None.
This invention relates to seismic prospecting and especially to technology for delivering seismic energy into the earth in search of hydrocarbon resources.
In the process of acquiring seismic data, seismic energy is delivered into the earth. Over the years, the preferred attributes of the seismic energy delivered into the earth have been honed to include a broad spectrum of wavelengths and sufficient power across the spectrum to be recorded at the surface. In general, a suitable source must be able to deliver seismic energy waves in a spectrum of wavelengths from about 4 Hz up to 60-80 Hz. The source must have sufficient power across the spectrum so that the seismic waves have measurable amplitude at the surface after transiting deep into the earth, reflecting from or refracting through layers in the earth and transiting back to the surface. A last major characteristic of a desirable seismic source is that the energy from the source is distinguishable in the data record from seismic energy from other sources whether from background sources or other seismic prospecting.
Explosive charges have long been used as seismic sources although the intense release of energy is typically not permitted except in remote locations. Explosive sources, however, provide a wide array of wavelengths with considerable power across the wavelengths.
Hydraulic reciprocating seismic vibrators or vibes have been in use for many years using a baseplate connected to hydraulic rams that cause a reaction mass to reciprocate up and down to shake the ground through the baseplate. The hydraulic rams are operated to move the reaction mass through a sweep of the desired frequencies. However, the hydraulic systems are limited in their ability to provide sufficient power at high frequencies due to limitations of hydraulic flow in and out of the hydraulic cylinders. At very high hydraulic velocities, the hydraulic fluid is subject to cavitation when reversing directions that limits the amplitude of the movement of the reaction mass and thus the energy input in to the earth. At low frequencies it is difficult for the hydraulic vibe to have enough travel to generate a low frequency wave into the ground. For example, consider how one would generate a one Hz wave with a hydraulic vibe. A very long throw of the reaction mass is needed to generate that wavelet because the mass has to be moving down and up the full one second.
The invention more particularly includes process for delivering seismic energy into the ground wherein a seismic baseplate is lowered into contact with the ground and a plurality of eccentric impulse devices that are attached to the seismic baseplate are rotated to impart impulses into the earth. The rotation of the eccentric impulse devices are controlled to heterodyne the impulse that each eccentric impulse device and effectively impart a more powerful impulse into the earth and the returning wavefield of seismic energy returning from the subsurface is sensed and recorded for subsequent analysis.
A more complete understanding of the present invention and benefits thereof may be acquired by referring to the follow description taken in conjunction with the accompanying drawings in which:
Turning now to the detailed description of the preferred arrangement or arrangements of the present invention, it should be understood that the inventive features and concepts may be manifested in other arrangements and that the scope of the invention is not limited to the embodiments described or illustrated. The scope of the invention is intended only to be limited by the scope of the claims that follow.
As shown in
As best seen in
Each of the roller bodies 23 and 33 include an eccentric mass identified by the number 27 on roller body 23 and as eccentric mass 37 on roller body 33. Eccentric masses 27 and 37 are preferably a highly dense material such as depleted uranium or tungsten to provide roller bodies 23 and 33 with a center of mass that is not coaxial with the respective roller body 23 or 33. As the roller body 23 and 33 rotates around its respective axis or shaft, 24 and 34, respectively, each provides a vibration that is dependent on the mass of the roller bodies 23 and 33, the distance the center of the mass for each roller body 23 and 33 from the respective shaft 24 and 34 and the speed at which the roller body 23 and 33 is rotated about its respective shaft 24 and 34.
Each eccentric impulse device 22 or 32, while rotating will provide a base vibrational frequency. However, while both are rotating, and especially while rotating at different rotational speeds or rates, the two eccentric impulse devices 22 and 32 will also provide compounding frequencies based on heterodyning where the frequencies may be added or subtracted from one another. Thus, four frequencies will be emitted, and all frequencies may be recognized by seismic recording systems. The heterodyned subtraction frequencies that are created by fairly high rotational speeds are interesting from a seismic prospecting standpoint in that high speeds provide high energy levels of seismic energy but frequencies that are relevant to seismic surveying. Such high energy frequencies may be useful for seismic hydrocarbon prospecting. Operating a single eccentric device at the low frequencies of interest using the roller body of the same size as roller body 23 and using a vibrational input drive the same size as vibrational input drive 26 would not provide sufficient energy to be useful in the data record of a seismic recording system. A much, much larger eccentric impulse device that would be impractical to take into the field considering the size of a vehicle to carry it into the field and from source location to source location. Heterodyning a pair of simple eccentric impulse devices 22 and 32 provides a practical and low cost method for delivering seismic energy to the ground for seismic hydrocarbon prospecting.
As shown in
As shown in
Turning to
The preferred frequency range of the sweep is from about 1 Hz up to about 200 Hz. High frequencies may vary from survey to survey but are generally at least 80 Hz and commonly up to 120 Hz. Low frequencies may vary from survey to survey but in general they are at least down to 4 Hz and commonly down to 2 Hz.
The vibrator 10 includes electronic circuitry to control the vibration input drives 26 and 36 so that eccentric impulse devices 22 and 32 operate in conjunction with one another to provide combined vibrational power through the baseplate 10 in a heterodyne fashion.
With the arrangement shown in
In closing, it should be noted that the discussion of any reference is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application. At the same time, each and every claim below is hereby incorporated into this detailed description or specification as a additional embodiments of the present invention.
Although the systems and processes described herein have been described in detail, it should be understood that various changes, substitutions, and alterations can be made without departing from the spirit and scope of the invention as defined by the following claims. Those skilled in the art may be able to study the preferred embodiments and identify other ways to practice the invention that are not exactly as described herein. It is the intent of the inventors that variations and equivalents of the invention are within the scope of the claims while the description, abstract and drawings are not to be used to limit the scope of the invention. The invention is specifically intended to be as broad as the claims below and their equivalents.
This application is a non-provisional application which claims benefit under 35 USC §119(e) to U.S. Provisional Application Ser. No. 61/578,437 filed Dec. 21, 2011, entitled “Heterodyned Eccentric Vibrator,” which is incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61578437 | Dec 2011 | US |