohexylethyl, R1=Me) (10 mg) was added BL3 (HCl salt, R15═H, 2 eq) and NaOAc (2 eq) and the mixture was heated to 60 C for 16 h. After removal of solvent, the residue was treated with 20% TFA in DCM for 30 min before the solvent was evaporated and residue purified using a reverse phase HPLC to give BL2 (n=1, R3=cyclohexylethyl, R1=Me and R15═H).


The following compounds were synthesized using similar methods.


















Obs.


#
Structure
MW
m/e







616





348
349





617





388
389














Method BM, Step 1:


To a toulene solution (3 ml) of BM1 (n=1, R3=cyclohexylethyl, R2=Me) (0.050 mg) was added 1.5 eq of diphenylphosphorylazide and 1.5 eq of DBU and the solution was stirred at r.t. overnight. The reaction mixture was diluted with EtOAc and washed with 1% aq HOAc before the organic layer was dried and solvent evaporated. The residue was chromatographed using EtOAc/Hex to give a product that was treated with triphenylphosphine (2 eq) in THF (1% water) overnight to give BM2 (n=1, R3=cyclohexylethyl, R2=Me) after reverse phase purification.


Method BM Step 2:


To a DCM solution of BM2 (n=1, R3=cyclohexylethyl, R2=Me) was added 1 eq of benzyloxycarbonyl-OSu and the reaction was stirred overnight before the solvent was evaporated and residue chromatographed to give BM3 (n=1, R3=cyclohexylethyl, R2=Me).


Compound BM4 (n=1, R3=cyclohexylethyl, R2=Me) and BM5 (n=1, R3=cyclohexylethyl, R2=Me) were generated from BM2 (n=1, R3=cyclohexylethyl, R2=Me) and BM3 (n=1, R3=cyclohexylethyl, R2=Me) through Boc-deprotection.


The following compounds were synthesized using similar method:


















Obs.


#
Structure
MW
m/e







618





332
333





619





468
469














A mixture of Pd(OAc)2 (9 mg), triethylamine (17 microliter), triethylsilane (11 microliter) and BN1 (20 mg) in DCM was hydrogenated at 1 atm at rt for 1.5 h before the reaction was filtered through a Celite pad to give BN2 after removal of solvent.


Method BO

The following compounds were generated through boc-deprotection of the corresponding starting material using 50% TFA in DCM, rt 30 min.





















Obs.



#
Structure
MW
m/e









620





266
267







621





266
267







622





274
275







623





274
275







624





288
289







625





320
321







626





320
321















Method BP, Step 1


To a solution of BP1 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.012 g, 0.028 mmol) in CH2Cl2 (0.5 mL) was added 2,6-lutidine (0.010 mL, 0.086 mmol), AgOTf (0.024 g, 0.093 mmol), and benzyl bromide (0.010 mL, 0.084 mmol). The reaction was stirred at room temperature for 16 hours. The solid was filtered, and after concentration the residue was purified by reverse phase HPLC to yield BP2 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.010 g, 0.019 mmol). MS m/e: 526.1 (M+H).


Method BP, Step 2


BP3 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) was prepared from BP2 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) using 30% TFA/DCM. MS m/e: 426.1 (M+H).


















Obs.


#
Structure
MW
m/e







627





425
426














Method BQ Step 1:


BQ1 was prepared according to Method AZ.


To a solution of BQ1 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.004 g, 0.007 mmol) in CH2Cl2 (0.3 mL) was added DIEA (0.007 mL, 0.040 mmol), acetic acid (0.001 mL, 0.017 mmol), HOBt (0.003 g, 0.019 mmol), and EDCl (0.003 g, 0.016 mmol). The reaction was stirred at room temperature for 16 hours. The reaction was concentrated and purified by reverse phase HPLC to provide BQ2 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.003 g, 0.005 mmol). MS m/e: 627.1 (M+H).


Method BQ Step 2:


BQ2 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.003 g, 0.005 mmol) was treated with 20% TFA/CH2Cl2 (1 mL) in the presence of PS-thiophenol resin (0.030 g, 1.42 mmol/g) for 3 hours. The solution was filtered and concentrated to produce BQ3 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.002 g, 0.005 mmol). MS m/e: 377.2 (M+H).















#
Structure
MW
Obs. m/e







628





376
377














Method BR, Step 1:


To a solution of BR1 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.004 g, 0.007 mmol) in pyridine (0.2 ml) was added DMAP (a few crystals) and methylsulfonyl chloride (3 drops). The reaction was stirred at room temperature for 6 days. The reaction was quenched with water and diluted with CH2Cl2. The organic layer was removed, and the aqueous phase was extracted with CH2Cl2 (3×). After concentration, the brown residue was purified by reverse phase HPLC to yield BR2 (n=1, R=Me, R2═H, R3=cyclohexylethyl) (0.003 g, 0.004 mmol). MS m/e: 663.2 (M+H).


Method BR, Step 2:


BR3 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) was prepared from BR2 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) following a procedure similar to Method BQ Step 2. MS m/e: 413.1 (M+H).


















Obs.


#
Structure
MW
m/e







629





412
413














Method BS Step 1:


To a solution of BS1 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.003 g, 0.006 mmol) in CH2Cl2 (0.3 mL) was added phenyl isocyanate (2 drops). The reaction was stirred at room temperature for 16 hours. The reaction was concentrated and purified by reverse phase HPLC to provide BS2 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.002 g, 0.002 mmol). MS m/e: 823.5 (M+H).


Method BS Step 2:


Compound BS2 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) was subjected to the same conditions in Method BQ Step 2. The crude mixture prepared above was treated with LiOH (0.006 g, 0.25 mmol) in MeOH (0.3 mL) for 2 hours. The reaction was concentrated, and the residue was purified by reverse phase HPLC to furnish BS3 (n=1, R1=Me, R2═H, R3=cyclohexylethyl) (0.0012 g, 0.002 mmol). MS m/e: 454.1 (M+H).


















Obs.


#
Structure
MW
m/e







630





453
454














Method BT:


To a round bottom flask were added compound BT1 (R1=Me, R3=Me) (100 mg, 0.29 mmol), anhydrous toluene (2 ml), 3-aminopyridine (55 mg, 0.58 mmol) and 2-(di-tert-butyl phosphino) biphenyl (17 mg, 0.058). The solution was then degassed by N2 for 2 minutes before NaO-t-Bu (61 mg, 0.638 mmol) and Pd2(dba)3 (27 mg, 0.029 mmol) were added. The reaction was stirred at 80° C. for 22 hours. After cooling down to room temperature, the reaction was poured to cold water and extracted by CH2Cl2. The combined organic layer was then dried over Na2SO4. After the filtration, the concentrated residue was separated by TLC (CH3OH:CH2Cl2=1:10) and reverse phase HPLC (10%-100% acetonitrile in water w/0.1% formic acid) to produce the desired compound BT2 (R1=Me, R3=Me and R21=m-pyridyl) as a formate salt (23.6 mg, white solid, 20%). 1HNMR (CDCl3) δ 7.50-6.90 (m, 13H), 3.14 (s, 3H) MS m/e 358 (M+H).


















Obs.


#
Structure
MW
m/e







631





347
348





632





156
357





633





357
358





634





357
358





635





357
358





636





358
359














Method BU, Step 1,


To a round bottmed flask containing BU1 (m=1, n=1, R1=Me, R3=Cyclohexylethyl) (99 mg, 0.307 mmol) of the trifluoroacetic acid salt of pyrollidine derivative in 5 ml of DCM was added (86 μL, 0.614 mmol) of triethylamine followed by addition of (76 mg, 0.307 mmol) N-(benzyloxycarbonyloxy)succinimide. Stir at room temperature for 18 h. Dilute the mixture with DCM and extract with sat'd NaHCO3 soln, then water. Collect the organic portion and dry over Na2SO4, filter and concentrate in vacuo. Purify by silica gel chromatography (eluting with 0 to 60% EtOAc/hexanes) to yield BU2 (m=1, n=1, R1=Me, R3=Cyclohexylethyl) (130 mg, 0.284 mmol, 93% yield). MS m/e: 458.1 (M+H).


Method BU, Step 2,


To a solution of BU2 (m=1, n=1, R1=Me, R3=Cyclohexylethyl) (130 mg) in 1 ml of MeOH in a reaction vial was added 0.5 ml of a solution of 70% tBuOOH in water and 0.5 ml of NH4OH. Seal the vial and shake at room temperature for 72 h. The mixture was concentrated in vacuo. The mixture was diluted with 1 ml of MeOH and a mixture 30 mg of NaHCO3 and Boc2O (87 mg, 0.398 mmol) were added. The solution mixture was stirred at room temperature for 18 h before it was concentrated and the residue purified by silica gel chromatography using EtOAc/hexanes to yield the BU3 (m=1, n=1, R1=Me, R3=Cyclohexylethyl) (90 mg, 0.167 mmol, 58% yield). MS m/e: 541.1, 441.1 (M+H).


Method BU, Step 3,


A solution of BU3 (m=1, n=1, R1=Me, R3=Cyclohexylethyl) (90 mg, 0.167 mmol) in 5 ml of MeOH was hydrogenated using 100 mg of Pd(OH)2—C (20% w/w) at 1 atm for 1 h. The reaction mixture was filtered through a pad of diatomaceous earth and the pad was washed with MeOH. Concentration of the collected organic portions in vacuo yielded BU4 (m=1, n=1, R1=Me, R3=Cyclohexylethyl) (47 mg 0.116 mmol, 70% yield). MS m/e: 407.1 (M+H).


Method BU, Step 4,


To a vial containing 10 mg of powdered 4 4 molecular sieves was added 3-methoxyphenyl boronic acid (60 mg, 0.395 mmol) then 3 ml of anhydrous MeOH. To this mixture was added pyridine (100 ml, 0.650 mmol), Cu(OAc)2 (7 mg, 0.038 mmol), and BU4 (m=1, n=1, R1=Me, R3=Cyclohexylethyl) (7.83 mg, 0.019 mmol) and the mixture was stirred at room temperature for 96 h before it was quenched with 0.25 ml of 7N ammonia in methanol solution. The reaction mixture was extracted with water and DCM and the organic layers were dried and concentrate in vacuo. The residue was purified via a reverse-phase HPLC to give a product which was treated with 5 ml of 40% of TFA in DCM for 5 h. After removal of the volatiles, the residue was purified using a reverse phase HPLC system to furnish BU5 (m=1, n=1, R1=Me, R3=Cyclohexylethyl and R21=m-MeOPh) as the formic acid salt (0.7 mg, 0.0015 mmol, 30.1% yield). MS m/e: 413.1 (M+H).


















Obs.


#
Structure
MW
m/e







637





258
359





638





412
413














Method BV Step 1:


The method was adapted from a literature procedure (Page et al., Tetrahedron 1992, 35, 7265-7274)


A hexane solution of nBuLi (4.4 mL, 11 mmol) was added to a −78 C solution of BV2 (R4=phenyl) (2.0 g, 10 mmol) in THF (47 mL). After 60 minutes at −78 C, a solution of BV1 (R3=3-bromo-4-fluorophenyl) (2.24 g, 11 mmol) was added and the reaction slowly warmed to RT over 18 h. The reaction mixture was quenched with saturated ammonium chloride solution and extracted with CH2Cl2 (2×), dried over MgSO4 and concentrated under vacuum. The resulting oil was subjected to silica gel chromatography using 4-10% EtOAc/Hexanes to give a white solid BX3 (R3=3-bromo-4-fluorophenyl and R4=phenyl) (1.69 g, 4.23 mmol, 42%). 1H NMR (CDCl3) δ 7.61 (m, 2H), 7.27 (m, 3H), 6.94 (m, 1H), 6.92 (m, 1H), 6.68 (m, 1H), 3.15 (bs, 1H), 2.57-2.73 (m, 4H), 1.89 (m, 2H).


Method BV Step 2:


A solution of BV3 (R3=3-bromo-4-fluorophenyl and R4=phenyl) (1.69 g, 4.23 mmol) in acetone (40 mL) was slowly added via addition funnel to a 0° C. solution of N-bromosuccinimide (NBS, 11.3 g, 63.3 mmol) in acetone (200 mL) and water (7.5 mL). The mixture was slowly warmed to RT, and quenched after 60 minutes with 10% aqueous Na2SO3. After diluting with CH2Cl2, the layers were separated, and the organic layer washed with water (2×), brine (1×) and dried over MgSO4. Concentration under vacuum afforded an oil which was subjected to silica gel chromatography using 5% EtOAc/Hexanes to give a solid BV4 (R3=3-bromo-4-fluorophenyl and R4=phenyl) (690 mg, 2.24 mmol, 53%). 1H NMR (CDCl3) δ 8.19 (m, 1H), 7.93 (m, 3H), 7.66 (m, 1H), 7.50 (m, 2H), 7.20 (m, 1H).


Method BX Step 3:


BV5 (R3=3-bromo-4-fluorophenyl and R4=phenyl and R1=Me and R2═H) was prepared from BV4 (R3=3-bromo-4-fluorophenyl and R4=phenyl) using Method AS, Step 4.





















Obs.



#
Structure
MW
m/e









639





261
362







640





261
NA










Human Cathepsin D FRET Assay

This assay can be run in either continuous or endpoint format. Cathepsin D is an aspartic protease that possesses low primary sequence yet significant active site homology with the human aspartic protease BACE1. BACE1 is an amyloid lowering target for Alzheimer's disease. Cathespin D knockout mice die within weeks after birth due to multiple GI, immune and CNS defects.


The substrate used below has been described (Y. Yasuda et al., J. Biochem., 125, 1137 (1999)). Substrate and enzyme are commercially available. A Km of 4 uM was determined in our lab for the substrate below under the assay conditions described and is consistent with Yasuda et al.


The assay is run in a 30 ul final volume using a 384 well Nunc black plate. 8 concentrations of compound are pre-incubated with enzyme for 30 mins at 37 C followed by addition of substrate with continued incubation at 37 C for 45 mins. The rate of increase in fluorescence is linear for over 1 h and is measured at the end of the incubation period using a Molecular Devices FLEX station plate reader. K is are interpolated from the IC50s using a Km value of 4 uM and the substrate concentration of 2.5 uM.


Reagents
Na-Acetate pH 5

1% Brij-35 from 10% stock (Calbiochem)


DMSO

Purified (>95%) human liver Cathepsin D (Athens Research & Technology Cat# 16-12-030104)


Peptide substrate(Km=4 uM) Bachem Cat # M-2455


Pepstatin is used as a control inhibitor (Ki˜0.5 nM) and is available from Sigma.


Nunc 384 well black plates


Final Assay Buffer Conditions
100 mM Na Acetate pH 5.0
0.02% Brij-35
1% DMSO

Compound is diluted to 3× final concentration in assay buffer containing 3% DMSO. 10 ul of compound is added to 10 ul of 2.25 nM enzyme(3×) diluted in assay buffer without DMSO, mixed briefly, spun, and incubated at 37 C for 30 mins. 3× substrate (7.5 uM) is prepared in 1× assay buffer without DMSO. 10 ul of substrate is added to each well mixed and spun briefly to initiate the reaction. Assay plates are incubated at 37 C for 45 mins and read on 384 compatible fluorescence plate reader using a 328 nm Ex and 393 nm Em.


Compounds of the present invention exhibit hCathD Ki data ranges from about 0.1 to about 500 nM, preferably about 0.1 to about 100 nM more preferably about 0.1 to about 75 nM.


The following are examples of compounds that exhibit hCathD Ki data under 75 nM.












structure





















































































































































































The following compound







has a hCath D Ki value of 0.45 nM.


BACE-1 Cloning, Protein Expression and Purification

A predicted soluble form of human BACE1 (sBACE1, corresponding to amino acids 1-454) was generated from the full length BACE1 cDNA (full length human BACE1 cDNA in pcDNA4/mycHisA construct; University of Toronto) by PCR using the advantage-GC cDNA PCR kit (Clontech, Palo Alto, Calif.). A HindIII/PmeI fragment from pcDNA4-sBACE1myc/His was blunt ended using Klenow and subcloned into the Stu I site of pFASTBACI(A) (Invitrogen). A sBACE1mycHis recombinant bacmid was generated by transposition in DH10Bac cells(GIBCO/BRL). Subsequently, the sBACE1 mycHis bacmid construct was transfected into sf9 cells using CellFectin (Invitrogen, San Diego, Calif.) in order to generate recombinant baculovirus. Sf9 cells were grown in SF 900-II medium (Invitrogen) supplemented with 3% heat inactivated


FBS and 0.5× penicillin/streptomycin solution (Invitrogen). Five milliliters of high titer plaque purified sBACEmyc/His virus was used to infect 1 L of logarithmically growing sf9 cells for 72 hours. Intact cells were pelleted by centrifugation at 3000×g for 15 minutes. The supernatant, containing secreted sBACE1, was collected and diluted 50% v/v with 100 mM HEPES, pH 8.0. The diluted medium was loaded onto a Q-sepharose column. The Q-sepharose column was washed with Buffer A (20 mM HEPES, pH 8.0, 50 mM NaCl).


Proteins, were eluted from the Q-sepharose column with Buffer B (20 mM HEPES, pH 8.0, mM NaCl). The protein peaks from the Q-sepharose column were pooled and loaded onto a Ni-NTA agarose column. The Ni-NTA column was then washed with Buffer C (20 mM HEPES, pH 8.0, 500 mM NaCl). Bound proteins were then eluted with Buffer D (Buffer C+250 mM imidazole). Peak protein fractions as determined by the Bradford Assay (Biorad, Calif.) were concentrated using a Centricon 30 concentrator (Millipore). sBACE1 purity was estimated to be ˜90% as assessed by SDS-PAGE and Commassie Blue staining. N-terminal sequencing indicated that greater than 90% of the purified sBACE1 contained the prodomain; hence this protein is referred to as sproBACE1.


Peptide Hydrolysis Assay

The inhibitor, 25 nM EuK-biotin labeled APPsw substrate (EuK-KTEEISEVNLDAEFRHDKC-biotin (SEQ ID NO:1); CIS-Bio International, France), 5 μM unlabeled APPsw peptide (KTEEISEVNLDAEFRHDK (SEQ ID NO:2); American Peptide Company, Sunnyvale, Calif.), 7 nM sproBACE1, 20 mM PIPES pH 5.0, 0.1% Brij-35 (protein grade, Calbiochem, San Diego, Calif.), and 10% glycerol were preincubated for 30 min at 30° C. Reactions were initiated by addition of substrate in a 5 μl aliquot resulting in a total volume of 25 μl. After 3 hr at 30° C. reactions were terminated by addition of an equal volume of 2× stop buffer containing 50 mM Tris-HCl pH 8.0, 0.5 M KF, 0.001% Brij-35, 20 μg/ml SA-XL665 (cross-linked allophycocyanin protein coupled to streptavidin; CIS-Bio International, France) (0.5 μg/well). Plates were shaken briefly and spun at 1200×g for 10 seconds to pellet all liquid to the bottom of the plate before the incubation. HTRF measurements were made on a Packard Discovery® HTRF plate reader using 337 nm laser light to excite the sample followed by a 50 μs delay and simultaneous measurements of both 620 nm and 665 nm emissions for 400 μs.


IC50 determinations for inhibitors, (I), were determined by measuring the percent change of the relative fluorescence at 665 nm divided by the relative fluorescence at 620 nm, (665/620 ratio), in the presence of varying concentrations of/and a fixed concentration of enzyme and substrate. Nonlinear regression analysis of this data was performed using GraphPad Prism 3.0 software selecting four parameter logistic equation, that allows for a variable slope. Y=Bottom+(Top-Bottom)/(1+10̂((LogEC50−X)*Hill Slope)); X is the logarithm of concentration of I, Y is the percent change in ratio and Y starts at bottom and goes to top with a sigmoid shape.


Compounds of the present invention have an IC50 range from about 0.1 to about 500 μM, preferably about 0.1 to about 100 μM, more preferably about 0.1 to about 20 μM. The last compound in Table M has an IC50 value of 0.35 μM.


Examples of compounds under 1 μM are listed below:































Human Mature Renin Enzyme Assay:

Human Renin was cloned from a human kidney cDNA library and C-terminally epitope-tagged with the V5-6His sequence into pcDNA3.1. pCNDA3.1-Renin-V5-6His was stably expressed in HEK293 cells and purified to >80% using standard Ni-Affinity chromatography. The prodomain of the recombinant human renin-V5-6His was removed by limited proteolysis using immobilized TPCK-trypsin to give mature-human renin. Renin enzymatic activity was monitored using a commercially available fluorescence resonance energy transfer(FRET) peptide substrate, RS-1 (Molecular Probes, Eugene, Oreg.) in 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.1% Brij-35 and 5% DMSO buffer for 40 mins at 30 degrees celcius in the presence or absence of different concentrations of test compounds. Mature human Renin was present at approximately 200 nM. Inhibitory activity was defined as the percent decrease in renin induced fluorescence at the end of the 40 min incubation compared to vehicle controls and samples lacking enzyme.













Compound
1% of hRenin at 100 μM












68.8










75.3










76.9









In the aspect of the invention relating to a combination of a compound of formula I with a cholinesterase inhibitor, acetyl- and/or butyrylchlolinesterase inhibitors can be used. Examples of cholinesterase inhibitors are tacrine, donepezil, rivastigmine, galantamine, pyridostigmine and neostigmine, with tacrine, donepezil, rivastigmine and galantamine being preferred.


In the aspect of the invention relating to a combination of a compound of formula I with a muscarinic antagonist, m1 or m2 antagonists can be used. Examples of m1 antagonists are known in the art. Examples of m2 antagonists are also known in the art; in particular, m2 antagonists are disclosed in U.S. Pat. Nos. 5,883,096; 6,037,352; 5,889,006; 6,043,255; 5,952,349; 5,935,958; 6,066,636; 5,977,138; 6,294,554; 6,043,255; and 6,458,812; and in WO 03/031412, all of which are incorporated herein by reference.


For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient. Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18th Edition, (1990), Mack Publishing Co., Easton, Pa.


Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.


Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g. nitrogen.


Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.


The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.


Preferably the compound is administered orally.


Preferably, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.


The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 100 mg, preferably from about 1 mg to about 50 mg, more preferably from about 1 mg to about 25 mg, according to the particular application.


The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total daily dosage may be divided and administered in portions during the day as required.


The amount and frequency of administration of the compounds of the invention and/or the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 300 mg/day, preferably 1 mg/day to 50 mg/day, in two to four divided doses.


When a compound of formula I is used in combination with a cholinesterase inhibitor to treat cognitive disorders, these two active components may be co-administered simultaneously or sequentially, or a single pharmaceutical composition comprising a compound of formula I and a cholinesterase inhibitor in a pharmaceutically acceptable carrier can be administered. The components of the combination can be administered individually or together in any conventional oral or parenteral dosage form such as capsule, tablet, powder, cachet, suspension, solution, suppository, nasal spray, etc. The dosage of the cholinesterase inhibitor can be determined from published material, and may range from 0.001 to 100 mg/kg body weight.


When separate pharmaceutical compositions of a compound of formula I and a cholinesterase inhibitor are to be administered, they can be provided in a kit comprising in a single package, one container comprising a compound of formula I in a pharmaceutically acceptable carrier, and a separate container comprising a cholinesterase inhibitor in a pharmaceutically acceptable carrier, with the compound of formula I and the cholinesterase inhibitor being present in amounts such that the combination is therapeutically effective. A kit is advantageous for administering a combination when, for example, the components must be administered at different time intervals or when they are in different dosage forms.


While the present invention has been described in conjunction with the specific embodiments set forth above, many alternatives, modifications and variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, modifications and variations are intended to fall within the spirit and scope of the present invention.

Claims
  • 1-20. (canceled)
  • 21. A compound, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, said compound having the general structure shown in Formula (IB):
  • 22. A compound of claim 1, wherein R3 and R4 are each independently selected from the group consisting of aryl, heteroaryl, heteroarylalkyl, arylalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylalkyl, alkyl and cycloalkylalkyl.
  • 23. A compound, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, said compound having the general structural formula (IB):
  • 24. A compound of claim 1, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, wherein
  • 25. A compound, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, said compound having the general structure shown in Formula (IB):
  • 26. A compound, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, said compound selected from the group consisting of:
  • 27. A compound, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, said compound selected from the group consisting of:
  • 28. A pharmaceutical composition comprising an effective amount of at least one compound of any one of claims 21-27, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, and a pharmaceutically effective carrier.
  • 29. A pharmaceutical composition according to claim 8, further comprising at least one additional therapeutic agent other than a compound of claim 21.
  • 30. A pharmaceutical composition according to claim 29, wherein said at least one additional therapeutic agent is selected from cholinesterase inhibitors, muscarinic m1 agonists, and/or muscarinic m2 antagonists.
  • 31. A pharmaceutical composition according to claim 29, wherein said at least one additional therapeutic agent is a cholinesterase inhibitor.
  • 32. A pharmaceutical composition according to claim 31, wherein said cholinesterase inhibitor is selected from an acetyl cholinesterase inhibitor and a butyrylcholinesterase inhibitor.
  • 33. A pharmaceutical composition according to claim 31, wherein said cholinesterase inhibitor is selected from tacrine, donepezil, rivastigmine, galantamine, pyridostigmine, and neostigmine.
  • 34. A pharmaceutical composition according to claim 29, wherein said at least one additional therapeutic agent is selected from a muscarinic m1 agonist and a muscarinic m2 antagonist.
  • 35. A method of inhibiting aspartyl protease comprising administering to a patient in need of such treatment an effective amount of a compound according to claim 21, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof.
  • 36. A method of treating cardiovascular disease comprising administering to a patient in need of such treatment an effective amount of a compound of claim 21, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof.
  • 37. A method of inhibiting BACE-1, plasmepins, cathepsin D or protozoal enzymes comprising administering to a patient in need of such treatment an effective amount of a compound of claim 21, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof.
  • 38. A method of treating Alzheimer's disease comprising administering to a patient in need of such treatment an effective amount of a compound of claim 21, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof.
  • 39. A method of treating Alzheimer's disease comprising administering to a patient in need of such treatment an effective amount of a composition according to claim 29.
  • 40. A method of treating Alzheimer's disease comprising administering to a patient in need of such treatment an effective amount of a composition according to claim 31.
  • 41. A method of treating Alzheimer's disease comprising administering to a patient in need of such treatment an effective amount of a composition according to claim 34.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of co-pending application U.S. Ser. No. 11/010,772, filed Dec. 13, 2004, which claims the benefit of U.S. Provisional Application No. 60/529,535, filed Dec. 15, 2003, each of which disclosures are incorporated herein by reference in their entirety.

Provisional Applications (1)
Number Date Country
60529535 Dec 2003 US
Divisions (1)
Number Date Country
Parent 11010772 Dec 2004 US
Child 12480391 US