Heterogeneity of Ventral Tegmental Area Neurons and Opioid Reward

Information

  • Research Project
  • 8209062
  • ApplicationId
    8209062
  • Core Project Number
    R01DA030529
  • Full Project Number
    5R01DA030529-02
  • Serial Number
    030529
  • FOA Number
    PA-10-067
  • Sub Project Id
  • Project Start Date
    1/1/2011 - 14 years ago
  • Project End Date
    11/30/2015 - 9 years ago
  • Program Officer Name
    SORENSEN, ROGER
  • Budget Start Date
    12/1/2011 - 13 years ago
  • Budget End Date
    11/30/2012 - 12 years ago
  • Fiscal Year
    2012
  • Support Year
    02
  • Suffix
  • Award Notice Date
    1/5/2012 - 13 years ago

Heterogeneity of Ventral Tegmental Area Neurons and Opioid Reward

DESCRIPTION (provided by applicant): Approximately 2 million people are dependent on or abuse opioids in the USA each year (www.dhhs.gov), and NIDA reports that illicit opiate use is on the rise. Accumulating evidence indicates that alcohol consumption and rewarding events cause the release of endogenous opioids in the brain, therefore utilizing the same mu opioid receptors (MORs) and brain circuits involved in opiate addiction. In spite of the magnitude of this problem, we only partially understand how MOR activation causes reward and leads to addiction. Therefore overall objective of this proposal is to investigate the circuits that contribute to opioid reward. MORs in the ventral tegmental area (VTA) are required for morphine reward (Olmstead and Franklin, 1997b; Zhang et al., 2009). VTA neurons release dopamine in the ventral striatum, and it is commonly thought that dopamine released in the ventral striatum causes opioid reward. Yet, lesions of the ventral striatum do not block morphine reward (Olmstead and Franklin, 1996, 1997a; White et al., 2005). Instead, lesions of the medial prefrontal cortex (mPFC) do block morphine reward (Tzschentke and Schmidt, 1999). Therefore the proposed experiments focus on MOR control of mPFC-projecting VTA neurons. Detailed anatomy of this projection will be studied, in particular to test whether the newly discovered VTA glutamate neurons project to the mPFC. Because morphine reward is dopamine-independent in opiate na¿ve animals (Bechara et al., 1992; Nader and van der Kooy, 1997), it is critical to determine the effects of MOR activation on both the non-dopamine and dopamine VTA neurons that project to the mPFC. Cortical-projecting neurons will be retrogradely labeled so that they can be identified during brain slice recordings, and pre- and postsynaptic MOR agonist effects will be measured electrophysiologically in these labeled neurons. Following recordings, the neurotransmitter content of the recorded neurons will be directly identified as dopamine, glutamate, or GABA using immunocytochemistry or in situ hybridization. Since electrical stimulation of the mPFC is rewarding (Corbett et al., 1982; Duvauchelle and Ettenberg, 1991), it is hypothesized that MOR activation will excite mPFC-projecting dopamine and glutamate neurons, and inhibit GABA neurons. By improving our understanding of the circuitry involved in opioid reward, this work will enable more effective therapeutic development for disorders that involve VTA and mPFC signaling, including addiction, alcoholism, impulsivity disorders and attention deficit hyperactivity disorder. PUBLIC HEALTH RELEVANCE: The overall goal of the proposed research is to determine the underlying brain circuitry responsible for opiate addiction. Because brain opiate receptors are also activated following alcohol consumption, food consumption, and other natural rewards, the same circuitry also contributes to other disorders such as alcoholism and overeating. By determining the brain pathways involved in opiate reward and addiction, this work will enable more targeted treatments to be developed for these addiction disorders.

IC Name
NATIONAL INSTITUTE ON DRUG ABUSE
  • Activity
    R01
  • Administering IC
    DA
  • Application Type
    5
  • Direct Cost Amount
    225000
  • Indirect Cost Amount
    156994
  • Total Cost
    381994
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    279
  • Ed Inst. Type
  • Funding ICs
    NIDA:381994\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    MNPS
  • Study Section Name
    Molecular Neuropharmacology and Signaling Study Section
  • Organization Name
    ERNEST GALLO CLINIC AND RESEARCH CENTER
  • Organization Department
  • Organization DUNS
    173995366
  • Organization City
    EMERYVILLE
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    946082007
  • Organization District
    UNITED STATES