Heterocyclic compound and organic light-emitting device including the same

Information

  • Patent Grant
  • 11800797
  • Patent Number
    11,800,797
  • Date Filed
    Tuesday, February 25, 2020
    4 years ago
  • Date Issued
    Tuesday, October 24, 2023
    a year ago
Abstract
A heterocyclic compound represented by Formula 1:
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to Korean Patent Application No. 10-2019-0022734, filed on Feb. 26, 2019, in the Korean Intellectual Property Office, and all the benefits accruing therefrom under 35 U.S.C. § 119, the content of which is incorporated herein in its entirety by reference.


BACKGROUND
1. Field

The present disclosure relates to a heterocyclic compound and an organic light-emitting device including the same.


2. Description of the Related Art

Organic light-emitting devices (OLEDs) are self-emission devices which have wide viewing angles, high contrast ratios, short response times, and excellent brightness, driving voltage, and response speed characteristics, and produce full-color images.


OLEDs include an anode, a cathode, and an organic layer between the anode and the cathode and including an emission layer. A hole transport region may be between the anode and the emission layer, and an electron transport region may be between the emission layer and the cathode. Holes provided from the anode may move toward the emission layer through the hole transport region, and electrons provided from the cathode may move toward the emission layer through the electron transport region. The holes and the electrons recombine in the emission layer to produce excitons. These excitons transit from an excited state to a ground state to thereby generate light.


SUMMARY

Provided are a heterocyclic compound and an organic light-emitting device including the same.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.


According to an aspect of an embodiment, a heterocyclic compound may be represented by Formula 1:




embedded image


wherein, in Formula 1,

    • X11 may be N or C(R11), X12 may be N or C(R12), X13 may be N or C(R13), X14 may be N or C(R14), X15 may be N or C(R15), X16 may be N or C(R16), X17 may be N or C(R17), X18 may be N or C(R18),
    • X21 may be N or C(R21), X22 may be N or C(R22), X23 may be N or C(R23), X24 may be N or C(R24), X25 may be N or C(R25), X26 may be N or C(R26), X27 may be N or C(R27), X28 may be N or C(R28),
    • L11 may be a group represented by Formula 2,
    • L12 may be a group represented by one of Formulae 3 and 4,
    • L13 may be a group represented by one of Formulae 2 to 4,


wherein in Formulae 2 to 4,

    • ring A3 to ring A5 may each independently be a C5-C60 carbocyclic group or a C2-C60 heterocyclic group,
    • R11 to R18, R21 to R28, R30, R40, and R50 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —N(Q4)(Q5), or —B(Q6)(Q7),
    • at least one of R30, R40, or R50 may be a cyano group,
    • a30, a40, and a50 may each independently be an integer from 1 to 10,
    • * and *′ each indicate a binding site to an adjacent atom, and
    • at least one substituent of the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, or the substituted monovalent non-aromatic condensed heteropolycyclic group may be:
    • deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q14)(Q15), or —B(Q16)(Q17);
    • a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group;
    • a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q24)(Q25), or —B(Q26)(Q27); or
    • —Si(Q31)(Q32)(Q33), —N(Q34)(Q35) or —B(Q36)(Q37),
    • wherein Q1 to Q7, Q11 to Q17, Q21 to Q27, and Q31 to Q37 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


According to an aspect of another embodiment, an organic light-emitting device may include: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer and at least one of the heterocyclic compound represented by Formula 1.





BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings.


The FIGURE is a schematic cross-sectional view of an organic light-emitting device according to an embodiment.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.


It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.


It will be understood that, although the terms “first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer, or section. Thus, “a first element,” “component,” “region,” “layer,” or “section” discussed below could be termed a second element, component, region, layer, or section without departing from the teachings herein.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, “a,” “an,” “the,” and “at least one” do not denote a limitation of quantity, and are intended to cover both the singular and plural, unless the context clearly indicates otherwise. For example, “an element” has the same meaning as “at least one element,” unless the context clearly indicates otherwise.


“Or” means “and/or.” It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.


Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower,” can therefore, encompasses both an orientation of “lower” and “upper,” depending on the particular orientation of the FIGURE. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.


“About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within ±30%, 20%, 10% or 5% of the stated value.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.


A heterocyclic compound may be represented by Formula 1:




embedded image


wherein, in Formula 1, X11 may be N or C(R11), X12 may be N or C(R12), X13 may be N or C(R13), X14 may be N or C(R14), X15 may be N or C(R15), X16 may be N or C(R16), X17 may be N or C(R17), X18 may be N or C(R18), and X21 may be N or C(R21), X22 may be N or C(R22), X23 may be N or C(R23), X24 may be N or C(R24), X25 may be N or C(R25), X26 may be N or C(R26), X27 may be N or C(R27), X28 may be N or C(R28).


In some embodiments, X11 to X18 and X21 to X28 may not each be N, and one or two of X11 to X18 and X21 to X28 may each be N.


In Formula 1, L11 may be a group represented by Formula 2, L12 may be a group represented by one of Formulae 3 and 4, and L13 may be a group represented by one of Formulae 2 to 4:




embedded image


The heterocyclic compound represented by Formula 1 may be asymmetric with respect to L13. Since the heterocyclic compound has an asymmetric structure, characteristics of a relatively excellent amorphous thin film may be secured.


In contrast, since a compound having a symmetric structure has a high crystallinity, device characteristics may be deteriorated due to crystal formation of materials in a thin film during a process such as panel preparation.


In Formulae 2 to 4, ring A3 to ring A5 may each independently be a C5-C60 carbocyclic group or a C2-C60 heterocyclic group.


In some embodiments, ring A3 to ring A5 may each independently be a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, an indene group, a pyrrole group, a thiophene group, a furan group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a quinoxaline group, a quinazoline group, a carbazole group, a benzimidazole group, a benzofuran group, a benzothiophene group, an isobenzothiophene group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a dibenzofuran group, or a dibenzothiophene group.


In some embodiments, ring A3 to ring A5 may each independently be a benzene group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, or a triazine group.


In some embodiments, L11 may be one of Formulae O-1 to O-6.


In some embodiments, L12 may be one of Formulae M-1 to M-9 and P-1 to P-5.


In addition, in some embodiments, L13 may be one of Formulae O-1 to O-6, M-1 to M-9, and P-1 to P-5:




embedded image


embedded image


embedded image


wherein, in Formulae O-1 to O-6, M-1 to M-9, and P-1 to P-5,

    • R30, R40, and R50 may respectively be understood by referring to the descriptions therefor provided herein,
    • d2 may be an integer from 0 to 2,
    • d3 may be an integer from 0 to 3,
    • d4 may be an integer from 0 to 4, and
    • * and *′ each indicate a binding site to an adjacent atom.


In some embodiments, in Formula O-1, R30 may be hydrogen or a cyano group, and R30 in Formulae O-2 to O-6 may be hydrogen.


In some embodiments, R40 in Formula M-1 may be hydrogen or a cyano group, and R40 in Formula M-2 to M-9 may be hydrogen.


In some embodiments, R50 in Formula P-1 may be hydrogen or a cyano group, and R50 in Formula P-2 to P-5 may be hydrogen.


In Formulae 1 to 4, R11 to R18, R21 to R28, R30, R40, and R50 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —N(Q4)(Q5), or —B(Q6)(Q7), and


at least one of R30, R40, or R50 may be a cyano group.


In some embodiments, R11 to R18, R21 to R28, R30, R40, and R50 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, or a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, or a triazinyl group;


a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoxazolyl group, a benzimidazolyl group, a furanyl group, a benzofuranyl group, a thiophenyl group, a benzothiophenyl group, a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, an isoxazolyl group, an oxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridimidinyl group, or an imidazopyridinyl group; or


a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoxazolyl group, a benzimidazolyl group, a furanyl group, a benzofuranyl group, a thiophenyl group, a benzothiophenyl group, a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, an isoxazolyl group, an oxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridimidinyl group, or an imidazopyridinyl group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a fluorenyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a phthalazinyl group, a quinoxalinyl group, a cinnolinyl group, or a quinazolinyl group, and


at least one of R30, R40, or R50 may be a cyano group.


In some embodiments, R11 to R18, R21 to R28, R30, R40, and R50 may each independently be hydrogen, deuterium, a cyano group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;


a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with at least one deuterium, a cyano group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group;


a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group; or


a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each substituted with at least one deuterium, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and


at least one of R30, R40, or R50 may be a cyano group.


In some embodiments, R30, R40, and R50 may each independently be hydrogen or a cyano group, and


at least one of R30, R40, or R50 may be a cyano group.


In some embodiments, R11 to R18, R21 to R28, R30, R40, and R50 may each independently be hydrogen or a cyano group, and


at least one of R30, R40, or R50 may be a cyano group.


In Formulae 1 to 4, a30, a40, and a50 may each independently be an integer from 1 to 10.


a30 indicates the number of R30(s); and when a30 is 2 or greater, at least two R30(s) may be identical to or different from each other. a40 indicates the number of R40(s); and when a40 is 2 or greater, at least two R40(s) may be identical to or different from each other. a50 indicates the number of R50(s); and when a50 is 2 or greater, at least two R50(s) may be identical to or different from each other.


In some embodiments, the number of cyano groups included in the heterocyclic compound represented by Formula 1 may be 1 to 4.


In some embodiments, R11 to R18 and R21 to R28 may not each be a cyano group, or one or two of R11 to R18 and R21 to R28 may each be a cyano group; one, two, or three of R30, R40, and R50 may each be a cyano group; and the number of cyano groups included in the heterocyclic compound represented by Formula 1 may be 1 to 4.


In Formulae 1 to 4, * and *′ each indicate a binding site to an adjacent atom.


In some embodiments, the heterocyclic compound represented by Formula 1 may be represented by one of Formulae 10-1 to 10-6:




embedded image


embedded image




    • wherein, in Formulae 10-1 to 10-6,

    • X11 to X18 and X21 to X28 may each be understood by referring to the descriptions therefor provided herein,





X31 may be N or C(R31), X32 may be N or C(R32), X33 may be N or C(R33), X34 may be N or C(R34),

    • X41 may be N or C(R41), X42 may be N or C(R42), X43 may be N or C(R43), X44 may be N or C(R44), X45 may be N or C(R45), X51 may be N or C(R51), X52 may be N or C(R52), X53 may be N or C(R53), X54 may be N or C(R54),
    • R31 to R34 may each be understood by referring to the descriptions for R30 provided herein,
    • R41 to R45 may each be understood by referring to the descriptions for Rao provided herein,
    • R51 to R54 may each be understood by referring to the descriptions for R50 provided herein, and
    • at least one of R31 to R34, R41 to R45, or R51 to R54 may be a cyano group.


In some embodiments, X31 to X34, X41 to X45, and X51 to X54 may not each be N, and


one or two of X31 to X34, X41 to X45, and X51 to X54 may each be N.


At least one substituent of the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, or the substituted monovalent non-aromatic condensed heteropolycyclic group may be:

    • deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q14)(Q15), or —B(Q16)(Q17);
    • a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group;
    • a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q24)(Q25), or —B(Q26)(Q27); or
    • —Si(Q31)(Q32)(Q33), —N(Q34)(Q35) or —B(Q36)(Q37),
    • wherein Q1 to Q7, Q11 to Q17, Q21 to Q27, and Q31 to Q37 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


In an embodiment, the heterocyclic compound may be of Compounds 1 to 665, 667 to 2317, and 2320 to 2461:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The heterocyclic compound represented by Formula 1 may include a terphenyl linker, wherein an ortho position of a benzene ring at one end of the terphenyl linker may be substituted with a N-carbazole group, and a meta or para position of the benzene ring at another end thereof may be substituted with a N-carbazole group. Thus, steric hindrance may be generated asymmetrically. Accordingly, in the heterocyclic compound represented by Formula 1, characteristics of a relatively excellent amorphous thin film may be secured.


As described above, the heterocyclic compound represented by Formula 1 may have suitable electric characteristics for a material for organic light-emitting devices, e.g., a host material, a hole transport material, and an electron transport material in an emission layer. Accordingly, an organic light-emitting device including the heterocyclic compound may have high efficiency and/or a long lifespan.


For example, the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), triplet (T1), and singlet (S1) energy levels of some of the compounds described above and a comparative compound were evaluated by using Gaussian according to a density functional theory (DFT) method (structure optimization is performed at a degree of B3LYP, and 6-31G(d,p)). The results thereof are shown in Table 1.













TABLE 1






HOMO (electron





Compound No.
volts, eV)
LUMO (eV)
T1 (eV)
S1 (eV)







 152
−5.55
−1.91
2.95
3.10


 224
−5.40
−1.97
3.04
3.14


 404
−5.52
−1.83
3.13
3.19


 582
−5.53
−1.91
3.02
3.10


 670
−5.67
−1.81
3.12
3.24


 813
−5.33
−2.01
2.97
3.02


 857
−5.60
−1.97
2.98
3.20


2168
−5.76
−2.04
3.11
3.40


2451
−5.71
−1.91
3.04
3.15


Compound A
−5.71
−1.97
2.88
3.16













embedded image


152







embedded image


224







embedded image


404







embedded image


582







embedded image


670







embedded image


813







embedded image


857







embedded image


2168







embedded image


2451







embedded image


A









As apparent from Table 1, the heterocyclic compounds each have a high T1 energy level. Thus, the heterocyclic compound represented by Formula 1 may be suitable for use as an emission layer material in an electronic device, e.g., an organic light-emitting device.


A method of synthesizing the heterocyclic compound represented by Formula 1 may be understood by one of ordinary skill in the art by referring to Synthesis Examples provided herein.


The heterocyclic compound represented by Formula 1 may be suitable for use as an organic layer material of an organic light-emitting device, for example, an emission layer material, a hole transport region material, and/or an electron transport region material of the organic layer. Accordingly, according to an aspect of another embodiment, an organic light-emitting device may include: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer and at least one of the heterocyclic compound represented by Formula 1.


As the organic light-emitting device has an organic layer including the heterocyclic compound represented by Formula 1, the organic light-emitting device may have a low driving voltage, high efficiency, high luminance, high quantum efficiency, and long lifespan.


In an embodiment, in the organic light-emitting device,

    • the first electrode may be an anode, and the second electrode may be a cathode,
    • the organic layer may include a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode,
    • wherein the hole transport region may include a hole injection layer, a hole transport layer, an electron blocking layer, or any combination thereof, and
    • the electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof, but embodiments are not limited thereto.


In an embodiment, the emission layer in the organic light-emitting device may include at least one heterocyclic compound represented by Formula 1.


In an embodiment, the emission layer in the organic light-emitting device may include a host and a dopant, wherein the host may include at least one heterocyclic compound represented by Formula 1, and the dopant may include a phosphorescent dopant or a fluorescent dopant. In some embodiments, the dopant may include a phosphorescent dopant (e.g., an organometallic compound represented by Formula 81 provided herein). The host may further include any suitable host, in addition to the heterocyclic compound represented by Formula 1.


The emission layer may emit red light, green light, or blue light.


In an embodiment, the emission layer may include a phosphorescent dopant, but embodiments are not limited thereto.


In some embodiments, the heterocyclic compound represented by Formula 1 may be included in a hole transport region of the organic light-emitting device.


In some embodiments, a hole transport region of the organic light-emitting device may include at least one of a hole injection layer, a hole transport layer, or an electron blocking layer, wherein at least one of the hole injection layer, the hole transport layer, or the electron blocking layer may include the heterocyclic compound represented by Formula 1.


In some embodiments, the heterocyclic compound represented by Formula 1 may be included in an electron transport region of the organic light-emitting device.


In some embodiments, a hole transport region of the organic light-emitting device may include at least one of a hole blocking layer, an electron transport layer, or an electron injection layer, wherein at least one of the hole blocking layer, the electron transport layer, or the electron injection layer, may include the heterocyclic compound represented by Formula 1.


In an embodiment, a hole transport region of the organic light-emitting device may include an electron blocking layer, wherein the electron blocking layer may include the heterocyclic compound represented by Formula 1. The electron blocking layer may be in direct contact with the emission layer.


In an embodiment, an electron transport region of the organic light-emitting device may include a hole blocking layer, wherein the hole blocking layer may include the heterocyclic compound represented by Formula 1. The hole blocking layer may be in direct contact with the emission layer.


In some embodiments, the organic layer of the organic light-emitting device may further include an organometallic compound represented by Formula 81, in addition to the heterocyclic compound represented by Formula 1.

M(L81)n81(L82)n82  Formula 81




embedded image


wherein, in Formulae 81 and 81A,


M may be iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), thulium (Tm), or rhodium (Rh),

    • L81 may be a ligand represented by Formula 81A, n81 may be an integer from 1 to 3; and when n81 is 2 or greater, at least two L81(s) may be identical to or different from each other,
    • L82 may be an organic ligand, n82 may be an integer from 0 to 4; and when n82 is 2 or greater, at least two L82(s) may be identical to or different from each other,


Y81 to Y84 may each independently be carbon (C) or nitrogen (N),


Y81 and Y82 may be linked to each other via a single bond or a double bond, and Y83 and Y84 are linked to each other via a single bond or a double bond,


CY81 and CY82 may each independently be a C5-C30 carbocyclic group or a C2-30 heterocarbocyclic group,


CY81 and CY82 may optionally be bound via an organic linking group,


R81 to R85 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, —SF5, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q81)(Q82)(Q83), —N(Q84)(Q85), —B(Q86)(Q87), or —P(═O)(Q88)(Q89),


a81 to a83 may each independently be an integer from 0 to 5,


when a81 is 2 or greater, at least two R81(s) may be identical to or different from each other,


when a82 is 2 or greater, at least two R82(s) may be identical to or different from each other,


when a81 is 2 or greater, two adjacent R81(s) may be optionally bound to form a saturated or unsaturated C2-C30 ring (e.g., a benzene ring, a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a cyclohexene ring, a norbornane ring, a naphthalene ring, a benzoindene ring, a benzoindole ring, a benzofuran ring, a benzothiophene ring, a pyridine ring, a pyrimidine ring, or a pyrazine ring), or a saturated or unsaturated C2-C30 ring substituted with at least one R88 (e.g., a benzene ring, a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a cyclohexene ring, a norbornane ring, a naphthalene ring, a benzoindene ring, a benzoindole ring, a benzofuran ring, a benzothiophene ring, a pyridine ring, a pyrimidine ring, or a pyrazine ring, each substituted with at least one R88),


when a82 is 2 or greater, two adjacent R82(s) may be optionally bound to form a saturated or unsaturated C2-C30 ring (e.g., a benzene ring, a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a cyclohexene ring, a norbornane ring, a naphthalene ring, a benzoindene ring, a benzoindole ring, a benzofuran ring, a benzothiophene ring, a pyridine ring, a pyrimidine ring, or a pyrazine ring), or a saturated or unsaturated C2-C30 ring substituted with at least one R89 (e.g., a benzene ring, a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a cyclohexene ring, a norbornane ring, a naphthalene ring, a benzoindene ring, a benzoindole ring, a benzofuran ring, a benzothiophene ring, a pyridine ring, a pyrimidine ring, or a pyrazine ring, each substituted with at least one R89),


R88 may be understood by referring to the descriptions for R81 provided herein,


R89 may be understood by referring to the descriptions for R82 provided herein,


* and *′ in Formula 81A each indicate a binding site to M in Formula 81, and


at least one substituent of the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be:


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, or —Si(Q91)(Q92)(Q93),


wherein Q81 to Q89 and Q91 to Q93 may each independently be hydrogen, deuterium, a C1-C60 alkyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group.


In an embodiment, in Formula 81A,


a83 may be 1 or 2, and


R83 to R85 may each independently be


—CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;


an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an iso-pentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group; or


an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an iso-pentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group, each substituted with at least one deuterium, a C1-C10 alkyl group, or a phenyl group, but embodiments are not limited thereto.


In some embodiments, in Formula 81A,


Y81 may be N, Y82 and Y83 may each be C, Y84 may be N or C, and


CY81 and CY82 may each independently be a cyclopentadiene group, a benzene group, a heptalene group, an indene group, a naphthalene group, an azulene group, a heptalene group, an indacene group, an acenaphthylene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentacene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, a pyrrole group, an isoindole group, an indole group, an indazole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a purine group, a furan group, a thiophene group, a pyridine group, a pyrimidine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, a benzofuran group, a benzothiophene group, an iso-benzothiazole group, a benzoxazole group, an isobenzoxazole group, a benzocarbazole group, a dibenzocarbazole group, an imidazopyridine group, an imidazopyrimidine group, a dibenzofuran group, a dibenzothiophene group, a dibenzothiophene sulfone group, a carbazole group, a dibenzosilole group, or a 2,3-dihydro-1H-imidazole group.


In some embodiments, in Formula 81A, Y81 may be N, Y82 to Y84 may each be C, CY81 may be a 5-membered ring including two N atoms as ring-forming atoms, and CY82 may be a benzene group, a naphthalene group a fluorene group, a dibenzofuran group, or a dibenzothiophene group, but embodiments are not limited thereto.


In some embodiments, in Formula 81A, Y81 may be N, Y82 to Y84 may each be C, CY81 may be an imidazole group or a 2,3-dihydro-1H-imidazole group, and CY82 may be a benzene group, a naphthalene group a fluorene group, a dibenzofuran group, or a dibenzothiophene group, but embodiments are not limited thereto.


In some embodiments, in Formula 81A,


Y81 may be N, Y82 to Y84 may each be C,


CY81 may be a pyrrole group, a pyrazole group, an imidazole group, a triazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, a pyridine group, a pyrimidine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a benzimidazole group, an iso-benzothiazole group, a benzoxazole group, or an isobenzoxazole group, and


CY82 may be a cyclopentadiene group, a benzene group, a naphthalene group, a fluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a benzofuran group, a benzothiophene group, a benzocarbazole group, a dibenzocarbazole group, a dibenzofuran group, a dibenzothiophene group, a dibenzothiophene sulfone group, a carbazole group, or a dibenzosilole group.


In some embodiments, in Formula 81A,


R81 and R82 may be each independently be


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, —SF5, a C1-C20 alkyl group, or a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, or a pyrimidinyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group; or


—B(Q86)(Q87) or —P(═O)(Q88)(Q89),


wherein Q86 to Q89 may each independently be


—CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;


an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an iso-pentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group; or


an n-propyl group, an iso-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group, each substituted with at least one deuterium, a C1-C10 alkyl group, or a phenyl group.


In some embodiments, in Formula 81A, at least one R81(s) in the number of a81 or R82(s) in the number of a82 may be a cyano group.


In some embodiments, in Formula 81A, at least one R82(s) in the number of a82 may be a cyano group.


In some embodiments, in Formula 81A, at least one of R81(s) in the number of a81 or R82(s) in the number of a82 may be deuterium.


In some embodiments, in Formula 81, L82 may be a ligand represented by Formulae 3-1(1) to 3-1(60), 3-1(61) to 3-1(69), 3-1(71) to 3-1(79), 3-1(81) to 3-1(88), 3-1(91) to 3-1(98), and 3-1(101) to 3-1(114):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein, in Formulae 3-1(1) to 3-1(60), 3-1(61) to 3-1(69), 3-1(71) to 3-1(79), 3-1(81) to 3-1(88), 3-1(91) to 3-1(98), and 3-1(101) to 3-1(114),

    • X1 may be O, S, C(Z21)(Z22), or N(Z23),
    • X31 may be N or C(Z1a), X32 may be N or C(Z1b),
    • X41 may be O, S, N(Z1a), or C(Z1a)(Z1b),


Z1 to Z4, Z1a, Z1b, Z1c, Z1d, Z2a, Z2b, Z2c, Z2d, Z11 to Z14, and Z21 to Z23 may each independently be


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, —SF5, a C1-C20 alkyl group, or a C1-C20 alkoxy group;


a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, or a pyrimidinyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, —CD3, —CD2H, —CDH2, —CF3, —CF2H, —CFH2, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, or an imidazopyrimidinyl group; or


B(Q86)(Q87) or —P(═O)(Q88)(Q89),


wherein Q86 to Q89 may each independently be


CH3, —CD3, —CD2H, —CDH2, —CH2CH3, —CH2CD3, —CH2CD2H, —CH2CDH2, —CHDCH3, —CHDCD2H, —CHDCDH2, —CHDCD3, —CD2CD3, —CD2CD2H, or —CD2CDH2;


an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an iso-pentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group; or an n-propyl group, an iso-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, or a naphthyl group, each substituted with at least one deuterium, a C1-C10 alkyl group, or a phenyl group,


d2 and e2 may each independently be 0 or 2,


e3 may be an integer from 0 to 3,


d4 and e4 may each independently be an integer from 0 to 4,


d6 and e6 may each independently be an integer from 0 to 6,


d8 and e8 may each independently be an integer from 0 to 8, and


* and *′ each indicate a binding site to M in Formula 1.


In some embodiments, in Formula 81, M may be Ir, and a sum of n81 and n82 may be 3. In some embodiments, in Formula 81, M may be Pt, and a sum of n81 and n82 may be 2.


In some embodiments, the organometallic compound represented by Formula 81 may be neutral and may not include ion pairs of cations and anions.


In some embodiments, the organometallic compound represented by Formula 81 may include at least one of Compounds PD1 to PD78 or Flr6, but embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


As used herein, “(for example, the organic layer) including at least one of the heterocyclic compound” means that “(the organic layer) including a heterocyclic compound of Formula 1, or at least two different heterocyclic compounds of Formula 1”.


For example, the organic layer may include Compound 1 only as the heterocyclic compound. In this embodiment, Compound 1 may be included in the emission layer of the organic light-emitting device. In some embodiments, the organic layer may include Compounds 1 and 2 as the heterocyclic compounds. In this embodiment, Compounds 1 and 2 may be present in the same layer (for example, Compounds 1 and 2 may be both present in an emission layer), or in different layers (for example, Compound 1 may be present in an emission layer, and Compound 2 may be present in a hole blocking layer).


The first electrode may be an anode, which is a hole injection electrode, and the second electrode may be a cathode, which is an electron injection electrode. In some embodiments, the first electrode may be a cathode, which is an electron injection electrode, and the second electrode may be an anode, which is a hole injection electrode.


The term “organic layer” as used herein refers to a single and/or a plurality of layers between the first electrode and the second electrode in an organic light-emitting device. The “organic layer” may include not only organic compounds but also organometallic complexes including metals.


The FIGURE illustrates a schematic cross-sectional view of an organic light-emitting device 10 according to an embodiment. Hereinafter, a structure of an organic light-emitting device according to one or more embodiments and a method of manufacturing the organic light-emitting device will be described with reference to The FIGURE. The organic light-emitting device 10 may include a first electrode 11, an organic layer 15, and a second electrode 19, which may be sequentially layered in this stated order.


A substrate may be additionally disposed under the first electrode 11 or on the second electrode 19. The substrate may be a conventional substrate used in organic light-emitting devices, e.g., a glass substrate or a transparent plastic substrate, each having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water repellency.


The first electrode 11 may be formed by depositing or sputtering, onto the substrate, a material for forming the first electrode 11. The first electrode 11 may be an anode. The material for forming the first electrode 11 may be materials with a high work function for easy hole injection. The first electrode 11 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. The material for forming the first electrode 11 may be indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), and zinc oxide (ZnO). In some embodiments, the material for forming the first electrode 11 may be a metal, such as magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), or magnesium-silver (Mg—Ag).


The first electrode 11 may have a single-layered structure or a multi-layered structure including a plurality of layers. In some embodiments, the first electrode 11 may have a triple-layered structure of ITO/Ag/ITO, but embodiments are not limited thereto.


The organic layer 15 may be on the first electrode 11.


The organic layer 15 may include a hole transport region, an emission layer, and an electron transport region.


The hole transport region may be disposed between the first electrode 11 and the emission layer.


The hole transport region may include at least one a hole injection layer, a hole transport layer, an electron blocking layer, and a buffer layer.


The hole transport region may include a hole injection layer only or a hole transport layer only. In some embodiments, the hole transport region may include a hole injection layer and a hole transport layer which are sequentially stacked on the first electrode 11. In some embodiments, the hole transport region may include a hole injection layer, a hole transport layer, and an electron blocking layer, which are sequentially stacked on the first electrode 11.


When the hole transport region includes a hole injection layer, the hole injection layer may be formed on the first electrode 11 by using one or more suitable methods, such as vacuum deposition, spin coating, casting, and Langmuir-Blodgett (LB) deposition.


When a hole injection layer is formed by vacuum-deposition, for example, the vacuum deposition may be performed at a temperature in a range of about 100° C. to about 500° C., at a vacuum degree in a range of about 10−8 torr to about 10−3 torr, and at a rate in a range of about 0.01 Angstroms per second (Å/sec) to about 100 Å/sec, though the conditions may vary depending on a compound used as a hole injection material and a structure and thermal properties of a desired hole injection layer, but embodiments are not limited thereto.


When a hole injection layer is formed by spin coating, the spin coating may be performed at a rate in a range of about 2,000 revolutions per minute (rpm) to about 5,000 rpm and at a temperature in a range of about 80° C. to 200° C. to facilitate removal of a solvent after the spin coating, though the conditions may vary depending on a compound used as a hole injection material and a structure and thermal properties of a desired hole injection layer, but embodiments are not limited thereto.


The conditions for forming a hole transport layer and an electron blocking layer may be inferred from the conditions for forming the hole injection layer.


The hole transport region may include at least one of m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, spiro-TPD, spiro-NPB, methylated-NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor-sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201, or a compound represented by Formula 202:




embedded image


embedded image


embedded image


wherein, in Formula 201, Ar101 and Ar102 may each independently be


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, or a pentacenylene group; or


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, or a pentacenylene group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group.


In Formula 201, xa and xb may each independently be an integer from 0 to 5. In some embodiments, xa and xb may each independently be an integer from 0 to 2. In some embodiments, xa may be 1, and xb may be 0, but embodiments are not limited thereto.


In Formulae 201 and 202, R101 to R108, R111 to R119, and R121 to R124 may each independently be


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group (e.g., a methyl group, an ethyl group, a propyl group, a butyl group, pentyl group, or a hexyl group), or a C1-C10 alkoxy group (e.g., a methoxy group, an ethoxy group, a propoxy group, a butoxy group, or a pentoxy group);


a C1-C10 alkyl group and a C1-C10 alkoxy group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, or a phosphoric acid group or a salt thereof;


a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, or a pyrenyl group; or


a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, and a pyrenyl group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, or a C1-C10 alkoxy group, but embodiments are not limited thereto.


In Formula 201, R109 may be


a phenyl group, a naphthyl group, an anthracenyl group, or a pyridinyl group; or


a phenyl group, a naphthyl group, an anthracenyl group, or a pyridinyl group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthracenyl group, or a pyridinyl group.


In some embodiments, the compound represented by Formula 201 may be represented by Formula 201A, but embodiments are not limited thereto:




embedded image


wherein, in Formula 201A, R101, R111, R112, and R109 may respectively be understood by referring to the descriptions therefor provided herein.


In some embodiments, the compounds represented by Formulae 201 and 202 may include Compounds HT1 to HT20, but embodiments are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The thickness of the hole transport region may be in a range of about 100 Angstroms (Å) to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region includes at least one a hole injection layer and a hole transport layer, the thickness of the hole injection layer may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å, the thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within any of these ranges, excellent hole transport characteristics may be obtained without a substantial increase in driving voltage.


The hole transport region may include a charge generating material as well as the aforementioned materials, to improve conductive properties of the hole transport region. The charge generating material may be substantially homogeneously or non-homogeneously dispersed in the hole transport region.


The charge generating material may include, for example, a p-dopant. The p-dopant may include one of a quinone derivative, a metal oxide, and a compound containing a cyano group, but embodiments are not limited thereto. For example, non-limiting examples of the p-dopant include a quinone derivative, such as tetracyanoquinodimethane (TCNQ) or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ); a metal oxide, such as a tungsten oxide or a molybdenum oxide; and a compound containing a cyano group, such as Compound HT-D1 or Compound HT-D2, but embodiments are not limited thereto:




embedded image


The hole transport region may further include a buffer layer.


The buffer layer may compensate for an optical resonance distance depending on a wavelength of light emitted from the emission layer to improve the efficiency of an organic light-emitting device.


An emission layer may be formed on the hole transport region by using one or more suitable methods, such as vacuum deposition, spin coating, casting, or LB deposition. When the emission layer is formed by vacuum deposition or spin coating, vacuum deposition and coating conditions for forming the emission layer may be generally similar to those conditions for forming a hole injection layer, though the conditions may vary depending on a compound that is used.


The hole transport region may further include an electron blocking layer. The electron blocking layer may include any suitable known material, e.g., mCP, but embodiments are not limited thereto:




embedded image


The thickness of the electron blocking layer may be in a range of about 50 Å to about 1,000 Å, and in some embodiments, about 70 Å to about 500 Å. When the thickness of the electron blocking layer is within any of these ranges, excellent electron blocking characteristics may be obtained without a substantial increase in driving voltage.


When the organic light-emitting device 10 is a full-color organic light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and a blue emission layer. In some embodiments, the emission layer may have a structure in which the red emission layer, the green emission layer, and/or the blue emission layer are layered to emit white light. In some embodiments, the structure of the emission layer may vary.


The emission layer may include the heterocyclic compound represented by Formula 1.


In some embodiments, the emission layer may include the heterocyclic compound represented by Formula 1 only.


In some embodiments, the emission layer may include

    • the heterocyclic compound represented by Formula 1,
    • i) the second compound (e.g., a compound represented by Formula H-1);
    • ii) the organometallic compound represented by Formula 81; or
    • iii) any combination of i) and ii).


The heterocyclic compound represented by Formula 1, the second compound, and the organometallic compound represented by Formula 81 may respectively be understood by referring to the descriptions for those provided herein.


When the emission layer includes the host and the dopant, an amount of the dopant may be in a range of about 0.01 parts to about 20 parts by weight based on about 100 parts by weight of the emission layer, but embodiments are not limited thereto. When the amount of the dopant is within this range, light emission without quenching may be realized.


When the emission layer includes the heterocyclic compound represented by Formula 1 and the second compound, a weight ratio of the heterocyclic compound represented by Formula 1 to the second compound may be in a range of about 1:99 to about 99:1, for example, about 70:30 to about 30:70. In some embodiments, a weight ratio of the heterocyclic compound represented by Formula 1 to the second compound may be in a range of about 60:40 to about 40:60. When the weight ratio of the heterocyclic compound represented by Formula 1 to the second compound in the emission layer is within any of these ranges, the charge transport balance may be efficiently achieved in the emission layer.


The thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, and in some embodiments, about 200 Å to about 600 Å. When the thickness of the emission layer is within any of these ranges, improved luminescence characteristics may be obtained without a substantial increase in driving voltage.


Next, an electron transport region may be formed on the emission layer.


The electron transport region may include at least one a hole blocking layer, an electron transport layer, or an electron injection layer.


In some embodiments, the electron transport region may have a hole blocking layer/an electron transport layer/an electron injection layer structure or an electron transport layer/an electron injection layer structure, but embodiments are not limited thereto. The electron transport layer may have a single-layered structure or a multi-layered structure including two or more different materials.


The conditions for forming a hole blocking layer, an electron transport layer, and an electron injection layer may be inferred based on the conditions for forming the hole injection layer.


When the electron transport region includes a hole blocking layer, the hole blocking layer, for example, may include at least one of BCP or Bphen, but embodiments are not limited thereto:




embedded image


The hole blocking layer may include the heterocyclic compound represented by Formula 1.


The thickness of the hole blocking layer may be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. When the thickness of the hole blocking layer is within any of these ranges, excellent hole blocking characteristics may be obtained without a substantial increase in driving voltage.


The electron transport layer may further include at least one of BCP, Bphen, Alq3, BAlq, TAZ, or NTAZ:




embedded image


In some embodiments, the electron transport layer may include at least one of Compounds ET1, ET2, and ET3, but embodiments are not limited thereto:




embedded image


The thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, and in some embodiments, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within any of these ranges, excellent electron transport characteristics may be obtained without a substantial increase in driving voltage.


The electron transport layer may further include a material containing metal, in addition to the materials described above.


The material containing metal may include a Li complex. The Li complex may include, e.g., Compound ET-D1 (LiQ) or Compound ET-D2:




embedded image


The electron transport region may include an electron injection layer that facilitates electron injection from the second electrode 19.


The electron injection layer may include at least one of LiQ, LiF, NaCl, CsF, Li2O, or BaO.


The thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, and in some embodiments, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within any of these ranges, excellent electron injection characteristics may be obtained without a substantial increase in driving voltage.


The second electrode 19 may be on the organic layer 15. The second electrode 19 may be a cathode. A material for forming the second electrode 19 may be a material with a relatively low work function, such as a metal, an alloy, an electrically conductive compound, and a mixture thereof. Examples of the material for forming the second electrode 19 may include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag). In some embodiments, ITO or IZO may be used to form a transmissive second electrode 19 to manufacture a top emission light-emitting device. In some embodiments, the material for forming the second electrode 19 may vary.


Hereinbefore the organic light-emitting device 10 has been described with reference to The FIGURE, but embodiments are not limited thereto.


The term “C1-C60 alkyl group” as used herein refers to a linear or branched aliphatic saturated hydrocarbon monovalent group having 1 to 60 carbon atoms. Examples thereof include a methyl group, an ethyl group, a propyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having the same structure as the C1-C60 alkyl group.


The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by —OA101 (wherein A101 is a C1-C1 alkyl group). Examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C2-C60 alkenyl group” as used herein refers to a group formed by placing at least one carbon-carbon double bond in the middle or at the terminus of the C2-C60 alkyl group. Examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkenyl group.


The term “C2-C60 alkynyl group” as used herein refers to a group formed by placing at least one carbon-carbon triple bond in the middle or at the terminus of the C2-C60 alkyl group. Examples thereof include an ethenyl group and a propenyl group. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkynyl group.


The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent monocyclic saturated hydrocarbon group including 3 to 10 carbon atoms. Examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.


The term “C2-C10 heterocycloalkyl group” as used herein refers to a monovalent monocyclic group including at least one heteroatom of N, O, P, Si, Se. Ge, or S as a ring-forming atom and 2 to 10 carbon atoms. Examples thereof include a tetrahydrofuranyl group and a tetrahydrothiophenyl group. The term “C2-C10 heterocycloalkylene group” as used herein refers to a divalent group having the same structure as the C2-C10 heterocycloalkyl group.


The term “C3-C10 cycloalkenyl group” as used herein refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in its ring, wherein the molecular structure as a whole is non-aromatic. Examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


The term “C2-C10 heterocycloalkenyl group” as used herein refers to a monovalent monocyclic group including at least one heteroatom of N, O, P, Si, Se, Ge, or S as a ring-forming atom, 2 to 10 carbon atoms, and at least one double bond in its ring. Examples of the C2-C10 heterocycloalkenyl group include a 2,3-dihydrofuranyl group and a 2,3-dihydrothiophenyl group. The term “C2-C10 heterocycloalkylene group” as used herein refers to a divalent group having the same structure as the C2-C10 heterocycloalkyl group.


The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. The term “C6-C60 arylene group” as used herein refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Examples of the C6-C60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include a plurality of rings, the plurality of rings may be fused to each other.


The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having at least one heteroatom of N, O, P, Si, Se, Ge, or S as a ring-forming atom and 1 to 60 carbon atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a carbocyclic aromatic system having at least one heteroatom of N, O, P, Se, Ge, or S as a ring-forming atom and 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include a plurality of rings, the plurality of rings may be fused to each other.


The term “C6-C60 aryloxy group” as used herein is represented by —OA102 (wherein A102 is the C6-C60 aryl group). The term “C6-C60 arylthio group” as used herein is represented by —SA103 (wherein A103 is the C6-C60 aryl group).


The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group having two or more rings condensed and only carbon atoms (for example, the number of carbon atoms may be in a range of 8 to 60) as ring-forming atoms, wherein the molecular structure as a whole is non-aromatic. Examples of the non-aromatic condensed polycyclic group include a fluorenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group having at least two rings condensed and a heteroatom of N, O, P, Si, Se, Ge, or S as well as carbon atoms (for example, the number of carbon atoms may be in a range of 1 to 60) as ring-forming atoms, wherein the molecular structure as a whole is non-aromatic. Examples of the monovalent non-aromatic condensed heteropolycyclic group include a carbazolyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


The term “C5-C60 carbocyclic group” as used herein refers to a saturated or unsaturated cyclic group including 5 to 60 carbon atoms only as ring-forming atoms. The C5-C60 carbocyclic group may be a monocyclic group or a polycyclic group.


The term “C2-C60 heterocyclic group” as used herein refers to saturated or unsaturated cyclic group including 2 to 60 carbon atoms and at least one heteroatom of N, O, P, Si, Se, Ge, or S as ring-forming atoms. The C2-C60 heterocyclic group may be a monocyclic group or a polycyclic group.


In the present specification, in Formula 1, at least one substituent of the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C3-C10 cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be:

    • deuterium, —CD3, —CD2H, —CDH2, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group;
    • a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, or a C1-C60 alkoxy group, each substituted with at least one deuterium, —CD3, —CD2H, —CDH2, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q14)(Q15), or —B(Q16)(Q17);
    • a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, or a monovalent non-aromatic condensed heteropolycyclic group;
    • a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one deuterium, —CD3, —CD2H, —CDH2, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q24)(Q25), or —B(Q26)(Q27); or
    • —Si(Q31)(Q32)(Q33), —N(Q34)(Q35) or —B(Q36)(Q37),
    • wherein Q11 to Q17, Q21 to Q27, and Q31 to Q37 may each independently be hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


The symbols * and *′ as used herein, unless defined otherwise, refer to a binding site to an adjacent atom in the formula.


Hereinafter, a compound and an organic light-emitting device according to an embodiment will be described in detail with reference to Synthesis Examples and Examples, however, the present disclosure is not limited thereto. The wording “B was used instead of A” used in describing Synthesis Examples means that an identical molar equivalent of B was used in place of A.


EXAMPLES
Synthesis Example 1: Synthesis of Compound 582
(1) Synthesis of Intermediate (5)



embedded image


7.22 grams (g) (43.2 mmol) of carbazole was mixed with 100 milliliters (mL) of dimethyl formamide, followed by slowly adding 1.73 g (43.2 mmol) of sodium hydride (60 percent (%) dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 9.51 g (47.5 mmol) of 3-bromo-2-fluorobenzonitrile was diluted in 70 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to 130° C., followed by stirring for 18 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified through silica gel column chromatography to obtain a desired compound, 10.62 g of Intermediate (5) (at a yield of 71%).


LC-MS (calculated value: 346.01 g/mol, measured value: M+1=347 g/mol)


(2) Synthesis of Intermediate (6)



embedded image


10.39 g (29.9 mmol) of Intermediate (5), 11.40 g (44.9 mmol) of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane), 2.19 g (3.0 mmol) of PdCl2(dppf).CH2Cl2, and 8.81 g (89.8 mmol) of potassium acetate were mixed with 75 mL of dimethyl formamide, followed by stirring under reflux at a temperature of 150° C. for 15 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, and was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized using dichloromethane/n-hexane to obtain a desired compound, 7.95 g of Intermediate (6) (at a yield of 67%).


LC-MS (calculated value: 394.19, measured value: M+1=395)


(3) Synthesis of Intermediate (7)



embedded image


5.12 g (19.6 mmol) of 3,5-dibromobenzonitrile, 7.74 g (19.6 mmol) of Intermediate (6), 2.27 g (2.0 mmol) of tetrakis(triphenylphosphine)palladium(0), and 5.43 g (39.3 mmol) of potassium carbonate were added to a mixture solution of 50 mL of tetrahydrofuran and 20 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 5.30 g of Intermediate (7) (at a yield of 60%).


LC-MS (calculated value: 447.04, measured value: M+1=448)


(4) Synthesis of Intermediate (8)



embedded image


10.38 g (62.1 mmol) of carbazole was mixed with 150 mL of dimethyl formamide, followed by slowly adding 2.48 g (62.1 mmol) of sodium hydride (60% dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 11.95 g (68.3 mmol) of 1-bromo-3-fluorobenzene was diluted in 100 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to 150° C., followed by stirring for 24 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 9.35 g of Intermediate (8) (at a yield of 47%).


LC-MS (calculated value: 321.01, measured value: M+1=322)


(5) Synthesis of Intermediate (9)



embedded image


9.16 g (28.4 mmol) of Intermediate (8), 10.83 g (42.7 mmol) of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane), 2.08 g (2.8 mmol) of PdCl2(dppf).CH2Cl2, and 8.37 g (85.3 mmol) of potassium acetate were mixed with 72 mL of dimethyl formamide, followed by stirring under reflux at a temperature of 150° C. for 15 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, and was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized using ethyl acetate/n-hexane to obtain a desired compound, 8.65 g of Intermediate (9) (at a yield of 82%).


LC-MS (calculated value: 369.19, measured value: M+1=370)


(6) Synthesis of Compound 582



embedded image


5.14 g (11.5 mmol) of Intermediate (7), 5.08 g (13.8 mmol) of Intermediate (9), 1.33 g (1.2 mmol) of tetrakis(triphenylphosphine)palladium(0), and 3.17 g (22.9 mmol) of potassium carbonate were added to a mixture solution of 30 mL of tetrahydrofuran and 12 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized to obtain a desired compound, 1.25 g of Compound 582 (at a yield of 18%).


LC-MS (calculated value: 610.22, measured value: M+1=611)


Synthesis Example 2: Synthesis of Compound 2451
(1) Synthesis of Intermediate (10)



embedded image


18.10 g (40.4 mmol) of Intermediate (7), 15.38 g (60.6 mmol) of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane), 2.95 g (4.0 mmol) of PdCl2(dppf).CH2Cl2, and 11.89 g (121.1 mmol) of potassium acetate were mixed with 100 mL of dimethyl formamide, followed by stirring under reflux at a temperature of 150° C. for 15 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, and was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified through silica gel column chromatography and recrystallized using dichloromethane/n-hexane to obtain a desired compound, 8.79 g of Intermediate (10) (at a yield of 44%).


LC-MS (calculated value: 495.21, measured value: M+1=495)


(2) Synthesis of Intermediate (11)



embedded image


9.05 g (54.2 mmol) of carbazole, 14.29 g (81.2 mmol) of 2-bromo-4-fluoropyridine, and 35.29 g (108.3 mmol) of cesium carbonate were dissolved in 135 mL of dimethyl acetamide, followed by stirring under reflux for 15 hours at a temperature of 160° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 12.35 g of Intermediate (11) (at a yield of 71%).


LC-MS (calculated value: 322.01, measured value: M+1=323)


(3) Synthesis of Compound 2451



embedded image


8.69 g (17.5 mmol) of Intermediate (10), 8.72 g (17.5 mmol) of Intermediate (11), 2.03 g (1.8 mmol) of tetrakis(triphenylphosphine)palladium(0), and 4.85 g (35.1 mmol) of potassium carbonate were added to a mixture solution of 45 mL of tetrahydrofuran and 18 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized to obtain a desired compound, 2.10 g of Compound 2451 (at a yield of 20%).


LC-MS (calculated value: 611.21, measured value: M+1=612)


Synthesis Example 3: Synthesis of Compound 2168
(1) Synthesis of Intermediate (12)



embedded image


11.07 g (57.6 mmol) of 9H-carbazole-3-carbonitrile was mixed with 130 mL of dimethyl formamide, followed by slowly adding 2.30 g (57.6 mmol) of sodium hydride (60% dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 11.09 g (63.4 mmol) of 1-bromo-3-fluorobenzene was diluted in 100 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to 150° C., followed by stirring for 18 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 13.60 g of Intermediate (12) (at a yield of 68%).


LC-MS (calculated value: 346.01, measured value: M+1=347)


(2) Synthesis of Intermediate (13)



embedded image


13.21 g (38.0 mmol) of Intermediate (12), 14.49 g (57.1 mmol) of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane), 2.78 g (3.8 mmol) of PdCl2(dppf).CH2Cl2, and 11.20 g (114.1 mmol) of potassium acetate were mixed with 95 mL of dimethyl formamide, followed by stirring under reflux at a temperature of 150° C. for 15 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, and was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized using dichloromethane/n-hexane to obtain a desired compound, 9.63 g of Intermediate (13) (at a yield of 64%).


LC-MS (calculated value: 394.19, measured value: M+1=395)


(3) Synthesis of Intermediate (14)



embedded image


5.54 g (20.1 mmol) of 3′-bromo-6-fluoro-[1,1′-biphenyl]-2-carbonitrile, 9.49 g (24.1 mmol) of Intermediate (13), 2.32 g (2.0 mmol) of tetrakis(triphenylphosphine)palladium(0), and 55.55 g (40.1 mmol) of potassium carbonate were added to a mixture solution of 50 mL of tetrahydrofuran and 20 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 6.25 g of Intermediate (14) (at a yield of 67%).


LC-MS (calculated value: 463.15, measured value: M+1=464)


(4) Synthesis of Compound 2168



embedded image


2.27 g (11.8 mmol) of 9H-carbazole-3-carbonitrile was mixed with 30 mL of dimethyl formamide, followed by slowly adding 0.47 g (11.8 mmol) of sodium hydride (60% dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 6.02 g (13.0 mmol) of Intermediate (14) was diluted in 17 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to 130° C., followed by stirring for 40 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized to obtain a desired compound, 2.36 g of Compound 2168 (at a yield of 31%).


LC-MS (calculated value: 635.21, measured value: M+1=636)


Synthesis Example 4: Synthesis of Compound 670



embedded image


1.73 g (10.3 mmol) of carbazole was mixed with 25 mL of dimethyl formamide, followed by slowly adding 0.41 g (10.3 mmol) of sodium hydride (60% dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 5.26 g (11.6.0 mmol) of Intermediate (14) was diluted in 17 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to 130° C., followed by stirring for 40 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized to obtain a desired compound, 3.21 g of Compound 670 (at a yield of 51%).


LC-MS (calculated value: 610.70, measured value: M+1=611)


Synthesis Example 5: Synthesis of Compound 813
(1) Synthesis of Intermediate (15)



embedded image


7.75 g (40.3 mmol) of 9H-carbazole-3-carbonitrile was mixed with 100 mL of dimethyl formamide, followed by slowly adding 1.61 g (40.3 mmol) of sodium hydride (60% dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 8.87 g (44.33 mmol) of 3-bromo-4-fluorobenzonitrile was diluted in 61 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to 130° C., followed by stirring for 18 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 11.60 g of Intermediate (15) (at a yield of 77%).


LC-MS (calculated value: 371.01, measured value: M+1=372)(2) Synthesis of Intermediate (16)




embedded image


11.36 g (30.5 mmol) of Intermediate (15), 11.63 g (45.8 mmol) of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane), 2.23 g (3.1 mmol) of PdCl2(dppf).CH2Cl2, and 8.99 g (91.6 mmol) of potassium acetate were mixed with 77 mL of dimethyl formamide, followed by stirring under reflux at a temperature of 150° C. for 15 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, and was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized using dichloromethane/n-hexane to obtain a desired compound, 10.63 g of Intermediate (16) (at a yield of 83%).


LC-MS (calculated value: 419.18, measured value: M+1=420)


(3) Synthesis of Intermediate (17)



embedded image


70.7 g (25.0 mmol) of 1-bromo-4-iodobenzene, 10.48 g (25.0 mmol) of Intermediate (16), 2.89 g (2.5 mmol) of tetrakis(triphenylphosphine)palladium(0), and 6.91 g (50.0 mmol) of potassium carbonate were added to a mixture solution of 63 mL of tetrahydrofuran and 25 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 5.94 g of Intermediate (17) (at a yield of 53%).


LC-MS (calculated value: 447.04, measured value: M+1=448)


(4) Synthesis of Compound 813



embedded image


5.58 g (12.4 mmol) of Intermediate (17), 5.97 g (16.2 mmol) of Intermediate (9), 1.44 g (1.2 mmol) of tetrakis(triphenylphosphine)palladium(0), and 3.44 g (24.9 mmol) of potassium carbonate were added to a mixture solution of 32 mL of tetrahydrofuran and 13 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized to obtain a desired compound, 3.52 g of Compound 813 (at a yield of 46%).


LC-MS (calculated value: 641.22, measured value: M+1=612)


Synthesis Example 6: Synthesis of Compound 152
(1) Synthesis of Intermediate (18)



embedded image


13.09 g (40.6 mmol) of 9-(4-bromophenyl)-9H-carbazole, 15.47 g (60.9 mmol) of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane), 2.97 g (4.06 mmol) of PdCl2(dppf).CH2Cl2, and 11.96 g (121.9 mmol) of potassium acetate were mixed with 102 mL of dimethyl formamide, followed by stirring under reflux at a temperature of 150° C. for 15 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, and was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized using dichloromethane/n-hexane to obtain a desired compound, 9.66 g of Intermediate (18) (at a yield of 64%).


LC-MS (calculated value: 369.19, measured value: M+1=370)


(2) Synthesis of Intermediate (19)



embedded image


7.86 g (25.5 mmol) of 3-bromo-5-iodobenzonitrile, 9.42 g (25.5 mmol) of Intermediate (18), 2.95 g (2.6 mmol) of tetrakis(triphenylphosphine)palladium(0), and 7.05 g (51.0 mmol) of potassium carbonate were added to a mixture solution of 65 mL of tetrahydrofuran and 25 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 7.12 g of Intermediate (19) (at a yield of 66%).


LC-MS (calculated value: 422.04, measured value: M+1=423)


(3) Synthesis of Compound 152



embedded image


6.79 g (16.1 mmol) of Intermediate (19), 8.23 g (20.9 mmol) of Intermediate (6), 1.85 g (1.6 mmol) of tetrakis(triphenylphosphine)palladium(0), and 4.44 g (32.1 mmol) of potassium carbonate were added to a mixture solution of 40 mL of tetrahydrofuran and 16 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized to obtain a desired compound, 1.55 g of Compound 152 (at a yield of 16%).


LC-MS (calculated value: 610.22, measured value: M+1=611)


Synthesis Example 7: Synthesis of Compound 224
(1) Synthesis of Intermediate (20)



embedded image


6.30 g (22.8 mmol) of 3′-bromo-6-fluoro-[1,1′-biphenyl]-2-carbonitrile, 10.11 g (27.4 mmol) of Intermediate (18), 2.64 g (2.3 mmol) of tetrakis(triphenylphosphine)palladium(0), and 6.30 g (45.6 mmol) of potassium carbonate were added to a mixture solution of 60 mL of tetrahydrofuran and 23 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 7.17 g of Intermediate (20) (at a yield of 72%).


LC-MS (calculated value: 438.15, measured value: M+1=439)


(2) Synthesis of Compound 224



embedded image


2.68 g (13.9 mmol) of 9H-carbazole-3-carbonitrile was mixed with 40 mL of dimethyl formamide, followed by slowly adding 0.56 g (13.9 mmol) of sodium hydride (60% dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 6.71 g (15.3 mmol) of Intermediate (20) was diluted in 20 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to 130° C., followed by stirring for 18 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized to obtain a desired compound, 2.99 g of Compound 224 (at a yield of 35%).


LC-MS (calculated value: 610.22, measured value: M+1=611)


Synthesis Example 8: Synthesis of Compound 857
(1) Synthesis of Intermediate (21)



embedded image


4.65 g (24.2 mmol) of 9H-carbazole-3-carbonitrile was mixed with 55 mL of dimethyl formamide, followed by slowly adding 0.97 g (24.2 mmol) of sodium hydride (60% dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 5.32 g (26.6 mmol) of 3-bromo-5-fluorobenzonitrile was diluted in 40 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to 130° C., followed by stirring for 18 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 6.55 g of Intermediate (21) (at a yield of 73%).


LC-MS (calculated value: 371.01 g/mol, measured value: M+1=372 g/mol)


(2) Synthesis of Intermediate (22)



embedded image


6.30 g (37.7 mmol) of carbazole was mixed with 100 mL of dimethyl formamide, followed by slowly adding 1.51 g (37.7 mmol) of sodium hydride (60% dispersion in mineral oil) thereto and stirring at a temperature of 0° C. for 30 minutes. A solution, in which 10.82 g (41.4 mmol) of 4′-bromo-2-fluoro-1,1′-biphenyl was mixed with 50 mL of dimethyl formamide, was slowly added to the resulting product for 10 minutes. Subsequently, the reaction temperature was raised to a temperature of 150° C., followed by stirring for 40 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, followed by addition of ammonium chloride aqueous solution to extract an organic layer using dichloromethane. From the resulting product, water was removed using magnesium sulfate. Subsequently, the obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 7.30 g of Intermediate (22) (at a yield of 49%).


LC-MS (calculated value: 397.05 g/mol, measured value: M+1=398 g/mol)


(3) Synthesis of Intermediate (23)



embedded image


7.15 g (18.0 mmol) of Intermediate (22), 6.84 g (26.9 mmol) of 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane), 1.31 g (1.8 mmol) of PdCl2(dppf).CH2Cl2, and 5.29 g (53.9 mmol) of potassium acetate were mixed with 45 mL of dimethyl formamide, followed by stirring under reflux at a temperature of 150° C. for 15 hours. Once the reaction was complete, the resulting mixture was cooled to room temperature, and was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized using dichloromethane/n-hexane to obtain a desired compound, 4.93 g of Intermediate (23) (at a yield of 62%).


LC-MS (calculated value: 445.22, measured value: M+1=446)


(4) Synthesis of Compound 857



embedded image


3.23 g (8.7 mmol) of Intermediate (21), 4.64 g (10.4 mmol) of Intermediate (23), 1.00 g (0.9 mmol) of tetrakis(triphenylphosphine)palladium(0), and 2.40 g (17.4 mmol) of potassium carbonate were added to a mixture solution of 23 mL of tetrahydrofuran and 9 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography and recrystallized to obtain a desired compound, 1.27 g of Compound 857 (at a yield of 24%).


LC-MS (calculated value: 610.22, measured value: M+1=611)


Synthesis Example 9: Synthesis of Compound 404
(1) Synthesis of Intermediate (24)



embedded image


10.30 g (33.5 mmol) of 2-bromo-3-iodobenzonitrile, 6.60 g (16.7 mmol) of Intermediate (6), 3.87 g (3.4 mmol) of tetrakis(triphenylphosphine)palladium(0), and 9.25 g (66.9 mmol) of potassium carbonate were added to a mixture solution of 85 mL of tetrahydrofuran and 35 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified by silica gel column chromatography to obtain a desired compound, 5.66 g of Intermediate (24) (at a yield of 38%).


LC-MS (calculated value: 447.04, measured value: M+1=448)


(2) Synthesis of Compound 404



embedded image


5.36 g (11.6 mmol) of Intermediate (24), 8.83 g (23.9 mmol) of Intermediate (9), 1.38 g (1.2 mmol) of tetrakis(triphenylphosphine)palladium(0), and 3.30 g (23.9 mmol) of potassium carbonate were added to a mixture solution of 30 mL of tetrahydrofuran and 12 mL of water, followed by stirring under reflux at a temperature of 85° C. Once the reaction was complete, the resulting mixture was cooled to room temperature, a solution layer was removed by extraction, and the resultant was filtered through silica gel under reduced pressure. The obtained filtrate was concentrated under reduced pressure, and the resulting product was separated and purified through silica gel column chromatography and recrystallized to obtain a desired compound, 0.94 g of Compound 404 (at a yield of 13%).


LC-MS (calculated value: 610.22 g/mol, measured value: M+1=612 g/mol)


Example 1

A glass substrate having 1,500 Å of indium tin oxide (ITO) electrode (first electrode, anode) deposited thereon was washed with distilled water in the presence of ultrasound waves. Once the washing with distilled water was complete, ultrasound wave washing was performed on the substrate using a solvent, such as isopropyl alcohol, acetone, or methanol. Subsequently, the substrate was dried, transferred to a plasma washer, washed for 5 minutes using oxygen plasma, and mounted in a vacuum depositor.


Compound HT3 and Compound HT-D2 were vacuum-deposited on the ITO electrode of the glass substrate to form a hole injection layer having a thickness of 100 Å. Then, Compound HT3 was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 1,300 Å. mCP was next vacuum-deposited on the hole transport layer to form an electron blocking layer having a thickness of 100 Å, thereby forming a hole transport region.


Subsequently, Compound 582 (host) and Flr6 (dopant) were co-deposited on the hole transport region to form an emission layer having a thickness of 400 Å.


BCP was vacuum-deposited on the emission layer to form a hole blocking layer having a thickness of 100 Å. Compound ET3 and Liq were then co-deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 Å. Next, Liq was vacuum-deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and then, Al second electrode (a cathode) having a thickness of 1,200 Å was formed on the electron injection layer, thereby completing the manufacture of an organic light-emitting device.




embedded image


embedded image


Examples 2 to 9 and Comparative Examples 1 and 2

Organic light-emitting devices were manufactured in substantially the same manner as in Example 1, except that the compounds shown in Table 2 were used instead of Compound 582 as a host in the formation of an emission layer.


Evaluation Example: Evaluation of Characteristics of Organic Light-Emitting Device

Driving voltages, current density changes, luminance changes, and emission efficiencies of the organic light-emitting device manufactured in Examples 1 to 9 and Comparative Examples 1 and 2 were measured by applying various voltages thereto. The measurement method is as described in the following. The results thereof are shown in Table 2.


(1) Measurement of Driving Voltage and Current Density Changes Depending on Changes of Applied Voltages


The driving voltages and current values in a unit device of the prepared organic light-emitting devices were measured by using a current voltmeter (Keithley 2400) while increasing the applied voltage from 0 volt (V) to 10 V. The result was obtained by dividing a current value by an area.


(2) Measurement of Luminance Changes Depending on Changes of Applied Voltages


Luminance values of the prepared organic light-emitting devices were measured by using a luminance meter (Minolta Cs-1000A) while increasing the applied voltage from 0V to 10 V.


(3) Measurement of Emission Efficiency


The luminance values measured from (2) and current density values and voltages measured from (1) were used in calculating the current efficiency (cd/A) under a condition of an identical current density (10 milliamperes per square meter (mA/cm2)).


(4) Measurement of Durability


The time (hour) for the luminance of each organic light-emitting device to decline to 95% of its initial luminance was evaluated.














TABLE 2







Driving
Current






voltage
efficiency
Durability





(relative
(relative
(relative
Emission



Host
value)
value)
value)
color







Example 1
 582
 85
129
133
Blue


Example 2
2451
 88
121
109
Blue


Example 3
2168
 75
147
137
Blue


Example 4
 670
 80
145
132
Blue


Example 5
 813
 82
131
125
Blue


Example 6
 152
 74
117
119
Blue


Example 7
 224
 71
144
130
Blue


Example 8
 857
 89
128
120
Blue


Example 9
 404
 76
138
103
Blue


Comparative
Compound
100
100
100
Blue


Example 1
A






Comparative
Compound
 96
116
 53
Blue


Example 2
B













embedded image


152







embedded image


224







embedded image


404







embedded image


582







embedded image


670







embedded image


813







embedded image


857







embedded image


2168







embedded image


2451







embedded image


A







embedded image


B









As apparent from Table 2, the organic light-emitting device of Examples 1 to 9 were found to have low driving voltages and excellent current efficiency and durability, as compared with the organic light-emitting device of Comparative Examples 1 and 2.


As apparent from the foregoing description, the heterocyclic compound according to one or more embodiments has excellent electric characteristics and thermal stability. Accordingly, an organic light-emitting device including the heterocyclic compound may have a low driving voltage, high efficiency, high power, high quantum yield, and long lifespan.


It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments.


While one or more embodiments have been described with reference to the FIGURE, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.

Claims
  • 1. An organic light-emitting device comprising: a first electrode;a second electrode; andan organic layer between the first electrode and the second electrode, the organic layer comprising an emission layer and at least one heterocyclic compound represented by Formula 1, wherein the emission layer comprises a host and a dopant, and the host consists of the heterocyclic compound represented by Formula 1, wherein a content of the host is greater than a content of the dopant:
  • 2. The organic light-emitting device of claim 1, wherein X11 to X18 and X21 to X28 are each not N, and one or two of X11 to X18 and X21 to X28 are each N.
  • 3. The organic light-emitting device of claim 1, wherein ring A3 to ring A5 are each independently a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, an indene group, a pyrrole group, a thiophene group, a furan group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a quinoxaline group, a quinazoline group, a carbazole group, a benzimidazole group, a benzofuran group, a benzothiophene group, an isobenzothiophene group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a dibenzofuran group, or a dibenzothiophene group.
  • 4. The organic light-emitting device of claim 1, wherein ring A3 to ring A5 are each independently a benzene group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, or a triazine group.
  • 5. The organic light-emitting device of claim 1, wherein L11 is one of Formulae O-1 to O-6,L12 is one of Formulae M-1 to M-9 and P-1 to P-5, andL13 is one of Formulae O-1 to O-6, M-1 to M-9, and P-1 to P-5:
  • 6. The organic light-emitting device of claim 1, wherein R11 to R18, R21 to R28, R30, R40, and R50 are each independently hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, or a C1-C20 alkoxy group;a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, or a triazinyl group;a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoxazolyl group, a benzimidazolyl group, a furanyl group, a benzofuranyl group, a thiophenyl group, a benzothiophenyl group, a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, an isoxazolyl group, an oxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridimidinyl group, or an imidazopyridinyl group; ora cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoxazolyl group, a benzimidazolyl group, a furanyl group, a benzofuranyl group, a thiophenyl group, a benzothiophenyl group, a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, an isoxazolyl group, an oxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridimidinyl group, or an imidazopyridinyl group, each substituted with at least one deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a fluorenyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a phthalazinyl group, a quinoxalinyl group, a cinnolinyl group, or a quinazolinyl group, andat least one of R30, R40, or R50 is a cyano group.
  • 7. The organic light-emitting device of claim 1, wherein R11 to R18, R21 to R28, R30, R40, and R50 are each independently hydrogen, deuterium, a cyano group, a C1-C20 alkyl group, or a C1-C20 alkoxy group;a C1-C20 alkyl group or a C1-C20 alkoxy group, each substituted with at least one deuterium, a cyano group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group;a cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group; ora cyclopentyl group, a cyclohexyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothiophenyl group, each substituted with at least one deuterium, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, orat least one of R30, R40, or R50 is a cyano group.
  • 8. The organic light-emitting device of claim 1, wherein R30, R40, and R50 are each independently hydrogen or a cyano group, and at least one of R30, R40, or R50 is a cyano group.
  • 9. The organic light-emitting device of claim 1, wherein the number of cyano groups comprised in the heterocyclic compound represented by Formula 1 is 1 to 4.
  • 10. The organic light-emitting device of claim 1, wherein R11 to R18 and R21 to R28 are not each a cyano group, or one or two of R11 to R18 and R21 to R28 are each a cyano group; one, two, or three of R30, R40, and R50 are each a cyano group; and the number of cyano groups comprised in the heterocyclic compound represented by Formula 1 is 1 to 4.
  • 11. The organic light-emitting device of claim 1, wherein the heterocyclic compound represented by Formula 1 is represented by one of Formulae 10-1 to 10-6:
  • 12. The organic light-emitting device of claim 1, wherein the heterocyclic compound represented by Formula 1 is of Compounds 152, 224, 404, 582, 670, 813, 857, 2168, and 2451:
  • 13. The organic light-emitting device of claim 1, wherein the first electrode is an anode, the second electrode is a cathode, the organic layer comprises a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode, the hole transport region comprises at least one of a hole injection layer, a hole transport layer, or an electron blocking layer, and the electron transport region comprises at least one of a hole blocking layer, an electron transport layer, or an electron injection layer.
  • 14. The organic light-emitting device of claim 13, wherein the emission layer emits blue light having a maximum emission wavelength in a range of about 410 nanometers (nm) to 490 nm.
  • 15. The organic light-emitting device of claim 13, wherein the hole transport region comprises the heterocyclic compound represented by Formula 1.
  • 16. The organic light-emitting device of claim 13, wherein the electron transport region comprises the heterocyclic compound represented by Formula 1.
  • 17. The organic light-emitting device of claim 13, wherein the electron transport region comprises a hole blocking layer, the hole blocking layer is in direct contact with the emission layer, and the hole blocking layer comprises the heterocyclic compound represented by Formula 1.
Priority Claims (1)
Number Date Country Kind
10-2019-0022734 Feb 2019 KR national
US Referenced Citations (13)
Number Name Date Kind
8859109 Sawada et al. Oct 2014 B2
9530969 Mizuki et al. Dec 2016 B2
10243149 Kang et al. Mar 2019 B2
10263196 Danz et al. Apr 2019 B2
10340460 Fukumatsu et al. Jul 2019 B2
20120126692 Ise et al. May 2012 A1
20120161617 Fukuzaki Jun 2012 A1
20160013423 Huh et al. Jan 2016 A1
20170194570 Kang Jul 2017 A1
20170358756 Chung Dec 2017 A1
20180198075 Danz et al. Jul 2018 A1
20190177303 Danz et al. Jun 2019 A1
20190296247 Sakamoto Sep 2019 A1
Foreign Referenced Citations (19)
Number Date Country
101333438 Nov 2011 CN
107074765 Aug 2017 CN
108285452 Jul 2018 CN
109942551 Jun 2019 CN
110294743 Oct 2019 CN
1829871 Sep 2007 EP
2272828 Jan 2011 EP
3543230 Sep 2019 EP
2009035524 Feb 2009 JP
2011054696 Mar 2011 JP
2019096876 Jun 2019 JP
1020100135815 Dec 2010 KR
1020120018231 Feb 2012 KR
1020150003223 Jan 2015 KR
1020150116337 Oct 2015 KR
1020160006629 Jan 2016 KR
1020170082126 Jul 2017 KR
1020170088822 Aug 2017 KR
2013084885 Jun 2013 WO
Non-Patent Literature Citations (7)
Entry
English translation of JP 2019096876, Jun. 20, 2019. (Year: 2019).
CAS reg. No. 2478470-57-2, Sep. 11, 2020. (Year: 2020).
Extended European search report issued by the European Patent Office dated May 12, 2020 in the examination of the European Patent Application No. 20158448.9, which corresponds to the U.S. Application above.
Youtian Tao, et al., Tuning the Optoelectronic Properties of Carbazole/Oxadiazole Hybrids through Linkage Modes: Hosts for Highly Efficient Green Electrophosphprescence, 2010, Adv. Funct. Mater. 20, 304-311, XP001551600.
Wei Li, J. Bipolar host materials for high-efficiency blue phosphorescent and delayed-fluorescence OLEDs, Mater. Chem. C, 2015.
English Translation of Office Action dated Aug. 8, 2023, issued in corresponding CN Patent Application No. 202010130909.4, 10 pp.
Office Action dated Aug. 8, 2023, issued in corresponding CN Patent Application No. 202010130909.4, 8 pp.
Related Publications (1)
Number Date Country
20200274074 A1 Aug 2020 US