The present invention is generally directed to fuel cell components, and to solid oxide fuel cell electrolyte materials in particular.
Fuel cells are electrochemical devices which can convert energy stored in fuels to electrical energy with high efficiencies. Electrolyzer cells are electrochemical devices which can use electrical energy to reduce a given material, such as water, to generate a fuel, such as hydrogen. The fuel and electrolyzer cells may comprise reversible cells which operate in both fuel cell and electrolysis mode.
In a high temperature fuel cell system, such as a solid oxide fuel cell (SOFC) system, an oxidizing flow is passed through the cathode side of the fuel cell while a fuel flow is passed through the anode side of the fuel cell. The oxidizing flow is typically air, while the fuel flow can be a hydrocarbon fuel, such as methane, natural gas, propane, ethanol, or methanol. The fuel cell, operating at a typical temperature between 750° C. and 950° C., enables the transport of negatively charged oxygen ions from the cathode flow stream to the anode flow stream, where the ion combines with either free hydrogen or hydrogen in a hydrocarbon molecule to form water vapor and/or with carbon monoxide to form carbon dioxide. The excess electrons from the negatively charged ion are routed back to the cathode side of the fuel cell through an electrical circuit completed between anode and cathode, resulting in an electrical current flow through the circuit. A solid oxide reversible fuel cell (SORFC) system generates electrical energy and reactant product (i.e., oxidized fuel) from fuel and oxidizer in a fuel cell or discharge mode and generates the fuel and oxidant using electrical energy in an electrolysis or charge mode.
A solid oxide fuel cell (SOFC) includes a cathode electrode, a solid oxide electrolyte, and an anode electrode. The electrolyte includes yttria stabilized zirconia and a scandia stabilized zirconia, such as a scandia ceria stabilized zirconia.
The embodiments of the invention provide a higher strength electrolyte material to enable a thinner electrolyte and/or larger footprint electrolyte, while lowering the cost for electrolyte production. The composite electrolyte material comprises a composite yttria and scandia stabilized zirconias. The mixture of yttria and scandia stabilized zirconia exhibits a good flexural strength increase, and reasonable conductivity decrease compared to scandia stabilized zirconia. The electrolyte composition provides a coefficient of thermal expansion (CTE) which is closely matched to that of a chromium-iron alloy interconnect component of a SOFC stack. SOFC cells comprising the composite electrolyte can operate for a long time with a low degradation rate. By mixing a lower cost yttria stabilized zirconia powder with a higher cost, higher performance scandia stabilized zirconia powder, the overall cost of the electrolyte is reduced without significantly impacting the electrolyte performance compared to a scandia stabilized zirconia electrolyte.
Preferably, 3 molar percent yttria YSZ is used. However, YSZ compositions having more than 3 molar percent yttria, such as 3 to 10 molar percent yttria, for example 5 to 10 molar percent yttria (i.e., (ZrO2)1−z(Y2O3)z, where 0.03≤z≤0.1) may be used.
Preferably, the scandia stabilized zirconia has the following formula: [(ZrO2)1−y(CeO2)y]1−x(Sc2O3)x, where 0.06≤x≤0.11 and 0≤y≤0.01. While a stoichiometric stabilized zirconia is described by the formula, a non-stoichiometric stabilized zirconia having more or less than two oxygen atoms for each metal atom may be used. For example, the electrolyte may comprise SCSZ having 1 molar percent ceria and 10 molar percent scandia (i.e., [(ZrO2)1−y(CeO2)y]1−x(Sc2O3)x where x=0.1 and y=0.01). The ceria in SCSZ may be substituted with other ceramic oxides. Thus, alternative scandia stabilized zirconias can be used, such as scandia yttria stabilized zirconia (“SYSZ”), which can also be referred to as scandium and yttrium doped zirconia, and scandia alumina stabilized zirconia (“SAlSZ”), which can also be referred to as scandium and aluminum doped zirconia. The yttria or alumina may comprise 1 molar percent or less in the scandia stabilized zirconia.
The cathode electrode 7 may comprise an electrically conductive material, such as an electrically conductive perovskite material, such as lanthanum strontium manganite (LSM). Other conductive perovskites, such as La1−xSrxCoO3, La1−xSrxFe1−yCoyO3 or La1−xSrxMn1−yCoyO3 where 0.1≤x≤0.4 and 0.02≤y≤0.4, respectively, may also be used. The cathode electrode 7 can also be composed of two sublayers (a SCSZ/LSM functional layer adjacent to the electrolyte and a LSM current collection layer over the functional layer).
The anode electrode 3 may comprise one or more sublayers. For example, the anode electrode may comprise a single layer Ni-YSZ and/or a Ni-SSZ cermet. In a preferred embodiment, the anode electrode comprises two sublayers, where the first sublayer closest to the electrolyte is composed of samaria doped ceria (“SDC”) and the second sublayer distal from the electrolyte comprises nickel, gadolinia doped ceria (“GDC”) and a scandia stabilized zirconia (“SSZ”), such as a scandia ceria stabilized zirconia (“SCSZ”).
The samaria doped ceria preferably comprises 15 to 25 molar percent, such as for example 20 molar percent samaria and a balance comprising ceria. The SDC may have the following formula: SmzCe1−zO2−δ, where 0.15≤z≤0.25. While a non-stoichiometric SDC is described by the formula where there is slightly less than two oxygen atoms for each metal atom, an SDC having two or more oxygen atoms for each metal atom may also be used. Preferably, the first sublayer contains no other materials, such as nickel, besides the SDC and unavoidable impurities. However, if desired, other materials may be added to the first sublayer, such as a small amount of nickel in an amount less than the amount of nickel in the second sublayer.
The second sublayer comprises a cermet including a nickel containing phase and a ceramic phase. The nickel containing phase of the second sublayer preferably consists entirely of nickel in a reduced state. This phase forms nickel oxide when it is in an oxidized state. Thus, when the anode is fabricated, the nickel containing phase comprises nickel oxide. The anode electrode is preferably annealed in a reducing atmosphere prior to operation to reduce the nickel oxide to nickel. The nickel containing phase may include other metals and/or nickel alloys in addition to pure nickel, such as nickel-copper or nickel-cobalt alloys (in a reduced state) and their oxides (in an oxidized state), for example Ni1−xCuxO or Ni1−xCoxO where 0.05≤x≤0.3. However, the nickel containing phase preferably contains only nickel or nickel oxide and no other metals. The nickel is preferably finely distributed in the ceramic phase, with an average grain size less than 500 nanometers, such as 200 to 400 nanometers, to reduce the stresses induced when nickel converts to nickel oxide.
The ceramic phase of the second sublayer preferably comprises gadolinia doped ceria and scandia stabilized zirconia. The ceramic phase may comprise a sintered mixture of GDC and SSZ (containing some or no cerium) ceramic particles. The scandia stabilized zirconia may have the same composition as the scandia stabilized zirconia of the electrolyte 5. Preferably, the scandia stabilized zirconia of sublayer 23 has the following formula: [(ZrO2)1−y(CeO2)y]1−x(Sc2O3)x, where 0.06≤x≤0.11 and 0≤y≤0.01. While a stoichiometric stabilized zirconia is described by the formula, a non-stoichiometric stabilized zirconia having more or less than two oxygen atoms for each metal atom may be used. For example, the electrolyte may comprise SCSZ having up to 1 molar percent ceria, about 6 to about 11 molar percent scandia and a balance comprising zirconia, such as SCSZ having 1 molar percent ceria and 10 molar percent scandia (i.e., ScxCeyZr1−x−yO2 where x=0.1 and y=0.01).
Any suitable GDC may be used in the second sublayer. For example, 10 to 40 molar percent gadolinia containing GDC may be used. GDC is preferably slightly non-stoichiometric with less than two oxygen atoms for each metal atom: Ce1−mGdmO2−δ where 0.1≤m≤0.4. However, GDC containing two or more oxygen atoms for each metal atom may also be used. The weight ratio of GDC to SSZ or SCSZ in the sublayer ranges from about 2:1 to about 5:1. For example, the weight ratio may be 5:1. If the ceramic phase contains no other components besides GDC and the stabilized zirconia, then the ceramic phase in the second sublayer may range from about 70 (such as for example 66.66) weight percent GDC and about 30 (such as for example 33.33) weight percent stabilized zirconia to about 85 (such as for example 83.33) weight percent GDC and about 15 (such as for example 16.66) weight percent stabilized zirconia. The ceramic phase preferably contains no other ceramic materials besides GDC, one of SSZ or SCSZ and unavoidable impurities.
The second sublayer preferably comprises 60 to 80 weight percent of the nickel containing phase and 40 to 20 weight percent of the ceramic phase, such as for example 75 weight percent of the nickel containing phase and 25 weight percent of the ceramic phase.
Any suitable layer thicknesses may be used. For example, the anode electrode 3 may be 20 to 40 microns thick, where the first sublayer is about 5 to about 10 microns thick and the second sublayer is about 15 to about 30 microns thick. The fuel cell is preferably a planar electrolyte supported cell in which the electrolyte is at least one order of magnitude thicker than the anode electrode. For example, the electrolyte 5 may be about 150 to about 300 microns thick. The cathode 7 may also be between 10 and 50 microns thick.
Fuel cell stacks are frequently built from a multiplicity of SOFC's 1 in the form of planar elements, tubes, or other geometries. Fuel and air has to be provided to the electrochemically active surface, which can be large. As shown in
Furthermore, while
The term “fuel cell stack,” as used herein, means a plurality of stacked fuel cells which share a common fuel inlet and exhaust passages or risers. The “fuel cell stack,” as used herein, includes a distinct electrical entity which contains two end plates which are connected to power conditioning equipment and the power (i.e., electricity) output of the stack. Thus, in some configurations, the electrical power output from such a distinct electrical entity may be separately controlled from other stacks. The term “fuel cell stack” as used herein, also includes a part of the distinct electrical entity. For example, the stacks may share the same end plates. In this case, the stacks jointly comprise a distinct electrical entity. In this case, the electrical power output from both stacks cannot be separately controlled.
A method of forming a planar, electrolyte supported SOFC 1 shown in
For example, the electrolyte may be formed by mixing the YSZ powder with SSZ or SCSZ powder followed by shaping (such as tape casting, roll pressing or other suitable ceramic shaping techniques) and sintering the powders at any suitable temperature to form the electrolyte. The anode electrode containing a plurality of sublayers shown in
A performance of various electrolytes were tested. Specifically, the performance of the YSZ and SCSZ composite electrolyte of the embodiments of the invention having the following composition (25% by weight of 3 molar percent yttria YSZ and 75% by weight of [(ZrO2)1−y(CeO2)y]1−x(Sc2O3)x where x=0.1 and y=0.01) (“YSZ+SCSZ”) was compared to the following comparative example electrolyte compositions: (a) 3 molar percent yttria YSZ (“3YSZ”); (b) 8 molar percent yttria YSZ (“8YSZ”); and (c) ScxCeyZr1−x−yO2 where x=0.1 and y=0.01 (“SCSZ”).
The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The description was chosen in order to explain the principles of the invention and its practical application. It is intended that the scope of the invention be defined by the claims appended hereto, and their equivalents.
The present application is a Divisional of U.S. patent application Ser. No. 12/081,124, filed Apr. 10, 2008, which claims benefit of U.S. Provisional Application No. 60/907,706, filed Apr. 13, 2007, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4052532 | Tannenberger | Oct 1977 | A |
4272353 | Lawrance et al. | Jun 1981 | A |
4426269 | Brown et al. | Jan 1984 | A |
4459340 | Mason | Jul 1984 | A |
4575407 | Diller | Mar 1986 | A |
4686158 | Nishi et al. | Aug 1987 | A |
4792502 | Trocciola et al. | Dec 1988 | A |
4804592 | Vanderborgh et al. | Feb 1989 | A |
4847173 | Mitsunnaga et al. | Jul 1989 | A |
4898792 | Singh et al. | Feb 1990 | A |
4913982 | Kotchick et al. | Apr 1990 | A |
4917971 | Farooque | Apr 1990 | A |
4925745 | Remick et al. | May 1990 | A |
4983471 | Reichner et al. | Jan 1991 | A |
5034287 | Kunz | Jul 1991 | A |
5047299 | Shockling | Sep 1991 | A |
5143800 | George et al. | Sep 1992 | A |
5162167 | Minh et al. | Nov 1992 | A |
5169730 | Reichner et al. | Dec 1992 | A |
5170124 | Blair et al. | Dec 1992 | A |
5171645 | Khandkar | Dec 1992 | A |
5192334 | Rohr et al. | Mar 1993 | A |
5213910 | Yamada | May 1993 | A |
5215946 | Minh | Jun 1993 | A |
5256499 | Minh et al. | Oct 1993 | A |
5273837 | Aiken et al. | Dec 1993 | A |
5290323 | Ryoichi | Mar 1994 | A |
5290642 | Minh et al. | Mar 1994 | A |
5302470 | Okada et al. | Apr 1994 | A |
5342705 | Minh et al. | Aug 1994 | A |
5368667 | Minh et al. | Nov 1994 | A |
5441821 | Merritt et al. | Aug 1995 | A |
5498487 | Ruka et al. | Mar 1996 | A |
5501914 | Satake et al. | Mar 1996 | A |
5505824 | McElroy | Apr 1996 | A |
5518829 | Satake et al. | May 1996 | A |
5527631 | Singh et al. | Jun 1996 | A |
5573867 | Zafred et al. | Nov 1996 | A |
5589017 | Minh | Dec 1996 | A |
5589285 | Cable et al. | Dec 1996 | A |
5601937 | Isenberg | Feb 1997 | A |
5686196 | Singh et al. | Nov 1997 | A |
5688609 | Rostrup-Nielsen et al. | Nov 1997 | A |
5733675 | Dederer et al. | Mar 1998 | A |
5741406 | Barnett | Apr 1998 | A |
5741605 | Gillett et al. | Apr 1998 | A |
5922488 | Marucchi-Soos et al. | Jul 1999 | A |
5955039 | Dowdy | Sep 1999 | A |
5993989 | Baozhen | Nov 1999 | A |
6013385 | DuBose | Jan 2000 | A |
6051125 | Pham et al. | Apr 2000 | A |
6106964 | Voss et al. | Aug 2000 | A |
6228521 | Kim | May 2001 | B1 |
6238816 | Cable et al. | May 2001 | B1 |
6280865 | Eisman et al. | Aug 2001 | B1 |
6287716 | Hashimoto et al. | Sep 2001 | B1 |
6329090 | McElroy et al. | Dec 2001 | B1 |
6361892 | Ruhl et al. | Mar 2002 | B1 |
6403245 | Hunt | Jun 2002 | B1 |
6436562 | DuBose et al. | Aug 2002 | B1 |
6451466 | Grasso et al. | Sep 2002 | B1 |
6489050 | Ruhl et al. | Dec 2002 | B1 |
6495279 | Bogicevic et al. | Dec 2002 | B1 |
6558831 | Doshi et al. | May 2003 | B1 |
6582845 | Helfinstine et al. | Jun 2003 | B2 |
6592965 | Gordon | Jul 2003 | B1 |
6605316 | Visco | Aug 2003 | B1 |
6623880 | Geisbrecht et al. | Sep 2003 | B1 |
6677070 | Kearl | Jan 2004 | B2 |
6682842 | Visco et al. | Jan 2004 | B1 |
6767662 | Jacobson | Jul 2004 | B2 |
6787261 | Ukai et al. | Sep 2004 | B2 |
6803141 | Pham | Oct 2004 | B2 |
6811913 | Ruhl | Nov 2004 | B2 |
6821663 | McElroy et al. | Nov 2004 | B2 |
6854688 | McElroy et al. | Feb 2005 | B2 |
6924053 | McElroy | Aug 2005 | B2 |
6972161 | Beatty | Dec 2005 | B2 |
6979511 | Visco | Dec 2005 | B2 |
7150927 | Hickey et al. | Dec 2006 | B2 |
7157173 | Kwon | Jan 2007 | B2 |
7255956 | McElroy | Aug 2007 | B2 |
7494732 | Roy | Feb 2009 | B2 |
7550217 | Kwon | Jun 2009 | B2 |
7563503 | Gell | Jul 2009 | B2 |
7601183 | Larsen | Oct 2009 | B2 |
20010049035 | Haltiner, Jr. et al. | Dec 2001 | A1 |
20020012825 | Sasahara et al. | Jan 2002 | A1 |
20020014417 | Kuehnle et al. | Feb 2002 | A1 |
20020028362 | Prediger et al. | Mar 2002 | A1 |
20020028367 | Sammes et al. | Mar 2002 | A1 |
20020048701 | Ukai | Apr 2002 | A1 |
20020058175 | Ruhl | May 2002 | A1 |
20020098406 | Huang et al. | Jul 2002 | A1 |
20020106544 | Noetzel et al. | Aug 2002 | A1 |
20020127455 | Pham et al. | Sep 2002 | A1 |
20020132156 | Ruhl et al. | Sep 2002 | A1 |
20030162067 | McElroy | Aug 2003 | A1 |
20030165732 | McElroy | Sep 2003 | A1 |
20030196893 | McElroy | Oct 2003 | A1 |
20040072054 | Cochran | Apr 2004 | A1 |
20040081859 | McElroy et al. | Apr 2004 | A1 |
20040191595 | McElroy et al. | Sep 2004 | A1 |
20040191597 | McElroy | Sep 2004 | A1 |
20040191598 | Gottmann et al. | Sep 2004 | A1 |
20040202914 | Sridhar et al. | Oct 2004 | A1 |
20040202924 | Tao | Oct 2004 | A1 |
20040224193 | Mitlitsky et al. | Nov 2004 | A1 |
20050048334 | Sridhar et al. | Mar 2005 | A1 |
20050074650 | Sridhar et al. | Apr 2005 | A1 |
20050164051 | Venkataraman et al. | Jul 2005 | A1 |
20050227134 | Nguyen | Oct 2005 | A1 |
20050271919 | Hata et al. | Dec 2005 | A1 |
20060008682 | McLean et al. | Jan 2006 | A1 |
20060040168 | Sridhar | Feb 2006 | A1 |
20060166070 | Hickey | Jul 2006 | A1 |
20060216575 | Cassidy | Sep 2006 | A1 |
20060222929 | Hickey et al. | Oct 2006 | A1 |
20070045125 | Hartvigsen et al. | Mar 2007 | A1 |
20070082254 | Hiwatashi | Apr 2007 | A1 |
20070287048 | Couse | May 2007 | A1 |
20070141423 | Suzuki | Jun 2007 | A1 |
20070141443 | Brown | Jun 2007 | A1 |
20070141444 | Brown | Jun 2007 | A1 |
20070224481 | Suzuki et al. | Sep 2007 | A1 |
20070237999 | Donahue | Oct 2007 | A1 |
20070275292 | Sin Xicola et al. | Nov 2007 | A1 |
20080029388 | Elangovan | Feb 2008 | A1 |
20080075984 | Badding | Mar 2008 | A1 |
20080076006 | Gottmann et al. | Mar 2008 | A1 |
20080096080 | Batawi | Apr 2008 | A1 |
20080102337 | Hiroyuki | May 2008 | A1 |
20080254336 | Batawi | Oct 2008 | A1 |
20080261099 | Nguyen | Oct 2008 | A1 |
20090029195 | Gauckler | Jan 2009 | A1 |
20090068533 | Takayuki | Mar 2009 | A1 |
20090186250 | Yeshwanth | Jul 2009 | A1 |
20090214919 | Suzuki | Aug 2009 | A1 |
20090291347 | Suzuki | Nov 2009 | A1 |
20110039183 | Armstrong et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
101147285 | Mar 2008 | CN |
101295792 | Oct 2008 | CN |
1048839 | Nov 1966 | GB |
3196465 | Aug 1991 | JP |
6215778 | Aug 1994 | JP |
2000-340240 | Aug 2000 | JP |
2000-281438 | Oct 2000 | JP |
2008-305804 | Dec 2008 | JP |
20020092223 | Dec 2002 | KR |
20070095440 | Sep 2007 | KR |
20080010737 | Jan 2008 | KR |
20080097971 | Nov 2008 | KR |
100886239 | Feb 2009 | KR |
20090061870 | Jun 2009 | KR |
WO2004093214 | Oct 2004 | WO |
WO2005041329 | May 2005 | WO |
WO2008019926 | Feb 2008 | WO |
WO2009097110 | Aug 2009 | WO |
Entry |
---|
Ahmad-Khantou et al., “Electrochemical & Microstructural Study of SOFC Cathodes Based on La0.5Sr0.3MnO3 and Pr0.65Sr0.3MnO3,” Electrochemical Society Proceedings, 2001, p. 476-485, vol. 2001-16. |
Mori et al., “Lanthanum Alkaline-Earth Manganites as a Cathode Material in High-Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society, 1999, p. 4041-4047, vol. 146. |
L.G. Austin, “Cell & Stack Construction: Low Temperature Cells,” NASA SP-120, 1967. |
EG & G Services, Parsons, Inc., SAIC, Fuel Cell Handbook, 5th Edition, USDOE, Oct. 2000, p. 9-1-9.4, and 9-12-9-14. |
J.M. Sedlak, et al., “Hydrogen Recovery and Purification Using the Solid Polymer Electrolyte Electrolysis Cell,” Int. J. Hydrogen Energy, vol. 6, p. 45-51, 1981. |
Dr. Ruhl, “Low Cost Reversible Fuel Cell System,” Proceedings of the 2000 U.S. DOE Hydrogen Program Review, Jun. 15, 2000, NREL/CP-570-30535. |
Low Cost, Compact Solid Oxide Fuel Cell Generator, NASA Small Business Innovation Research Program. |
Low Cost, High Efficiency Reversible Fuel Cell (and Electrolyzer) Systems, Proceedings of the 2001 DOE Hydrogen Program Review NREL/CP-570-30535. |
Milliken et al., “Low Cost, High Efficiency Reversible Fuel Cell Systems,” Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405. |
K. Eguchi et al., Power Generation and Steam Electrolysis Characteristics of an Electrochemical Cell with a Zirconia or Ceria based Electrode, Solid State Ionics, 86 88, 1996, p. 1245-49. |
F. Mitlitsky et al., “Regenerative Fuel Cells for High Altitude Long Endurance Solar Powered Aircraft,” 28th Intersociety Energy Conversion Engineering Conference (IECED), Jul. 28, 1993, UCRL-JC-113485. |
Small, Ultra Efficient Fuel Cell Systems, Advanced Technology Program, ATP 2001 Competition, Jun. 2002. |
F. Mitlitsky et al., Unitized Regenerative Fuel Cells for Solar Rechargeable Aircraft and Zero Emission Vehicles, 1994 Fuel Cell Seminar, Sep. 6, 1994, UCRL-JC-117130. |
Ralph et al., “Cathode Materials for Reduced-Temperature SOFCs,” Journal of the Electrochemical Society, 2003, p. A1518-A1522, vol. 150. |
Simmer et al., “Development of Fabrication Techniques and Electrodes for Solid Oxide Fuel Cells,” Electrochemcial Society Proceedings, p. 1050-1061, vol. 2001-16. |
Yamamoto et al., “Electrical Conductivity of Stabilized Zirconia with Ytterbia and Scandia,” Solid State Ionics, v79, p. 137-142, Jul. 1995. |
Araki et al., “Degradation Mechanism of Scandia-Stabilized Zirconia Electrolytes: Discussion based on Annealing Effects on Mechanical Strength, Ionic Conductivity, and Raman Spectrum,” Solid State Ionics, v180, n28-31, p. 1484-1489, Nov. 2009. |
Lybye et al., “Effect of Transition Metal Ions on the Conductivity and Stability of Stabilized Zirconia,” Ceramic Engineering and Science Proceedings, v27, n4, p. 67-78, 2006. |
Aman et al., Abstract, “Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell,” Excerpts from the Proceedings of the 2012 COMSOL Conference, Boston, MA. 3 pages. |
Shao et al., “Anode-Supported Thin-Film Fuel Cells Operated in a Single Chamber Configuration 2T-1-12,” Solid State Ionics 175 (2004), pp. 39-46. |
Hanifi et al., “Fabrication of Thin Porous Electrolyte-Supported Tubular Fuel Cells Using Slip Casting,” Journal of Ceramic Processing Research, vol. 12, No. 3, pp. 336-342 (2011 ). |
Verbraeken, M., “Advanced Supporting Anodes for Solid Oxide Fuel Cells,” 2005, Master of Science Thesis, University of Twente, Enschede, Netherlands. 74 pages. |
Gentile, P.S., “Development of a Novel High Performance Electrolyte Supported Solid Oxide Fuel Cell,” Nov. 2007, Master of Science Thesis, Montana State University, Bozeman, MT. 181 pages. |
Number | Date | Country | |
---|---|---|---|
20170200964 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
60907706 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12081124 | Apr 2008 | US |
Child | 15415953 | US |