1. Field of the Invention
This invention relates to heterojunction bipolar transistors, and more particularly to techniques of reducing collector voltage dependence of a gain in amplifiers including the heterojunction bipolar transistors.
2. Description of the Background Art
In heterojunction bipolar transistors used in conventional common-emitter type high output amplifiers, a collector layer is designed to have a prescribed impurity concentration and a sufficient thickness to ensure that a predetermined desired gain is obtained under normal operation, and that the ON breakdown voltage is secured under operation at the highest conceivable power supply voltage (collector voltage). Such heterojunction bipolar transistors are illustrated in Japanese Patent Application Nos. 4-93035 (1992), 5-190562 (1993) and 2003-218123, for example.
When the collector voltage is reduced from a voltage value under normal operation, however, a depletion layer thickness in the collector layer decreases compared with that under normal operation, increasing capacitance between a base and a collector as feedback capacitance between an input and an output. This causes a gain in the amplifiers to be reduced from the predetermined value.
It is an object of this invention to provide a heterojunction bipolar transistor capable of reducing collector voltage dependence of a gain.
In an aspect of the invention, a heterojunction bipolar transistor includes a first conductivity type collector layer, a first conductivity type emitter layer, and a second conductivity type base layer interposed between the first conductivity type collector layer and the first conductivity type emitter layer. The first conductivity type collector layer includes a first conductivity type first collector layer, and a first conductivity type second collector layer. The first conductivity type first collector layer makes contact with the second conductivity type base layer. The first conductivity type second collector layer makes contact with the first conductivity type first collector layer. The first conductivity type first collector layer is entirely depleted upon being supplied with a lowest collector voltage which is the lowest conceivable collector voltage to be used. The first conductivity type second collector layer has a carrier concentration higher than space charge concentration based on a normal collector voltage, and a depletion layer formed therein upon being supplied with the normal collector voltage, the ratio of the thickness of the depletion layer being not more than 20% with reference to the thickness of a depletion layer formed in the whole of the first conductivity type collector layer.
A depletion layer thickness of the first conductivity type collector layer hardly decreases even when the collector voltage is reduced from the normal collector voltage to the lowest collector voltage. This prevents a significant increase in depletion layer capacitance that accompanies depletion, which is capacitance between a base and a collector as feedback capacitance between an input and an output. Accordingly, a gain is prevented from being reduced significantly from a predetermined value in a common-emitter type high output amplifier including the heterojunction bipolar transistor as an amplifying element. Namely, the collector voltage dependence of a gain in the common-emitter type high output amplifier can be reduced.
These and other objects, features, aspects and advantages of this invention will become more apparent from the following detailed description of this invention when taken in conjunction with the accompanying drawings.
A heterojunction bipolar transistor according to this invention includes an N-type collector layer of double-layer structure consisting of an N-type collector layer that is depleted relatively easily and an N-type collector layer that is relatively hard to deplete.
Preferred embodiments of this invention will be described with reference to the drawings, which are based on a common-emitter type high output amplifier using an NPN-type heterojunction bipolar transistor.
In
A P+-type base layer 3 (second conductivity type base layer) including a high concentration P-type impurity is formed on the whole surface of the N-type collector layer 4. Base electrodes 12 and an N-type emitter layer 2 (first conductivity type emitter layer) are partially formed on the P+-type base layer 3. An N+-type emitter contact layer 1 including a high concentration N-type impurity is formed on the whole surface of the N-type emitter layer 2. An emitter electrode 11 is formed on the whole surface of the N+-type emitter contact layer 1.
When the HBT 100 forms a common-emitter type high output amplifier, the emitter electrode 11 is grounded, and the collector electrodes 13 are supplied with a power supply voltage (collector voltage).
In
The impurity concentration ND1 of the N-type collector layer 4 is equal to space charge concentration QB=JB/(q×vSAT) that is determined by the current density JB at the bias point B, the quantity of elementary electric charge q, and saturated velocity vSAT of electrons in the material of the N-type collector layer 10.
The layer thickness L1 of the N-type collector layer 4 is equal to or a little smaller than a depletion layer thickness LD1=[2×ε×(φi−VBASE)/(q×ND1−JC/vSAT)]−1/2 that is determined by the impurity concentration ND1, a base voltage VBASE, a built-in potential φ i of a pn junction between a base and a collector, and permittivity ε of the material of the N-type collector layer 10. A depletion layer thickness increases with an increase in collector voltage being applied. Thus, by determining the layer thickness L1 of the N-type collector layer 4 in this manner, the N-type collector layer 4 is entirely depleted upon application of any of the voltages VB to VD. When the layer thickness L1 of the N-type collector layer 4 is equal to the depletion layer thickness LD1, the N-type collector layer 5 is not depleted upon application of the voltage VC, but when the layer thickness L1 of the N-type collector layer 4 is smaller than the depletion layer thickness LD1, part of the N-type collector layer 5 making contact with the N-type collector layer 4 is a little depleted upon application of the voltage VC.
The impurity concentration ND2 of the N-type collector layer 5 is higher to a sufficient degree than the space charge concentration QB=JB/(q×VSAT) that is determined by the current density JB at the bias point B, the quantity of elementary electric charge q, and the saturated velocity VSAT of electrons in the material of the N-type collector layer 10. The impurity concentration ND2 is also determined in such a manner that the N-type collector layer 5 is entirely depleted by the space charge effect of space charge concentration QD=JD/(q×VSAT) that is determined by the current density JD at the bias point D, the quantity of elementary electric charge q, and the saturated velocity VSAT of electrons in the material of the N-type collector layer 10, as well as the voltage VD. By determining the impurity concentration ND2 of the N-type collector layer 5 in this manner, the N-type collector layer 5 is hardly depleted (the layer thickness of a depletion layer formed in the N-type collector layer 5 is not more than 20% with reference to the layer thickness of a depletion layer formed in the whole of the N-type collector layer 10) upon application of the voltage VB or VC, but is entirely depleted upon application of the voltage VD.
As illustrated in
As described above, both the N-type collector layers 4 and 5 are entirely depleted in the diagram 33 corresponding to when the voltage VD is applied. The layer thickness L2 of the N-type collector layer 5 is determined in such a manner that the HBT 100 has a sufficient ON breakdown voltage at the bias point D. Namely, the layer thickness (L1+L2) of the N-type collector layer 10 shall be such that a sufficient ON breakdown voltage is secured at the bias point D. When a semiconductor material for the collector is gallium arsenide (GaAs), for example, with a sufficient breakdown voltage being 30 V, the layer thickness (L1+L2) will be about 1 μM.
The thickness of the N-type collector layer 4′ shown in
As shown by a depletion layer thickness LD2 of the diagram 31′ in
And as shown by a depletion layer thickness LD3 of the diagram 32′ in
Meanwhile, as described above, the depletion layer thickness of the whole of the N-type collector layer 10 hardly decreases in the HBT 100 even when the collector voltage is reduced from the voltage VB to the voltage VC. In addition, the whole of the N-type collector layer 10 is depleted in the HBT 100 when the collector voltage is increased from the voltage VB to the voltage VD, as in the case of the N-type collector layer 4′ shown in
In such ways, in the HBT 100 according to the first preferred embodiment, the depletion layer thickness of the N-type collector layer 10 hardly decreases even when the collector voltage is reduced from the normal collector voltage to the lowest collector voltage. This prevents a significant increase in depletion layer capacitance CBC that accompanies depletion, which is capacitance between a base and a collector as feedback capacitance between an input and an output. Accordingly, a gain is prevented from being reduced significantly from a predetermined value in the common-emitter type high output amplifier including the HBT 100 as an amplifying element. Namely, the collector voltage dependence of the gain in the common-emitter type high output amplifier can be reduced.
Further, because the whole of the N-type collector layer 10 is depleted when the collector voltage is increased from the normal collector voltage to the highest collector voltage, the ON breakdown voltage can be secured.
The band diagrams of the HBT 100 according to the first preferred embodiment form, in the N-type collector layer 10, downward convex curves upon application of the voltages VB and VC, as shown by the diagrams 31 and 32 in
As depicted in
In such ways, the HBT 101 according to the second preferred embodiment has a structure in which the N-type electric field relaxation layer 8 including an N-type impurity is interposed between the N-type collector layer 5 and the N+-type collector contact layer 6 in the HBT 100 according to the first preferred embodiment. This allows the maximum value of the electric field to be reduced when the voltage VD close to the ON breakdown voltage is applied as a collector voltage. Therefore, in addition to the effects of the first preferred embodiment, the ON breakdown voltage can be further increased.
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-123525 | Apr 2005 | JP | national |