Heterologous Biomass Degrading Enzyme Expression in Thermoanaerobacterium Saccharolyticum

Abstract
Thermophilic gram-positive anaerobic host cells, for example Thermoanaerobacterium saccharolyticum (“T sacch”), express heterologous biomass degrading enzymes, such as cellulases, and are able to produce useful fermentation products from cellulose. Useful fermentation products include, for example, ethanol, acetic acid, lactic acid or CO2. In order to provide maximum expression and activity levels, biomass degrading enzymes can be expressed from codon-optimized nucleotide sequences, can be expressed under the control of a high-efficiency promoter, and/or can be fused to a signal peptide. In addition, the host cell, for example, a T sacch host cell, can be genetically altered to further improve ethanol production, for example by disrupting the production of organic products other than ethanol.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to the field of molecular biology, and in particular, to the expression of heterologous biomass degrading enzymes in gram-positive thermophilic anaerobic bacteria.


2. Background Art


Thermophilic microorganisms are useful for a variety of industrial processes. For example, thermophilic microorganisms can be used as biocatalysts in reactions at higher operating temperatures than can be achieved with mesophilic microorganisms. Thermophilic organisms are particularly useful in biologically mediated processes for energy conversion, such as the production of ethanol from plant biomass, because higher operating temperatures allow more convenient and efficient removal of ethanol in vaporized form from the fermentation medium.


The ability to metabolically engineer thermophilic microorganisms to improve various properties (e.g., ethanol production, breakdown of lignocellulosic materials), would allow the benefit of higher operating temperatures to be combined with the benefits of using industrially important enzymes from a variety of sources in order to improve efficiency and lower the cost of production of various industrial processes, such as energy conversion and alternative fuel production.


Thermophilic anaerobic gram-positive bacteria such as Thermoanaerobacterium saccharolyticum (“T. sacch”) can be particularly useful in methods of energy conversion since they can grow at temperatures above 40° C. and are readily able to utilize cellobiose (a disaccharide) and xylose (a monosaccharide) as energy sources. However, T. sacch are not able to hydrolyze cellulose efficiently. Previous experiments have demonstrated that it is possible to expresses heterologous cellulases in T. sacch (Mai and Wiegel, Applied and Environmental Microbiology, 66: 4817-4821 (2000)). However, major shortcomings of the previous strains were that ethanol was not the sole metabolic product and that they were unable to achieve sufficient levels of secreted enzyme to be industrially useful. In contrast, the present invention provides T. sacch and other transformed thermophilic anaerobic bacteria that express high levels of heterologous cellulases that can efficiently produce ethanol or other useful fermentation products such as lactic acid, acetic acid, or CO2 from cellulose.


BRIEF SUMMARY OF THE INVENTION

The present invention is directed to cellulytic thermophilic gram-positive anaerobic host cells, such as Thermoanaerobacterium saccharolyticum. The host cells of the invention express heterologous biomass degrading enzymes. In some embodiments, the host cells can produce ethanol from cellulose.


In particular, isolated nucleic acids comprising polynucleotides which encode polypeptides comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-38 and an amino acid sequence selected from the group consisting of SEQ ID NOs: 108-148 are described. In some embodiments, the polynucleotide is codon-optimized for expression in Thermoanaerobacterium saccharolyticum. In addition, vectors and host cells comprising such nucleic acids are provided. The host cell can be a member of the genus Thermoanaerobacterium, such as T. thermosulfurgenes, T. polysaccharolyticum, T. thermosaccharolyticum or T. saccharolyticum. Furthermore, proteins encoded by such nucleic acids are also described.


Transformed Thermoanaerobacterium saccharolyticum host cells comprising at least one heterologous polynucleotide comprising a nucleic acid encoding a biomass degrading enzyme, wherein the host cell lacks a gene that is necessary for producing lactic acid as a fermentation product or lacks a gene that is necessary for producing acetic acid as a fermentation product or lacks both are also described. In some embodiments, such host cells do not contain heterologous markers. In some embodiments, the gene that is necessary for lactic acid production encodes lactate dehydrogenase. In some embodiments, the gene that is necessary for acetic acid production is phosphotransacetylase or acetate kinase.


Transformed thermophilic anaerobic bacterial host cells comprising heterologous polynucleotides comprising a nucleic acid encoding a biomass degrading enzyme operably linked to a cellobiose phosphotransferase promoter are also described.


Transformed thermophilic anaerobic bacterial host cells comprising at least one heterologous polynucleotide comprising a nucleic acid encoding a fusion protein, wherein the fusion protein comprises a signal peptide and a heterologous biomass degrading enzyme, and wherein the signal peptide comprises a sequence selected from the group consisting of SEQ ID NOs: 1-38 are also described.


In some embodiments, the host cells can be selected from a group consisting of Acetogenium kivui, Caldanaerobacter proteolyticus, Caldanaerobium fijiensis, Clostridium thermoamylolyticum, Clostridium thermocopriae, Clostridium thermosaccharolyticum, Clostridium uzonii, Desulfotomaculum thermobenzoicum, Garciaella petrolearia, Soehngenia saccharolytica, Thermoanaerobacter acetoethylicus, Thermoanaerobacter brockii, Thermoanaerobacter ethanolicus, Thermoanaerobacter finii, Thermoanaerobacter inferii, Thermoanaerobacter lacticus, Thermoanaerobacter pseudethanolicus, Thermoanaerobacter pseudethanolicus, Thermoanaerobacter siderophilus, Thermoanaerobacter subterraneus, Thermoanaerobacter sulfurigignens, Thermoanaerobacter sulfurophilus, Thermoanaerobacter tengcongensis, Thermoanaerobacter thermohydrosulfuricus, Thermoanaerobacter uzonensis strain, Thermoanaerobacter wiegelii, Thermoanaerobium lactoethylicum, and Thermobacteroides acetoethylicus. In some particular embodiments, the host cell is a member of the genus Thermoanerobacterium. In yet another embodiment, the host cell is a T. thermosulfurgenes, T. polysaccharolyticum, T. thermosaccharolyticum or T. saccharolyticum host cell. In still another embodiment, the host cell is a T. saccharolyticum host cell.


Transformed Thermoanaerobacterium saccharolyticum host cells comprising at least one heterologous polynucleotide comprising a nucleic acid encoding a biomass degrading enzyme, wherein the nucleic acid encoding the biomass degrading enzyme is codon-optimized for expression in Thermoanaerobacterium saccharolyticum are also described.


In addition, transformed Thermoanaerobacterium saccharolyticum host cells comprising at least one heterologous polynucleotide comprising a nucleic acid encoding a biomass degrading enzyme, wherein the biomass degrading enzyme is not a biomass degrading enzyme from an anaerobic bacteria are described herein.


In some embodiments, the biomass degrading enzyme is a fungal biomass degrading enzyme or a biomass degrading enzyme from a microorganism residing in the termite gut. In other embodiments, the biomass degrading enzyme is derived from Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii.


In some embodiments, the host cell comprises a nucleic acid encoding a heterologous biomass degrading enzyme and has decreased protease activity compared to a wild-type cell. The decreased protease activity can be the result of decreased activity of a protease. For example, the decreased protease activity can be the result of decreased activity of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 164-168. In some embodiments, the host cell comprises a nucleic acid encoding a heterologous biomass degrading enzyme and has increased chaperone activity compared to a wild-type cell. The increased chaperone activity can be, for example, the result of the overexpression of a chaperone selected from the group consisting of E. coli HSP60/GroEL, E. coli HSP60/GroES, E. coli HSP70/DnaK, E. coli DnaJ, E. coli GrpE, E. coli HSP90/HtpG, E. coli HSP100/Clp family, E. coli peptidyl prolyl isomerase Trigger Factor, Bacillus subtilis Ffh, Bacillus subtilis HBsu, Bacillus subtilis FtsY, Bacillus subtilis CsaA and Bacillus subtilis FlhF.


In some embodiments, the thermophilic anaerobic bacterial host cell lacks a gene that is necessary for producing lactic acid as a fermentation product. The gene that is necessary for producing lactic acid as a fermentation product can be lactate dehydrogenase. In some embodiments, the host cell lacks a gene that is necessary for producing acetic acid as a fermentation product. The gene that is necessary for producing acetic acid as a fermentation product can be phosphotransacetylase or acetate kinase.


In some embodiments, the thermophilic anaerobic bacterial host cells can hydrolyze cellulose. In other embodiments, the host cell can grow on crystalline cellulose. In still other embodiments, the host cell can grow on Avicel. In some embodiments, the host cell has at least 10 U/mg activity.


In some embodiments, the thermophilic anaerobic bacterial host cell expresses a biomass degrading enzyme wherein the sequence encoding the biomass degrading enzyme is operably associated with a cellobiose phosphotransferase (CBP) promoter. The CBP promoter can be the Clostridium thermocellum CBP promoter. The CBP promoter can comprise the sequence of SEQ ID NO:153.


In some embodiments, the biomass degrading enzyme is fused to a signal peptide. The signal peptide can comprise an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-38. The signal peptide can be fused to the N-terminus of the biomass degrading enzyme. The signal peptide can be encoded by a nucleic acid codon-optimized for expression in Thermoanaerobacterium saccharolyticum.


In some embodiments, the biomass degrading enzyme comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 108-148. In some embodiments, the nucleic acid encoding the biomass degrading enzyme is codon-optimized for expression in Thermoanaerobacterium saccharolyticum. In some embodiments, the biomass degrading enzyme is fused to a cellulose binding module (CBM).


In some embodiments, the host cell further comprises a second heterologous polynucleotide comprising a nucleic acid encoding a biomass degrading enzyme.


In some embodiments, the biomass degrading enzyme is a cellulase.


Methods for hydrolyzing a cellulosic substrate, comprising contacting the cellulosic substrate with a thermophilic anaerobic bacterial host cell expressing a biomass degrading enzyme are also described herein. In addition, methods for producing ethanol from a cellulosic substrate comprising contacting the cellulosic substrate with a thermophilic anaerobic bacterial host cell expressing a biomass degrading enzyme are also described herein. The methods can further comprise contacting the substrate with exogenous enzymes. The contacting can occur in anaerobic conditions.


The cellulosic substrate can be a lignocellulosic biomass selected from the group consisting of grass, switch grass, cord grass, rye grass, reed canary grass, miscanthus, sugar-processing residues, sugarcane bagasse, agricultural wastes, rice straw, rice hulls, barley straw, corn cobs, cereal straw, wheat straw, canola straw, oat straw, oat hulls, corn fiber, stover, soybean stover, corn stover, forestry wastes, recycled wood pulp fiber, paper sludge, sawdust, hardwood, softwood, and combinations thereof.


Methods of producing products such as acetic acid from a cellulosic substrate comprising contacting said cellulosic substrate with a thermophilic anaerobic bacterial host cell expressing a biomass degrading enzyme are also described herein. Similarly, methods of producing lactic acid from a cellulosic substrate comprising contacting said cellulosic substrate with a thermophilic anaerobic bacterial host cell expressing a biomass degrading enzyme are also described herein.


Methods of producing a biomass degrading enzyme comprising culturing a thermophilic anaerobic bacterial host cell expressing a biomass degrading enzyme under conditions suitable for protein expression and purifying the biomass degrading enzyme are also described herein.


Methods of producing ethanol from a cellulosic substrate comprising contacting the cellulosic substrate with a Thermoanaerobacterium saccharolyticum, wherein the Thermoanaerobacterium saccharolyticum expresses a heterologous cellulase and (i) has increased chaperone activity compared to wild-type Thermoanaerobacterium saccharolyticum and/or (ii) has decreased protease activity compared to wild-type Thermoanaerobacterium saccharolyticum are also described.





BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES


FIG. 1. Vector map showing basic genetic elements that can be used for cloning cellulases in T. sacch. The plasmid contains the Clostridium thermocellum CBP cellobiose phosphotransferase (CBP) promoter; E. coli T1 and T2 terminator; an exogenous cellulase gene (the native sequence from host organism or codon-optimized sequence of the cellulase); signal peptide (native signal sequence from host organism, a codon optimized native signal sequence from host organism, endogenous T. sacch signal sequence, signal sequence from another gram positive organism, or codon-optimized signal sequence from another gram positive organism); S. cerevisiae URA3 auxotrophic marker; cen6/Arsh yeast origin of replication; the B6A T. sacch origin of replication; and the kanamycin (KanR) and ampicillin (AmpR) resistance markers.



FIG. 2. Western blot of T. sacch supernatants showing CelZ (native C. stercorarium sequence) expression. Anti-6×His, anti-Flag, and anti-HA antibodies were used to detect CelZ with His, Flag and HA tags expressed in a T. sacch strain. In each blot, “ladder” indicates the lane loaded with a molecular weight protein ladder; “41 kDA+control” indicates the lane loaded with E. coli whole cell lysates expressing His, Flag and HA tagged protein (positive control); “CelZ” indicates the lane loaded with supernatant from T. sacch expressing CelZ with no tag; and “CelZ-HA,” “CelZ-His,” and “CelZ-flag” indicate lanes loaded with supernatant from T. sacch expressing CelZ fusion proteins. CelZ fusions are designated by the arrows, and possible proteolysis products are circled.



FIG. 3. Western blot of T. sacch supernatants showing E5 and CBH1 expression. Anti-His antibodies were used to detect His tagged proteins expressed in the T. sacch strain M0355. Supernatants from M0355 transformed with vectors encoding Cellulomonas fimi cex (lanes 1 and 2), Talaromyces emersonii CBH1 (lanes 3 and 4), T. fusca CelE (E5) (lanes 5 and 6) and Nasutitermes takasagoensis NtEG (lanes 7 and 8) were assayed for protein expression. Lanes 1, 3, 5 and 7 were obtained from overnight cultures, and lanes 2, 4, 6 and 8 were obtained from stationary cultures.



FIG. 4. Bar graph showing activity of T. sacch transformants in MuLac assay. T. sacch were transformed with genes as described in Example 5. The ability of the resulting strains to cleave MuLac was compared to that of the parent strain, M0699, which is an MO355-derived strain adapted for fast growth in a chemostat.



FIG. 5. Bar graph of ethanol production from M0355 transformants. T. sacch were transformed with PCR-cloned CelB from Caldicellulosiruptor kristjanssonii (“T. sacch 555”), CelA from Anaerocellum thermophilum (“T. sacch 559”), and CelZ from Clostridium stercorarium (“T. sacch 567”). The ability of the resulting strains to produce ethanol from Avicel was compared to that of the parent T. sacch strain, M0355. Ethanol production assays were performed at pH 5.5, 6.1 and 6.7.



FIG. 6. Bar graph of ethanol production from M0699 transformants. T. sacch were transformed with PCR-cloned genes from the labeled biomass degrading enzymes. The ability of the resulting strains to produce ethanol from Avicel was compared to that of the parent T. sacch strain, M0699.



FIG. 7. Western blots of CBH1:6×His (Talaromyces emersonii) (FIG. 7A), E5:6×His (Thermobifida fusca) (FIG. 7B), and CelZ:6×His (Clostridium stercorarium) (FIG. 7C) fused to various signal peptides. Anti-6×His antibodies were used to detect the fusion proteins. In each blot, “ladder” indicates the lane loaded with a molecular weight protein ladder; “control” indicates the lane loaded with E. coli whole cell lysates expressing His-tagged protein (positive control); lane assignments correspond to the signal peptide number cloned upstream of each cellulase as outlined in Table 3. In FIG. 7C, “empty vector” refers to overexpression of the same plasmid vector backbone that contains CelZ, but that lacks the CelZ coding sequence, and “CelZ-His” refers to expression of CelZ with the native, non-codon optimized Clostridium stercorarium signal peptide.



FIG. 8. Western blots and PVDF membranes showing proteolytic bands resulting from heterologous expression of cellulases in T. sacch. The numbered bands in the PVDF membranes were cut out and sequenced. The resulting sequences are shown below the corresponding Western and PVDF images.



FIG. 9. T. emersonii CBH1 expressed in T. sacch is enzymatically active. Heterologous CBH1 activity was measured using an in-gel MuLac assay (FIG. 9A), an Avicel conversion assay (FIG. 9B), and fermentation bottle experiments (FIG. 9C). In FIG. 9A, the Simply Blue staining (right panel) shows the total protein content measured in the MuLac assay, and the fluorescence (left panel) shows Cbh1 enzyme activity measured in the MuLac assay. In FIG. 9B, the height of the bars indicates the percent of Avicel converted by T. sacch over 24 and 48 hour time periods. In FIG. 9C, the height of the bars indicates the amounts of ethanol, cellobiose, glucose, and xylose produced in T. sacch fermentation experiments.





DETAILED DESCRIPTION OF THE INVENTION
Definitions

A “vector,” e.g., a “plasmid” or “YAC” (yeast artificial chromosome) refers to an extrachromosomal element often carrying one or more genes that are not part of the central metabolism of the cell, and is usually in the form of a circular double-stranded DNA molecule. Such elements can be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear, circular, or supercoiled, of a single- or double-stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3′ untranslated sequence into a cell. The plasmids or vectors of the present invention can be stable and self-replicating. The plasmids or vectors of the present invention can also be suicide vectors, or vectors that cannot replicate in the host cell. Such vectors are useful for forcing insertion of the nucleotide sequence into the host chromosome.


An “expression vector” is a vector that is capable of directing the expression of genes to which it is operably associated.


The term “heterologous” as used herein refers to an element of a vector, plasmid or host cell that is derived from a source other than the endogenous source. Thus, for example, a heterologous sequence could be a sequence that is derived from a different gene or plasmid from the same host, from a different strain of host cell, or from an organism of a different taxonomic group (e.g., different kingdom, phylum, class, order, family genus, or species, or any subgroup within one of these classifications). The term “heterologous” is also used synonymously herein with the term “exogenous.”


The term “domain” as used herein refers to a part of a molecule or structure that shares common physical or chemical features, for example hydrophobic, polar, globular, helical domains or properties, e.g., a DNA binding domain or an ATP binding domain. Domains can be identified by their homology to conserved structural or functional motifs. Examples of cellobiohydrolase (CBH) domains include the catalytic domain (CD) and the cellulose binding domain (CBD).


A “nucleic acid,” “polynucleotide,” or “nucleic acid molecule” is a polymeric compound comprised of covalently linked subunits called nucleotides. Nucleic acid includes polyribonucleic acid (RNA) and polydeoxyribonucleic acid (DNA), both of which can be single-stranded or double-stranded. DNA includes cDNA, genomic DNA, synthetic DNA, and semi-synthetic DNA.


An “isolated nucleic acid molecule” or “isolated nucleic acid fragment” refers to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; “RNA molecules”) or deoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; “DNA molecules”), or any phosphoester analogs thereof, such as phosphorothioates and thioesters, in either single stranded form, or a double-stranded helix. Double stranded DNA-DNA, DNA-RNA and RNA-RNA helices are possible. The term nucleic acid molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear or circular DNA molecules (e.g., restriction fragments), plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences are described herein according to the normal convention of giving only the sequence in the 5′ to 3′ direction along the non-transcribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA).


A “gene” refers to an assembly of nucleotides that encode a polypeptide, and includes cDNA and genomic DNA nucleic acids. “Gene” also refers to a nucleic acid fragment that expresses a specific protein, including intervening sequences (introns) between individual coding segments (exons), as well as regulatory sequences preceding (5′ non-coding sequences) and following (3′ non-coding sequences) the coding sequence. “Native gene” refers to a gene as found in nature with its own regulatory sequences.


A nucleic acid molecule is “hybridizable” to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength. Hybridization and washing conditions are well known and exemplified, e.g., in Sambrook, J., Fritsch, E. F. and Maniatis, T. MOLECULAR CLONING: A LABORATORY MANUAL, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), particularly Chapter 11 and Table 11.1 therein (hereinafter “Maniatis”, entirely incorporated herein by reference). The conditions of temperature and ionic strength determine the “stringency” of the hybridization. Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions. One set of conditions uses a series of washes starting with 6×SSC, 0.5% SDS at room temperature for 15 min, then repeated with 2×SSC, 0.5% SDS at 45° C. for 30 min, and then repeated twice with 0.2×SSC, 0.5% SDS at 50° C. for 30 min. For more stringent conditions, washes are performed at higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2×SSC, 0.5% SDS are increased to 60° C. Another set of highly stringent conditions uses two final washes in 0.1×SSC, 0.1% SDS at 65° C. An additional set of highly stringent conditions are defined by hybridization at 0.1×SSC, 0.1% SDS, 65° C. and washed with 2×SSC, 0.1% SDS followed by 0.1×SSC, 0.1% SDS.


Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length, equations for calculating Tm have been derived (see, e.g., Maniatis at 9.50-9.51). For hybridizations with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see, e.g., Maniatis, at 11.7-11.8). In one embodiment the length for a hybridizable nucleic acid is at least about 10 nucleotides. Preferably a minimum length for a hybridizable nucleic acid is at least about 15 nucleotides; more preferably at least about 20 nucleotides; and most preferably the length is at least 30 nucleotides. Furthermore, the skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as length of the probe.


The term “percent identity”, as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, “identity” also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as determined by the match between strings of such sequences.


As known in the art, “similarity” between two polypeptides is determined by comparing the amino acid sequence and conserved amino acid substitutes thereto of the polypeptide to the sequence of a second polypeptide.


“Identity” and “similarity” can be readily calculated by known methods, including but not limited to those described in: Computational Molecular Biology (Lesk, A. M., ed.) Oxford University Press, NY (1988); Biocomputing: Informatics and Genome Projects (Smith, D. W., ed.) Academic Press, NY (1993); Computer Analysis of Sequence Data, Part I (Griffin, A. M., and Griffin, H. G., eds.) Humana Press, NJ (1994); Sequence Analysis in Molecular Biology (von Heinje, G., ed.) Academic Press (1987); and Sequence Analysis Primer (Gribskov, M. and Devereux, J., eds.) Stockton Press, NY (1991). Preferred methods to determine identity are designed to give the best match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Sequence alignments and percent identity calculations can be performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wis.). Multiple alignments of the sequences disclosed herein were performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.


Suitable nucleic acid sequences or fragments thereof (isolated polynucleotides of the present invention) encode polypeptides that are at least about 70% to 75% identical to the amino acid sequences reported herein, at least about 80%, 85%, or 90% identical to the amino acid sequences reported herein, or at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequences reported herein. Suitable nucleic acid fragments are at least about 70%, 75%, or 80% identical to the nucleic acid sequences reported herein, at least about 80%, 85%, or 90% identical to the nucleic acid sequences reported herein, or at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the nucleic acid sequences reported herein. Suitable nucleic acid fragments not only have the above identities/similarities but typically encode a polypeptide having at least 50 amino acids, at least 100 amino acids, at least 150 amino acids, at least 200 amino acids, or at least 250 amino acids.


A DNA or RNA “coding region” is a DNA or RNA molecule which is transcribed and/or translated into a polypeptide in a cell in vitro or in vivo when placed under the control of appropriate regulatory sequences. “Suitable regulatory regions” refer to nucleic acid regions located upstream (5′ non-coding sequences), within, or downstream (3′ non-coding sequences) of a coding region, and which influence the transcription, RNA processing or stability, or translation of the associated coding region. Regulatory regions can include enhancers, operators, promoters, translation leader sequences, RNA processing sites, effector binding sites and stem-loop structures. The boundaries of the coding region are determined by a start codon at the 5′ (amino) terminus and a translation stop codon at the 3′ (carboxyl) terminus. A coding region can include, but is not limited to, prokaryotic regions, cDNA from mRNA, genomic DNA molecules, synthetic DNA molecules, or RNA molecules. If the coding region is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3′ to the coding region.


An “isoform” is a protein that has the same function as another protein but which is encoded by a different gene and can have small differences in its sequence.


A “paralogue” is a protein encoded by a gene related by duplication within a genome.


An “orthologue” is gene from a different species that has evolved from a common ancestral gene by speciation. Normally, orthologues retain the same function in the course of evolution as the ancestral gene.


“Open reading frame” is abbreviated ORF and means a length of nucleic acid, either DNA, cDNA or RNA, that comprises a translation start signal or initiation codon, such as an ATG or AUG, and a termination codon and can be potentially translated into a polypeptide sequence.


“Promoter” refers to a DNA fragment capable of controlling the expression of a coding sequence or functional RNA. In general, a coding region is located 3′ to a promoter. Promoters can be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters can direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as “constitutive promoters”. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of different lengths can have identical promoter activity. A promoter is generally bounded at its 3′ terminus by the transcription initiation site and extends upstream (5′ direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter will be found a transcription initiation site (conveniently defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.


A coding region is “under the control” of transcriptional and translational control elements in a cell when RNA polymerase transcribes the coding region into mRNA, which is then translated into the protein encoded by the coding region.


“Transcriptional and translational control regions” are DNA regulatory regions, such as promoters, enhancers, terminators, and the like, that provide for the expression of a coding region in a host cell. In eukaryotic cells, polyadenylation signals are control regions.


The term “operably associated” refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably associated with a coding region when it is capable of affecting the expression of that coding region (i.e., that the coding region is under the transcriptional control of the promoter). Coding regions can be operably associated to regulatory regions in sense or antisense orientation.


The term “expression,” as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression can also refer to translation of mRNA into a polypeptide.


Host Cells Expressing Heterologous Biomass Degrading Enzymes


In order to address the limitations of the previous systems, the present invention provides host cells expressing biomass degrading enzymes that can be effectively and efficiently utilized to produce fermentation products from cellulose. For example, the host cells can be used to produce ethanol, lactic acid, acetic acid or CO2. In some embodiments, this host cells are used to produce ethanol. Host cells are genetically engineered (transduced or transformed or transfected) with the polynucleotides encoding heterologous biomass degrading enzymes which are described in more detail below. The polynucleotides encoding the biomass degrading enzymes can be introduced to the host cell on a vector of the invention, which can be, for example, a cloning vector or an expression vector comprising a sequence encoding a heterologous cellulase. The host cells can comprise polynucleotides of the invention as integrated copies or plasmid copies.


In particular, the host cells can be thermophilic gram-positive anaerobic bacteria. For example, in one embodiment, the host cell is a member of the genus Thermoanaerobacterium. The Thermoanaerobacterium can be, for example, T. thermosulfurgenes, T. polysaccharolyticum or T. saccharolyticum. In another particular embodiment, the host cell is a Thermoanaerobacterium saccharolyticum (“T. sacch”) cell. In yet another embodiment, the host cell is a thermophilic anaerobe with 16s rRNA sequences that are similar to that of T. sacch. For example, the host cell can be an Acetogenium kivui, Caldanaerobacter proteolyticus, Caldanaerobium fijiensis, Clostridium thermoamylolyticum, Clostridium thermocopriae, Clostridium thermosaccharolyticum, Clostridium uzonii, Desulfotomaculum thermobenzoicum, Garciaella petrolearia, Soehngenia saccharolytica, Thermoanaerobacter acetoethylicus, Thermoanaerobacter brockii, Thermoanaerobacter ethanolicus, Thermoanaerobacter finii, Thermoanaerobacter inferii, Thermoanaerobacter lacticus, Thermoanaerobacter pseudethanolicus, Thermoanaerobacter pseudethanolicus, Thermoanaerobacter siderophilus, Thermoanaerobacter subterraneus, Thermoanaerobacter sulfurigignens, Thermoanaerobacter sulfurophilus, Thermoanaerobacter tengcongensis, Thermoanaerobacter thermohydrosulfuricus, Thermoanaerobacter uzonensis strain, Thermoanaerobacter wiegelii, Thermoanaerobium lactoethylicum, or Thermobacteroides acetoethylicus cell.


In some embodiments of the present invention, the host cell is a modified thermophilic gram-positive anaerobic bacteria. Thermophilic gram-positive anaerobic bacteria can convert sugars into either lactic acid, acetic acid or ethanol, for example. Therefore, by decreasing the amount of lactic acid and/or acetic acid produced, the amount of ethanol produced under given conditions can be increased.


Therefore, the host cell can be altered to decrease the production of lactic acid. For example, the host cell can comprise a mutation or deletion in a gene that is necessary for producing lactic acid as a fermentation product. Thus, the host cell can be, for example, a host cell wherein lactate dehydrogenase activity is decreased or eliminated. The host cell can, for example, comprise a mutation or deletion in a lactate dehydrogenase coding or regulatory sequence. The host cell can also be altered to decrease the production of acetic acid. For example, the host cell can comprise a mutation or deletion in a gene that is necessary for producing acetic acid as a fermentation product. Thus, the host cell can be, for example, a host cell wherein phosphotransacetylase activity is decreased or eliminated. The host cell can, for example, comprise a mutation or deletion in a phosphotransacetylase coding or regulatory sequence. The host cell can also be, for example, a host cell wherein acetate kinase activity is decreased or eliminated. The host cell can, for example, comprise a mutation or deletion in a acetate kinase coding or regulatory sequence.


Examples of such host cells are described in International Patent Application Number PCT/US2006/042442 (filed Oct. 31, 2006) and PCT/US2007/016947 (filed May 1, 2007), which are herein incorporated by reference in their entireties. The host cell can be, for example, M0355 (described herein) or ALK1 or ALK2 (described in PCT/US2006/042442 and PCT/US2007/016947).


Lactic acid and/or acetic acid production can also be reduced or eliminated using methods other than genetic modification. For example, the host cells can be cultured under conditions that decrease lactic acid and/or acetic acid production. The host cells can, for example, be contacted with substances that inhibit lactic acid and/or acetic acid production pathways. The molecules can be, for example, small molecules, peptide inhibitors or interfering RNAs.


The host cell can also be a cell in which foreign DNA has been removed. For example, the host cell can be a cell that does not comprise heterologous markers, such as antibiotic markers. The removal of foreign DNA can be accomplished using techniques known in the art. For example, methods of counterselection, such as those described in Reyrat et al., Infection and Immunity 66:4011-4017 (1998), can be used to remove transgenic or heterologous sequences or plasmids. The host cell can be a cell that does not comprise any heterologous DNA other than the DNA comprising a sequence encoding the heterologous biomass degrading enzyme. Therefore, the host cell be a cell comprising a nucleic acid comprising a polynucleotide which encodes a heterologous biomass degrading enzyme, wherein the nucleic acid comprising a polynucleotide which encodes a biomass degrading enzyme is the only heterologous DNA in the cell.


By improving biomass degrading enzyme expression and secretion, cellulose hydrolysis can be enhanced. Thus, the host cells can also be modified to improve protein expression and/or protein secretion. For example, protease sequences may be removed. Proteases are enzymes that catalyze the breakdown of proteins into smaller peptides or amino acids. Proteases include endopeptidases and exopeptidases. A protease gene can, for example, be removed using chromosomal integration techniques in which an unrelated sequence (e.g. an antibiotic marker) replaces all or a portion of the wild-type protease-encoding sequence in its normal chromosomal location. In particular, the protease genes encoding the proteins shown in Table 1 below could be removed either individually or in combination.










TABLE 1







Exemplary Proteases/Peptidases That Can Be Removed According



to the Present Invention.








Description
Sequence












Trypsin-like
MQNGDNRNVKRPSYLTTVIVIAVITSLIFTYIAPKFLWGKVIPLPYTNTAP



serine
LKKEVIIPKAEPSTIAEAVAKKDTQAVVGISSIEYERQYYILEKQVEGVGS


protease
GFIVDKNGYIITNNHVASPESKKLTIYLSDGSTLPGKVLWSDSTLDLSVVK


typically
INAKNLPTIPLGDSDKVQVGQTVIAIGNPLGLRFERTVTSGIISALNRSLPL


periplasmic
EENNKQKIMEDLIQTDASINPGNSGGPLVDAQGNAIGINTAKVTTAEGLG


contain C-
FAIPINIVKPIIKKVIATGTFKAPYLGIVGYDREIASYINADVVIAEGIYVAD


terminal PDZ
IDPAGPAKKAGIKKGYILLEVDGKPVDTMVQLKTVIYSRNIGDKVSVKY


domain
RTLTGNIGMTTITLGK (SEQ ID NO: 164)


peptidase S1


and S6


chymotrypsin





Trypsin-like
MDIENEQTKRLNENDMENLNENADDVVTENFTNNDLNKIHKVSMTNDY


serine
QDKNDEENAKNDLENSKKSVGKIIKRFRRRMLASFIVVALIAALIGGGIV


protease
GGIMVYTNSGQKTQVINRYLPLSSNNSNSNLIVNIAKIVSPSVVGIDTSAT


typically
YSNGFRSAFVSEGSGSGIIIDSQGYIVTNYHVIEGASTITVSLSDGRKFSAQ


periplasmic
LIGKDSNTDLAVLKINATNLTAAKLGDSSKLEVGDLAVAIGNPLGESFAG


contain C-
TVTAGIISGLNRNLQSDYGPVNLIQTDAAINPGNSGGPLVNSNGEVVGITS


terminal PDZ
VKLTSTDDNSTQSSFGMFQSQSTPVEGMGFAIPINEAKPIINELIKHGYVE


domain
RPMMGVSVQEVTQQDAAQYNIPVGLYIAQVQQGSGADEAGLQAGDVIT


2-alkenal
AVDGTKVQTFDALQSIISKHKVGDTITVTFWRNGRTMSTKVKLMSSSNA


reductase
Q (SEQ ID NO: 165)





Trypsin-like
MDFENEQNKNIGENEIDNFRTDDALGSDDIKGENIDDTQEIKATYGAEES


serine
GTYTNPRVEFRSNKKSLGKMVKRFRRRMLVSFVAVALIAALIGGGTVAG


protease
IMKYTNLGQQTQVINRYLPLSSSDNNNYSLIANIAKIVSPSVVGIDTSVSY


typically
SNGFGSALVPEGSGSGIIIDSQGYIVTNNHVVDGASKITVNLSDGRKFPAQ


periplasmic
LIGKDSKTDLAVLKINATNLIPAKLGDSSKLEVGDLAVAIGNPLGESFAGT


contain C-
VTAGIISGLNRNLQSDYGPVNLIQTDAAINPGNSGGPLVNSNGEVVGITSV


terminal PDZ
KLTSTGGSDTQDPFGMFQSQSTPVEGMGFAIPINEAKPIIDDLIKHGYVER


domain
PMMGVSVQEVTQQDAAQYNIPVGLYIAQVQQGSGADEAGLQAGDVITA


2-alkenal
VDGTKVQTFDALQSIISKHKVGDTITVTFWRNGRTMSTKVKLMSSSNAQ


reductase
(SEQ ID NO: 166)





Trypsin-like
MEFNNGFENYRLPDVNPKNDKKSLGKMVKRYRRKMFMSFVAVALVAA


serine
LAGGALGAGIVKYADTGNTQVVNRYLPLSSDNNNFNLITNIVKAVSPSV


protease
VGIDTYISGYGAYGYGGNSYVEEGSGSGIIIDSEGHIVTNDHVVEGASKIT


typically
VNLSDGRKFPAQLVGKDSRTDLAVLKINATNLTPAKLGDSSKLEVGELA


periplasmic
VAIGNPLGDSFAGTATAGIISGLNRNLQSDYGPVNLIQTDAAINPGNSGGP


contain C-
LVNSVGEVIGITSIKLTSTGGSSSGDPFGLFQSQSVPLEGMGFAIPINEAKPI


terminal PDZ
IEELIRKGYVERPVIGVSVQQITQQQANQYNIPVGLYIAQVQQGSGADAA


domain
GLQAGDIITAVDGTNVTTFNQLENILNNHKIGDVISVTVWRNGQTLTVNV


2-alkenal
KLSGSNGQ (SEQ ID NO: 167)


reductase





Subtilisin-
MDIISALILSSVIQSLYPKSKIDSRLLRKASIYRSECVSAIVYSNLPYDALKK


like serine
KIESIGGTIKYELPIINGWAVNIPCNKLNIIAKNKGIKFIAEDSTVKTQLNIA


protease
TQEIKSREANDHGYTGKGVTIAFLDTGIYPHPDFTKPKNRIIAFHDIVNGK


peptidase S8
KSPYDDNGHGTHVAGDAASSGYLSDGKYKGVAPEANIVSVKVLDSRGS


and S53
GSTSDILSGMQWILDNKDKYNIRIVSLSIGETPSLPPFLDPLVKGVDRLWR


subtilisin
SGLVVVVAAGNSGPSMNSITSPGNSMNVITVGAVDDKRTVDTSDDEIAN


kexin
FSGRGSAFLPKPDVVAPGVKIVSAASGNVPIGTDDNILLNKSYRTASGTS


sedolisin
MATPIVAGAAALLLEKNPSLTNYQIKNILKSTTTNVDHYRYYSQGYGMI



NVEMALKKV (SEQ ID NO: 168)









Host cells can also be cultured with exogenously added protease inhibitors in order to decrease protease activity.


Alternatively, or in addition to removing protease genes from host cells, chaperone proteins or components of the secretion system can be over-expressed in the host cells to improve protein expression and/or protein secretion. Chaperone proteins are proteins that assist in three-dimensional folding and unfolding or assembly and disassembly of macromolecular structures, including proteins, without being part of the final macromolecular structures. Chaperones can prevent unfavorable interactions of a substrate (e.g. a protein) and can guide the substrate (e.g. a protein) into a productive export and folding pathway. The chaperone proteins or components of the secretion system can be overexpressed, for example, by transforming host cells with a plasmid comprising a nucleotide sequence encoding the chaperone protein or the component of the secretion system. The overexpressed chaperones can be endogenous chaperones or heterologous chaperones. For example, E. coli HSP60/GroEL, HSP60/GroES, HSP70/DnaK, DnaJ, GrpE, HSP90/HtpG, HSP100/Clp family, and/or peptidyl prolyl isomerase Trigger Factor can be overexpressed. In addition, a secretion-specific chaperone from Bacillus subtilis such as Ffh, HBsu, FtsY, CsaA and/or FlhF can be overexpressed. Chaperone proteins can be overexpressed either individually or in combination. Proteins that are important for disulfide bond formation can be overexpressed. For example, Bacillus subtilis BdbA, BdbB, BdbC, and/or BdbD can be overexpressed. E. coli DsbA, B, C, D, and/or G can also be overexpressed. Proteins that are important in Gram positive SEC-mediated protein secretion such as SecA, SecY, SecE, SecG, SecDF can be overexpressed, and proteins important in extracytoplasmic folding such as Bacillus subtilis PrsA can be overexpressed.


Other mechanisms of improving expression and secretion of heterologous cellulases include expression through non-sec mediated mechanisms such as TAT-mediated transport, ATP-binding cassette (ABC) transporters and/or pseudopilin/pilin export.


In some embodiments, the heterologous biomass degrading enzyme is expressed without a tag (e.g. a purification or reporter tag such as HA, His, FLAG) that can interfere with successful folding and/or translocation of the heterologous biomass degrading enzyme.


Additionally strains that have been altered to create a chemostat strain that can be selected in rich medium with inhibitor cocktails can be used. Auxostat strains that are selected on minimal medium can also be used. In some embodiments, the strains are derived from, for example T. sacch or MO355, and altered to improve characteristics for large-scale production of fuels or chemicals from lignocellulosic biomass. These characteristics include faster growth rates, the ability to grow on inexpensive media, the ability to use a wider array of nutrients, and tolerance to ethanol, solvents, oxygen, temperature changes, pH changes, high or low nutrient levels, or inhibitory substances produced from pretreatment of lignocellulosic biomass. Methods to introduce these characteristics include classical mutagenesis and screening or selection, directed genetic engineering, extended propagation by serial transfer or continuous culture, or a combination of those approaches.


In some embodiments of the present invention the thermophilic gram-positive anaerobic bacteria can grow at temperatures above about 40° C., about 55° C., about 50° C., about 55° C., about 60° C., about 65° C., about 70° C., about 75° C., or about 80° C. In some embodiments of the present invention the thermophilic gram-positive anaerobic bacteria can produce ethanol, or another fermentation product, from cellulose at temperatures above about 40° C., about 45° C., about 50° C., about 55° C., about 60° C., about 65° C., about 70° C., about 75° C., or about 80° C.


In some embodiments of the present invention, the thermophilic gram-positive anaerobic bacteria can grow at temperatures from about 40° C. to 90° C., about 40° C. to 80° C., about 40° C. to 75° C., about 40° C. to 70° C., about 40° C. to 65° C., about 40° C. to 60° C., or about 40° C. to 55° C. In some embodiments of the present invention, the thermophilic gram-positive anaerobic bacteria can grow at temperatures from about 45° C. to 90° C., about 45° C. to 45° C., about 45° C. to 75° C., about 45° C. to 70° C., about 45° C. to 65° C., about 45° C. to 60° C., or about 45° C. to 55° C. In some embodiments of the present invention, the thermophilic gram-positive anaerobic bacteria can grow at temperatures from about 50° C. to 50° C., about 50° C. to 80° C., about 50° C. to 75° C., about 50° C. to 70° C., about 50° C. to 65° C., about 50° C. to 60° C., or about 50° C. to 55° C. In some embodiments of the present invention, the thermophilic gram-positive anaerobic bacteria can grow at temperatures from about 55° C. to 90° C., about 55° C. to 80° C., about 55° C. to 75° C., about 55° C. to 70° C., about 55° C. to 65° C., or about 55° C. to 60° C.


In certain aspects, the present invention relates to host cells containing the polynucleotide constructs described below. The host cells can express one or more heterologous biomass degrading enzyme polypeptides. In some embodiments, the host cell comprises a combination of polynucleotides that encode heterologous biomass degrading enzymes or fragments, variants or derivatives thereof. The host cell can, for example, comprise multiple copies of the same nucleic acid sequence, for example, to increase expression levels, or the host cell can comprise a combination of unique polynucleotides. In other embodiments, the host cell comprises a single polynucleotide that encodes a heterologous biomass degrading enzyme or a fragment, variant or derivative thereof.


Introduction of a polynucleotide encoding biomass degrading enzymes into a host cell can be done by methods known in the art. Introduction of polynucleotides encoding heterologous biomass degrading enzymes into host cells, can be effected, for example, by lithium acetate transformation, spheroplast transformation, or transformation by electroporation, as described in Current Protocols in Molecular Biology, 13.7.1-13.7.10. Introduction of the construct in other host cells can be effected, for example, by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation. (Davis, L., et al., Basic Methods in Molecular Biology, (1986)).


The transformed host cells or cell cultures, as described above, can be examined for biomass degrading enzyme protein content. For the use of secreted heterologous biomass degrading enzymes, protein content can be determined by analyzing the host (e.g., bacteria) cell supernatants. In certain embodiments, high molecular weight material can be recovered from the cell supernatant either by acetone precipitation or by buffering the samples with disposable de-salting cartridges. Proteins, including tethered heterologous biomass degrading enzymes, can also be recovered and purified from recombinant cell cultures by methods including spheroplast preparation and lysis, cell disruption using glass beads, and cell disruption using liquid nitrogen for example. Additional protein purification methods include trichloroacetic acid, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, gel filtration, and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.


Protein analysis methods include methods such as the traditional Lowry method, the bicinchoninic acid protein assay reagent (Pierce) or the protein assay method according to BioRad's manufacturer's protocol. Using such methods, the protein content of saccharolytic enzymes can be estimated. Additionally, to accurately measure protein concentration a heterologous biomass degrading enzyme can be expressed with a tag, for example a His-tag or HA-tag and purified by standard methods using, for example, antibodies against the tag, a standard nickel resin purification technique or similar approach.


The transformed host cells or cell cultures, as described above, can be further analyzed for hydrolysis of cellulose (e.g., by a sugar detection assay), for a particular type of biomass degrading enzyme activity, for example for cellulase activity (e.g., by measuring the individual endoglucanase, cellobiohydrolase or β-glucosidase activity) or for total cellulase activity. Endoglucanase activity can be determined, for example, by measuring an increase of reducing ends in an endoglucanase specific CMC substrate. Cellobiohydrolase activity can be measured, for example, by using insoluble cellulosic substrates such as the amorphous substrate phosphoric acid swollen cellulose (PASC) or microcrystalline cellulose (Avicel) and determining the extent of the substrate's hydrolysis. β-glucosidase activity can be measured by a variety of assays, e.g., using cellobiose.


A total cellulase activity, which includes the activity of endoglucanase, cellobiohydrolase and β-glucosidase, can hydrolyze crystalline cellulose synergistically. Total cellulase activity can thus be measured using insoluble substrates including pure cellulosic substrates such as Whatman No. 1 filter paper, cotton linter, microcrystalline cellulose, bacterial cellulose, algal cellulose, and cellulose-containing substrates such as dyed cellulose, alpha-cellulose or pretreated lignocellulose. Specific activity of cellulases can also be detected by methods known to one of ordinary skill in the art, such as by the Avicel assay (described supra) that would be normalized by protein (cellulase) concentration measured for the sample.


In some embodiments, the host cell can grow on crystalline cellulose. For example, in some embodiments, the host cell can grow on Avicel. In some particular embodiments, the host cell can grow on crystalline cellulose or Avicel more efficiently than an untransformed cell. In another particular embodiment, the host cell can grow on crystalline cellulose or Avicel more efficiently than wild-type T. sacch.


In some embodiments, the host cell a particular activity on a substrate. The substrate can be, for example, Avicel, carboxymethylcellulose (CMC), or acid-swollen cellulose. The particular activity of the host cell on the substrate can be, for example, at least about 1 U/mg, at least about 2 U/mg, at least about 3 U/mg, at least about 4 U/mg, at least about 5 U/mg, at least about 6 U/mg, at least about 7 U/mg, at least about 8 U/mg, at least about 9 U/mg, at least about 10 U/mg, at least about 15 U/mg, at least about 20 U/mg, at least about 25 U/mg, at least about 30 U/mg, at least about 35 U/mg, at least about 40 U/mg, at least about 50 U/mg, at least about 75 U/mg, or at least about 100 U/mg cellulase activity.


In some embodiments, the host cell has at least about 1 U/mg, at least about 2 U/mg, at least about 3 U/mg, at least about 4 U/mg, at least about 5 U/mg, at least about 6 U/mg, at least about 7 U/mg, at least about 8 U/mg, at least about 9 U/mg, at least about 10 U/mg, at least about 15 U/mg, at least about 20 U/mg, at least about 25 U/mg, at least about 30 U/mg, at least about 35 U/mg, at least about 40 U/mg, at least about 50 U/mg, at least about 75 U/mg, or at least about 100 U/mg endoglucanase activity.


In some embodiments, the host cell has at least about 1 U/mg, at least about 2 U/mg, at least about 3 U/mg, at least about 4 U/mg, at least about 5 U/mg, at least about 6 U/mg, at least about 7 U/mg, at least about 8 U/mg, at least about 9 U/mg, at least about 10 U/mg, at least about 15 U/mg, at least about 20 U/mg, at least about 25 U/mg, at least about 30 U/mg, at least about 35 U/mg, at least about 40 U/mg, at least about 50 U/mg, at least about 75 U/mg, or at least about 100 U/mg exoglucanase activity.


In some embodiments, the host cell has at least about 1 U/mg, at least about 2 U/mg, at least about 3 U/mg, at least about 4 U/mg, at least about 5 U/mg, at least about 6 U/mg, at least about 7 U/mg, at least about 8 U/mg, at least about 9 U/mg, at least about 10 U/mg, at least about 15 U/mg, at least about 20 U/mg, at least about 25 U/mg, at least about 30 U/mg, at least about 35 U/mg, at least about 40 U/mg, at least about 50 U/mg, at least about 75 U/mg, or at least about 100 U/mg cellobiohydrolase activity.


One aspect of the invention is thus related to the efficient production of biomass degrading enzymes to aid in the digestion of cellulose and generation of ethanol or another useful fermentation product. A biomass degrading enzyme can be, for example, any enzyme involved in cellulase digestion, metabolism and/or hydrolysis, including an endoglucanase, exoglucanase, or β-glucosidase.


In additional embodiments, the transformed host cells or cell cultures are assayed for production of a useful fermentation product such as ethanol. Ethanol production can be measured by techniques known to one or ordinary skill in the art e.g. by a standard HPLC refractive index method.



T. sacch host cells can also be used to produce enzymes that can be purified and used in subsequent applications. The methods comprise transforming a T. sacch host cell with a sequence encoding a heterologous enzyme, culturing the transformed host cell under conditions suitable for protein expression and purifying the enzyme.


Biomass Degrading Enzymes


Biomass degrading enzymes can be heterologously expressed in T. sacch and other thermophilic anaerobic bacterial host cell. According to the present invention, biomass degrading enzymes are proteins that catalyze or enhance the breakdown of biological matter into simpler compounds. The largest component of plant biomass is cellulose, followed by hemicellulose and lignin. Cellulose is broken down by hydrolysis, catalyzed by cellulase enzymes. Cellulases can occur as individual enzymes or large multi-enzyme complexes. Cellulose can form tightly packed crystalline structures that are recalcitrant to enzymatic hydrolysis, and a wide variety of proteins exist in nature that act in different ways to break it down. For example, some enzymes show a high degree of endoglucanase activity, hydrolyzing bonds in the middle of cellulose chains. Others show a high degree of exoglucanase activity, releasing mono- or disaccharides from the ends of cellulose chains. Some are highly active on crystalline cellulose while others are most active on oligomeric chains of glucose. These proteins often consist of different functional modules or domains, often with glycoside hydrolase or carbohydrate binding activity. Based on amino acid sequence and protein structure, known glycoside hydrolases have been organized into 113 different families, and carbohydrate binding domains have been organized into 52 families (http://www.cazy.org; Cantarel et al. Nucleic Acids Res. Volume 37: D233-D238 (2008), which is herein incorporated by reference in its entirety). Changing just a few amino acids can alter the substrate specificity of a protein, so these families sometimes contain proteins with different specificities and functions.


The breakdown of cellulose can be catalyzed or enhanced by the action of enzymes other than glycoside hydrolases. These include swollenin and expansins, which may disrupt intermolecular hydrogen bonding without hydrolysis. Enzymes that act on hemicellulose or lignin can also enhance the degradation of cellulose by increasing the accessibility of the cellulose fibers. Hemicellulose is more complex than cellulose, but is not crystalline. It contains predominantly xylose, but also the sugars arabinose, galactose, and mannose. Since these component sugars are polymerized in a variety of combinations and linkages, hemicellulose is very diverse. Enzymes that break down hemicellulose include xylanases, xylosidases, xyloglucanases, mannanases, mannosidases, galactanases, galactosidases, arabinases or arabinofuranosidases. Enzymes that degrade lignin and may enhance the activity of other biomass degrading enzymes include lignin peroxidase, some cellobiose dehydrogenases, and aryl alcohol oxidase.


Thus, according to the present invention, biomass degrading enzymes include, for example, cellulases, endogluconases, exogluconases, glucoside hydrolases, xylanases, xylosidases, xyloglucanases, mannanases, mannosidases, galactanases, galactosidases, arabinases, arabinofuranosidases, lignin peroxidase, some cellobiose dehydrogenases, aryl alcohol oxidase proteinases, nucleases and carbohydrate active enzymes such as amylases, chitosanases, fructosidases or glycosyltransfereases. In some embodiments of the present invention, the biomass degarding enzyme is a cellulase.


According to the present invention the expression of heterologous biomass degrading enzymes in a host cell can be used advantageously to produce ethanol from cellulosic sources. The expression of heterologous biomass degrading enzymes in a host cell can be used advantageously to produce acetic acid, lactic acid or CO2 from cellulosic sources. Biomass degrading enzymes from a variety of sources can be heterologously expressed to successfully increase efficiency of fermentation product (e.g. ethanol) production. For example, the biomass degrading enzymes can be from fungi (including yeast), bacteria, plant, protozoan or termite sources. Biomass degrading enzymes from termite sources include biomass degrading enzymes encoded by the termite genome as well as biomass degrading enzymes encoded by the microorganisms that reside in the termite gut. In some embodiments, the biomass degrading enzyme is not a biomass degrading enzyme from an anaerobic bacteria. In other embodiments, the biomass degrading enzyme is a biomass degrading enzyme derived from an organism selected from the group consisting of Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri and Caldicellulosiruptor kristjanssonii.


In some embodiments of the invention, multiple biomass degrading enzymes from a single organism are co-expressed in the same host cell. In some embodiments of the invention, multiple biomass degrading enzymes from different organisms are co-expressed in the same host cell. In particular, biomass degrading enzymes from two, three, four, five, six, seven, eight, nine or more organisms can be co-expressed in the same host cell.


In some embodiments of the present invention, the biomass degrading enzyme is a cellulase. Cellulases of the present invention include both endoglucanases or exoglucanases. The cellulases can be, for example, endoglucanases, β-glucosidases or cellobiohydrolases. In certain embodiments of the invention, the endoglucanase(s) can be an endoglucanase I or an endoglucanase II isoform, paralogue or orthologue. In certain embodiments, the β-glucosidase is a β-glucosidase I or a β-glucosidase II isoform, paralogue or orthologue. In certain embodiments of the invention, the cellobiohydrolase(s) can be a cellobiohydrolase I and/or a cellobiohydrolase II isoform, paralogue or orthologue.


In certain embodiments, the cellulase comprises an amino acid sequence that is at least about 70, about 80, about 90, about 95, about 96, about 97, about 98, about 99, or 100% identical to an amino acid sequence selected from SEQ ID NOs:108-148, (as shown below in Table 2). As a practical matter, whether any polypeptide is at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to a polypeptide of the present invention can be determined conventionally using known computer programs. Methods for determining percent identity, as discussed in more detail below in relation to polynucleotide identity, are also relevant for evaluating polypeptide sequence identity.


Some embodiments of the invention encompass a polypeptide comprising at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, or 500 or more consecutive amino acids of any of SEQ ID NOs:108-148, or domains, fragments, variants, or derivatives thereof.









TABLE 2







Exemplary Biomass Degrading Enzymes That Can Be Used According to the Present Invention










Organism





and Protein

Accession Number and Amino


(Gene)
Codon-Optimized DNA Sequence
Acid Sequence






Thermobifida

ATGCTTAGAAGACCTAGATCAAGATCACCTCTTGTAGCACTTACAGCAGC
AAC06387




fusca E1

AACATGCAGAGTAGCACTTGGAGGAACAGCAGTACCTGCACAAGCAGATG
MLRRPRSRSPLVALTAATCRVA


(gene: celA)
AAGTAAATCAAATAAGAAATGGAGATTTTTCATCAGGAACAGCACCTTGG
LGGTAVPAQADEVNQIRNGDFS



TGGGGAACAGAAAATATACAACTTAATGTAACAGATGGAATGCTTTGCGT
SGTAPWWGTENIQLNVTDGML



AGATGTACCTGGAGGAACAGTAAATCCTTGGGATGTAATAATAGGACAAG
CVDVPGGTVNPWDVIIGQDDIPL



ATGATATACCTCTTATAGAAGGAGAATCATATGCATTTTCATTTACAGCAT
IEGESYAFSFTASSTVPVSIRALV



CATCAACAGTACCTGTATCAATAAGAGCACTTGTACAAGAACCTGTAGAA
QEPVEPWTTQMDERALLGPEAE



CCTTGGACAACACAAATGGATGAAAGAGCACTTCTTGGACCTGAAGCAGA
TYEFVFTSNVDWDDAQVAFQIG



AACATATGAATTTGTATTTACATCAAATGTAGATTGGGATGATGCACAAGT
GSDEPWTFCLDDVALLGRAEPP



AGCATTTCAAATAGGAGGATCAGATGAACCTTGGACATTTTGCCTTGATGA
VYEPDTGPRVRVNQVGYLPHGP



TGTAGCACTTCTTGGAAGAGCAGAACCTCCTGTATATGAACCTGATACAG
KKATVVTDATSALTWELADAD



GACCTAGAGTAAGAGTAAATCAAGTAGGATATCTTCCTCATGGACCTAAA
GNVVASGQTKPHGADSSSGLNV



AAAGCAACAGTAGTAACAGATGCAACATCAGCACTTACATGGGAACTTGC
HTVDFSSYTTKGSDYTLTVDGE



AGATGCAGATGGAAATGTAGTAGCATCAGGACAAACAAAACCTCATGGA
TSYPFDIDESVYEELRVDALSFY



GCAGATTCATCATCAGGACTTAATGTACATACAGTAGATTTTTCATCATAT
YPQRSGIEILDSIAPGYGRPAGHI



ACAACAAAAGGATCAGATTATACACTTACAGTAGATGGAGAAACATCATA
GVPPNQGDTDVPCAPGTCDYSL



TCCTTTTGATATAGATGAATCAGTATATGAAGAACTTAGAGTAGATGCACT
DVSGGWYDAGDHGKYVVNGGI



TTCATTTTATTATCCTCAAAGATCAGGAATAGAAATACTTGATTCAATAGC
SVHQIMSIYERSQLADTAQPDKL



ACCTGGATATGGAAGACCTGCAGGACATATAGGAGTACCTCCTAATCAAG
ADSTLRLPETGNGVPDVLDEAR



GAGATACAGATGTACCTTGCGCACCTGGAACATGCGATTATTCACTTGATG
WEMEFLLKMQVPEGEPLAGMA



TATCAGGAGGATGGTATGATGCAGGAGATCATGGAAAATATGTAGTAAAT
HHKIHDEQWTGLPLLPSADPQP



GGAGGAATATCAGTACATCAAATAATGTCAATATATGAAAGATCACAACT
RYLQPPSTAATLNLAATAAQCA



TGCAGATACAGCACAACCTGATAAACTTGCAGATTCAACACTTAGACTTCC
RVFEPFDEDFAAECLAAAETAW



TGAAACAGGAAATGGAGTACCTGATGTACTTGATGAAGCAAGATGGGAAA
DAAKANPNIYAPAFGEGGGPYN



TGGAATTTCTTCTTAAAATGCAAGTACCTGAAGGAGAACCTCTTGCAGGA
DNNVTDEFYWAAAELFLTTGKE



ATGGCACATCATAAAATACATGATGAACAATGGACAGGACTTCCTCTTCTT
EYRDAVTSSPLHTDDEEVFRDG



CCTTCAGCAGATCCTCAACCTAGATATCTTCAACCTCCTTCAACAGCAGCA
AFDWGWTAALARLQLATIPNDL



ACACTTAATCTTGCAGCAACAGCAGCACAATGCGCAAGAGTATTTGAACC
ADRDRVRQSVVDAADMYLANV



TTTTGATGAAGATTTTGCAGCAGAATGCCTTGCAGCAGCAGAAACAGCAT
ETSPWGLAYKPNNGVFVWGSN



GGGATGCAGCAAAAGCAAATCCTAATATATATGCACCTGCATTTGGAGAA
SAVLNNMVILAVAFDLTGDTKY



GGAGGAGGACCTTATAATGATAATAATGTAACAGATGAATTTTATTGGGC
RDGVLEGMDYIFGRNALNQSYV



AGCAGCAGAACTTTTTCTTACAACAGGAAAAGAAGAATATAGAGATGCAG
TGYGDKDSRNQHSRWYAHQLD



TAACATCATCACCTCTTCATACAGATGATGAAGAAGTATTTAGAGATGGA
PRLPNPPKGTLAGGPNSDSTTW



GCATTTGATTGGGGATGGACAGCAGCACTTGCAAGACTTCAACTTGCAAC
DPVAQSKLTGCAPQMCYIDHIES



AATACCTAATGATCTTGCAGATAGAGATAGAGTAAGACAATCAGTAGTAG
WSTNELTINWNAPLSWIASFIAD



ATGCAGCAGATATGTATCTTGCAAATGTAGAAACATCACCTTGGGGACTT
QDDAGEPGGEEPGPGDDETPPS



GCATATAAACCTAATAATGGAGTATTTGTATGGGGATCAAATTCAGCAGT
KPGNLKASDITATSATLTWDAS



ACTTAATAATATGGTAATACTTGCAGTAGCATTTGATCTTACAGGAGATAC
TDNVGVVGYKVSLVRDGDAEE



AAAATATAGAGATGGAGTACTTGAAGGAATGGATTATATATTTGGAAGAA
VGTTAQTSYTLTGLSADQEYTV



ATGCACTTAATCAATCATATGTAACAGGATATGGAGATAAAGATTCAAGA
QVVAYDAAGNLSTPATVTFTTE



AATCAACATTCAAGATGGTATGCACATCAACTTGATCCTAGACTTCCTAAT
KEDETPTPSASCAVTYQTNDWP



CCTCCTAAAGGAACACTTGCAGGAGGACCTAATTCAGATTCAACAACATG
GGFTASVTLTNTGSTPWDSWEL



GGATCCTGTAGCACAATCAAAACTTACAGGATGCGCACCTCAAATGTGCT
RFTFPSGQTVSHGWSANWQQSG



ATATAGATCATATAGAATCATGGTCAACAAATGAACTTACAATAAATTGG
SDVTATSLPWNGSVPPGGGSVNI



AATGCACCTCTTTCATGGATAGCATCATTTATAGCAGATCAAGATGATGCA
GFNGTWGGSNTKPEKFTVNGA



GGAGAACCTGGAGGAGAAGAACCTGGACCTGGAGATGATGAAACACCTC
VCSIG (SEQ ID NO: 108)



CTTCAAAACCTGGAAATCTTAAAGCATCAGATATAACAGCAACATCAGCA



ACACTTACATGGGATGCATCAACAGATAATGTAGGAGTAGTAGGATATAA



AGTATCACTTGTAAGAGATGGAGATGCAGAAGAAGTAGGAACAACAGCA



CAAACATCATATACACTTACAGGACTTTCAGCAGATCAAGAATATACAGT



ACAAGTAGTAGCATATGATGCAGCAGGAAATCTTTCAACACCTGCAACAG



TAACATTTACAACAGAAAAAGAAGATGAAACACCTACACCTTCAGCATCA



TGCGCAGTAACATATCAAACAAATGATTGGCCTGGAGGATTTACAGCATC



AGTAACACTTACAAATACAGGATCAACACCTTGGGATTCATGGGAACTTA



GATTTACATTTCCTTCAGGACAAACAGTATCACATGGATGGTCAGCAAATT



GGCAACAATCAGGATCAGATGTAACAGCAACATCACTTCCTTGGAATGGA



TCAGTACCTCCTGGAGGAGGATCAGTAAATATAGGATTTAATGGAACATG



GGGAGGATCAAATACAAAACCTGAAAAATTTACAGTAAATGGAGCAGTAT



GCTCAATAGGA (SEQ ID NO: 77)






Thermobifida

ATGTCACCTAGACCTCTTAGAGCACTTCTTGGAGCAGCAGCAGCAGCACTT
P26222



fusca E2

GTATCAGCAGCAGCACTTGCATTTCCTTCACAAGCAGCAGCAAATGATTCA
MSPRPLRALLGAAAAALVSAAA


(gene: celB)
CCTTTTTATGTAAATCCTAATATGTCATCAGCAGAATGGGTAAGAAATAAT
LAFPSQAAANDSPFYVNPNMSS



CCTAATGATCCTAGAACACCTGTAATAAGAGATAGAATAGCATCAGTACC
AEWVRNNPNDPRTPVIRDRIASV



TCAAGGAACATGGTTTGCACATCATAATCCTGGACAAATAACAGGACAAG
PQGTWFAHHNPGQITGQVDAL



TAGATGCACTTATGTCAGCAGCACAAGCAGCAGGAAAAATACCTATACTT
MSAAQAAGKIPILVVYNAPGRD



GTAGTATATAATGCACCTGGAAGAGATTGCGGAAATCATTCATCAGGAGG
CGNHSSGGAPSHSAYRSWIDEF



AGCACCTTCACATTCAGCATATAGATCATGGATAGATGAATTTGCAGCAG
AAGLKNRPAYIIVEPDLISLMSSC



GACTTAAAAATAGACCTGCATATATAATAGTAGAACCTGATCTTATATCAC
MQHVQQEVLETMAYAGKALKA



TTATGTCATCATGCATGCAACATGTACAACAAGAAGTACTTGAAACAATG
GSSQARIYFDAGHSAWHSPAQM



GCATATGCAGGAAAAGCACTTAAAGCAGGATCATCACAAGCAAGAATATA
ASWLQQADISNSAHGIATNTSN



TTTTGATGCAGGACATTCAGCATGGCATTCACCTGCACAAATGGCATCATG
YRWTADEVAYAKAVLSAIGNPS



GCTTCAACAAGCAGATATATCAAATTCAGCACATGGAATAGCAACAAATA
LRAVIDTSRNGNGPAGNEWCDP



CATCAAATTATAGATGGACAGCAGATGAAGTAGCATATGCAAAAGCAGTA
SGRAIGTPSTTNTGDPMIDAFLW



CTTTCAGCAATAGGAAATCCTTCACTTAGAGCAGTAATAGATACATCAAG
IKLPGEADGCIAGAGQFVPQAA



AAATGGAAATGGACCTGCAGGAAATGAATGGTGCGATCCTTCAGGAAGAG
YEMAIAAGGTNPNPNPNPTPTPT



CAATAGGAACACCTTCAACAACAAATACAGGAGATCCTATGATAGATGCA
PTPTPPPGSSGACTATYTIANEW



TTTCTTTGGATAAAACTTCCTGGAGAAGCAGATGGATGCATAGCAGGAGC
NDGFQATVTVTANQNITGWTVT



AGGACAATTTGTACCTCAAGCAGCATATGAAATGGCAATAGCAGCAGGAG
WTFTDGQTITNAWNADVSTSGS



GAACAAATCCTAATCCTAATCCTAATCCTACACCTACACCTACACCTACAC
SVTARNVGHNGTLSQGASTEFG



CTACACCTCCTCCTGGATCATCAGGAGCATGCACAGCAACATATACAATA
FVGSKGNSNSVPTLTCAAS (SEQ



GCAAATGAATGGAATGATGGATTTCAAGCAACAGTAACAGTAACAGCAAA
ID NO: 109)



TCAAAATATAACAGGATGGACAGTAACATGGACATTTACAGATGGACAAA



CAATAACAAATGCATGGAATGCAGATGTATCAACATCAGGATCATCAGTA



ACAGCAAGAAATGTAGGACATAATGGAACACTTTCACAAGGAGCATCAAC



AGAATTTGGATTTGTAGGATCAAAAGGAAATTCAAATTCAGTACCTACAC



TTACATGCGCAGCATCAGTAACAGGATATGGAGATAAAGATTCAAGAAAT



CAACATTCAAGATGGTATGCACATCAACTTGATCCTAGACTTCCTAATCCT



CCTAAAGGAACACTTGCAGGAGGACCTAATTCAGATTCAACAACATGGGA



TCCTGTAGCACAATCAAAACTTACAGGATGCGCACCTCAAATGTGCTATAT



AGATCATATAGAATCATGGTCAACAAATGAACTTACAATAAATTGGAATG



CACCTCTTTCATGGATAGCATCATTTATAGCAGATCAAGATGATGCAGGAG



AACCTGGAGGAGAAGAACCTGGACCTGGAGATGATGAAACACCTCCTTCA



AAACCTGGAAATCTTAAAGCATCAGATATAACAGCAACATCAGCAACACT



TACATGGGATGCATCAACAGATAATGTAGGA



GTAGTAGGATATAAAGTATCACTTGTAAGAGATGGAGATGCAGAAGAAGT



AGGAACAACAGCACAAACATCATATACACTTACAGGACTTTCAGCAGATC



AAGAATATACAGTACAAGTAGTAGCATATGATGCAGCAGGAAATCTTTCA



ACACCTGCAACAGTAACATTTACAACAGAAAAAGAAGATGAAACACCTAC



ACCTTCAGCATCATGCGCAGTAACATATCAAACAAATGATTGGCCTGGAG



GATTTACAGCATCAGTAACACTTACAAATACAGGATCAACACCTTGGGAT



TCATGGGAACTTAGATTTACATTTCCTTCAGGACAAACAGTATCACATGGA



TGGTCAGCAAATTGGCAACAATCAGGATCAGATGTAACAGCAACATCACT



TCCTTGGAATGGATCAGTACCTCCTGGAGGAGGATCAGTAAATATAGGAT



TTAATGGAACATGGGGAGGATCAAATACAAAACCTGAAAAATTTACAGTA



AATGGAGCAGTATGCTCAATAGGA (SEQ ID NO: 78)






Thermobifida

ATGTCAAAAGTAAGAGCTACTAATAGAAGGTCTTGGATGAGGAGAGGATT
AAA62211



fusca E3

AGCTGCAGCTAGCGGCTTAGCACTTGGCGCTTCTATGGTAGCATTTGCTGC
MSKVRATNRRSWMRRGLAAAS


(gene: celC)
TCCTGCTAATGCTGCTGGTTGTTCAGTGGATTACACTGTAAATTCTTGGGG
GLALGASMVAFAAPANAAGCS



TACAGGCTTTACTGCTAATGTCACAATAACTAACTTAGGAAGCGCTATTAA
VDYTVNSWGTGFTANVTITNLG



CGGTTGGACGTTGGAGTGGGACTTTCCGGGCAACCAACAGGTGACAAACT
SAINGWTLEWDFPGNQQVTNL



TGTGGAATGGAACTTACACACAAAGTGGTCAGCATGTATCAGTTTCTAAC
WNGTYTQSGQHVSVSNAPYNA



GCACCATATAATGCATCTATACCGGCTAATGGAACGGTAGAGTTTGGTTTT
SIPANGTVEFGFNGSYSGSNDIPS



AATGGTAGTTACTCAGGCTCTAACGATATTCCTAGCTCATTTAAGTTAAAC
SFKLNGVTCDGSDDPDPEPSPSP



GGAGTTACATGCGATGGTAGTGACGATCCGGATCCAGAGCCTAGTCCGTC
SPSPSPTDPDEPGGPTNPPTNPGE



ACCATCACCTAGCCCGAGTCCAACTGACCCTGATGAACCGGGCGGACCAA
KVDNPFEGAKLYVNPVWSAKA



CAAATCCGCCTACGAATCCTGGTGAAAAAGTTGACAACCCATTTGAAGGC
AAEPGGSAVANESTAVWLDRIG



GCTAAGTTGTATGTCAACCCTGTTTGGAGCGCAAAAGCAGCTGCAGAGCC
AIEGNDSPTTGSMGLRDHLEEA



AGGCGGTTCAGCTGTGGCAAACGAAAGTACTGCAGTCTGGTTGGATAGAA
VRQSGGDPLTIQVVIYNLPGRDC



TAGGAGCAATAGAGGGAAACGACTCTCCGACGACTGGTAGCATGGGATTA
AALASNGELGPDELDRYKSEYI



AGAGATCACCTTGAGGAAGCTGTAAGGCAAAGCGGTGGCGACCCTTTGAC
DPIADIMWDFADYENLRIVAIIEI



AATACAGGTAGTCATATACAATTTACCTGGTAGAGACTGCGCAGCTCTTGC
DSLPNLVTNVGGNGGTELCAY



TTCAAATGGCGAATTGGGACCGGACGAGTTAGACAGATACAAGTCAGAGT
MKQNGGYVNGVGYALRKLGEI



ATATTGACCCTATAGCTGATATTATGTGGGACTTTGCAGATTACGAAAACC
PNVYNYIDAAHHGWIGWDSNF



TTAGGATAGTTGCTATTATAGAGATTGATAGTTTACCTAATCTTGTTACAA
GPSVDIFYEAANASGSTVDYVH



ACGTGGGAGGTAACGGTGGAACTGAACTTTGCGCATATATGAAGCAGAAT
GFISNTANYSATVEPYLDVNGT



GGAGGTTATGTTAATGGCGTAGGCTATGCTTTAAGAAAATTGGGAGAAAT
VNGQLIRQSKWVDWNQYVDEL



ACCTAACGTTTATAACTACATAGACGCAGCTCATCATGGCTGGATTGGATG
SFVQDLRQALIAKGFRSDIGMLI



GGACTCAAATTTTGGCCCATCTGTAGATATATTTTATGAGGCAGCTAACGC
DTSRNGWGGPNRPTGPSSSTDL



TTCAGGTAGTACAGTGGACTACGTTCACGGCTTTATAAGTAACACGGCAA
NTYVDESRIDRRIHPGNWCNQA



ATTATTCTGCTACAGTAGAACCTTACCTTGATGTGAACGGCACTGTAAATG
GAGLGERPTVNPAPGVDAYVW



GACAGTTAATTAGGCAGTCAAAATGGGTCGATTGGAATCAATATGTGGAC
VKPPGESDGASEEIPNDEGKGFD



GAATTGAGTTTTGTTCAGGATTTAAGGCAAGCATTGATTGCAAAGGGTTTT
RMCDPTYQGNARNGNNPSGAL



AGATCAGATATTGGAATGCTTATTGATACATCTAGGAACGGTTGGGGAGG
PNAPISGHWFSAQFRELLANAYP



CCCAAATAGACCTACAGGTCCATCAAGTAGCACTGATCTTAATACATATGT
PL (SEQ ID NO: 110)



AGACGAGTCTAGAATAGATAGAAGGATACATCCGGGTAACTGGTGCAATC



AAGCAGGCGCTGGTCTTGGCGAAAGGCCAACGGTAAACCCTGCACCAGGT



GTTGATGCTTATGTGTGGGTTAAACCTCCAGGTGAATCAGATGGAGCAAG



TGAGGAAATTCCTAATGACGAGGGCAAGGGTTTTGATAGAATGTGCGATC



CAACATATCAAGGAAATGCTAGGAACGGCAATAACCCTAGCGGCGCTTTG



CCAAATGCTCCTATTAGTGGCCACTGGTTTTCAGCACAGTTTAGGGAACTT



TTAGCAAATGCATATCCACCTTTA (SEQ ID NO: 79)






Thermobifida

ATGTCAGTTACAGAACCTCCACCTAGAAGAAGGGGCAGGCATAGTAGAGC
P26221



fusca E4

AAGGAGATTTTTAACTAGCCTTGGAGCTACTGCTGCATTAACTGCTGGTAT
MSVTEPPPRRRGRHSRARRFLTS


(gene: celD)
GCTTGGAGTTCCACTTGCTACGGGAACAGCTCACGCAGAGCCGGCTTTTAA
LGATAALTAGMLGVPLATGTA



TTATGCTGAAGCTCTTCAAAAAAGTATGTTTTTTTACGAAGCACAAAGATC
HAEPAFNYAEALQKSMFFYEAQ



AGGCAAGTTACCAGAAAATAACAGAGTGTCTTGGAGAGGTGATAGCGGTC
RSGKLPENNRVSWRGDSGLNDG



TTAATGACGGCGCAGACGTTGGATTGGACCTTACGGGCGGATGGTATGAC
ADVGLDLTGGWYDAGDHVKFG



GCTGGTGACCACGTAAAATTTGGTTTTCCTATGGCATTTACAGCTACTATG
FPMAFTATMLAWGAIESPEGYIR



CTTGCTTGGGGTGCAATTGAAAGTCCAGAGGGTTACATTAGAAGTGGTCA
SGQMPYLKDNLRWVNDYFIKA



GATGCCGTATCTTAAGGATAATCTTAGATGGGTAAACGATTACTTTATAAA
HPSPNVLYVQVGDGDADHKW



AGCACACCCTAGCCCAAACGTTTTATACGTCCAGGTAGGCGACGGCGACG
WGPAEVMPMERPSFKVDPSCPG



CAGATCATAAATGGTGGGGACCGGCTGAGGTTATGCCAATGGAAAGACCG
SDVAAETAAAMAASSIVFADDD



AGCTTTAAGGTTGATCCTAGTTGTCCTGGCAGTGACGTTGCAGCTGAAACG
PAYAATLVQHAKQLYTFADTYR



GCTGCAGCTATGGCAGCTTCAAGTATTGTCTTTGCTGACGATGACCCTGCT
GVYSDCVPAGAFYNSWSGYQD



TACGCTGCAACTTTGGTGCAACATGCTAAACAGCTTTATACATTTGCAGAC
ELVWGAYWLYKATGDDSYLAK



ACTTATAGGGGAGTATACTCAGATTGCGTGCCAGCAGGAGCTTTTTATAAT
AEYEYDFLSTEQQTDLRSYRWTI



TCTTGGAGTGGATACCAAGATGAACTTGTCTGGGGAGCTTATTGGTTATAC
AWDDKSYGTYVLLAKETGKQK



AAAGCAACAGGTGATGATAGCTACTTGGCAAAGGCTGAATATGAGTACGA
YIDDANRWLDYWTVGVNGQRV



TTTTCTTTCAACTGAGCAGCAAACTGACTTAAGGAGTTATAGGTGGACAAT
PYSPGGMAVLDTWGALRYAAN



AGCTTGGGACGATAAATCTTACGGAACTTACGTACTTCTTGCAAAGGAGA
TAFVALVYAKVIDDPVRKQRYH



CAGGCAAGCAAAAATACATAGACGACGCTAATAGATGGTTAGACTATTGG
DFAVRQINYALGDNPRNSSYVV



ACGGTGGGAGTGAACGGTCAAAGGGTACCTTACTCACCTGGCGGTATGGC
GFGNNPPRNPHHRTAHGSWTDS



TGTGTTGGACACTTGGGGAGCACTTAGGTACGCTGCAAACACAGCTTTTGT
IASPAENRHVLYGALVGGPGSP



AGCATTAGTTTACGCTAAAGTTATTGACGATCCAGTTAGAAAGCAAAGGT
NDAYTDDRQDYVANEVATDYN



ATCACGACTTTGCAGTGAGGCAGATTAATTACGCTTTAGGTGATAATCCAA
AGFSSALAMLVEEYGGTPLADF



GAAACTCAAGTTACGTAGTGGGCTTTGGAAACAATCCTCCAAGGAATCCA
PPTEEPDGPEIFVEAQINTPGTTF



CATCACAGGACGGCACATGGCTCTTGGACTGACAGTATAGCATCTCCGGC
TEIKAMIRNQSGWPARMLDKGT



TGAGAATAGGCATGTGCTTTATGGCGCATTAGTTGGAGGCCCTGGCAGTCC
FRYWFTLDEGVDPADITVSSAY



AAATGACGCATATACTGATGATAGACAAGACTACGTGGCAAACGAAGTTG
NQCATPEDVHHVSGDLYYVEID



CTACGGACTACAACGCTGGATTTTCAAGTGCTCTTGCTATGTTAGTAGAAG
CTGEKIFPGGQSEHRREVQFRIA



AGTACGGCGGTACGCCACTTGCTGATTTTCCACCTACAGAGGAACCAGAT
GGPGWDPSNDWSFQGIGNELAP



GGACCGGAGATATTTGTTGAAGCTCAGATTAATACACCGGGAACGACATT
APYIVLYDDGVPVWGTAPEEGE



TACTGAAATAAAAGCAATGATAAGAAATCAAAGCGGCTGGCCTGCAAGA
EPGGGEGPGGGEEPGEDVTPPSA



ATGTTAGACAAGGGCACTTTTAGGTACTGGTTTACGTTGGACGAGGGAGT
PGSPAVRDVTSTSAVLTWSASS



AGATCCAGCAGATATTACAGTATCTAGTGCATACAATCAGTGCGCAACTC
DTGGSGVAGYDVFLRAGTGQE



CAGAAGATGTTCACCACGTTAGCGGTGACCTTTATTACGTTGAGATTGATT
QKVGSTTRTSFTLTGLEPDTTYI



GCACAGGTGAGAAGATTTTTCCAGGCGGTCAGTCTGAACATAGGAGAGAG
AAVVARDNAGNVSQRSTVSFTT



GTTCAATTTAGAATAGCTGGTGGACCTGGCTGGGATCCATCTAACGATTGG
LAENGGGPDASCTVGYSTNDW



TCATTTCAGGGTATAGGAAACGAATTAGCTCCTGCACCATACATTGTCCTT
DSGFTASIRITYHGTAPLSSWELS



TATGACGATGGCGTCCCGGTGTGGGGTACAGCACCGGAAGAGGGCGAAG
FTFPAGQQVTHGWNATWRQDG



AGCCGGGAGGTGGAGAGGGCCCAGGCGGTGGCGAGGAACCTGGTGAGGA
AAVTATPMSWNSSLAPGATVEV



CGTAACACCACCTTCTGCACCTGGTAGCCCTGCTGTGAGGGACGTAACATC
GFNGSWSGSNTPPTDFTLNGEPC



TACATCAGCAGTACTTACTTGGAGTGCAAGCTCTGATACGGGAGGCTCAG
ALA (SEQ ID NO: 111)



GAGTTGCTGGCTATGACGTATTTTTAAGAGCAGGCACAGGACAAGAACAG



AAAGTGGGCAGTACAACAAGGACTTCTTTTACTCTTACGGGTTTAGAACCG



GATACGACTTATATAGCAGCTGTTGTGGCTAGAGATAATGCTGGTAACGT



ATCTCAAAGATCAACAGTTAGTTTTACAACGTTGGCAGAGAACGGCGGAG



GCCCAGATGCATCTTGCACTGTCGGTTATTCTACTAACGATTGGGATTCAG



GATTTACGGCAAGTATAAGGATTACATACCACGGTACGGCTCCTCTTAGCA



GTTGGGAGCTTAGTTTTACTTTTCCAGCTGGCCAGCAAGTGACTCATGGCT



GGAATGCAACATGGAGACAGGACGGTGCTGCTGTCACGGCTACTCCTATG



AGTTGGAATAGCTCTTTAGCACCGGGCGCAACGGTTGAGGTGGGATTTAA



TGGTTCATGGAGTGGAAGCAATACTCCACCAACTGACTTTACTTTGAATGG



CGAGCCATGCGCACTTGCA (SEQ ID NO: 80)






Thermobifida

ATGGCAAAGAGCCCAGCTGCAAGAAAGGGAAGGCCACCTGTAGCAGTTG
Q01786 AND AAC09379



fusca E5

CTGTAACAGCAGCTCTTGCATTATTGATAGCATTACTTTCTCCAGGCGTTG
MAKSPAARKGRPPVAVAVTAA


(gene: celE)
CTCAAGCAGCTGGCCTTACGGCTACAGTAACTAAGGAGAGCTCTTGGGAT
LALLIALLSPGVAQAAGLTATVT



AATGGATATTCAGCAAGCGTGACAGTTAGAAACGACACTAGCTCAACTGT
KESSWDNGYSASVTVRNDTSST



CTCTCAGTGGGAGGTAGTGTTAACATTGCCAGGCGGTACTACAGTTGCAC
VSQWEVVLTLPGGTTVAQVWN



AAGTATGGAATGCTCAGCATACTTCTAGCGGAAATAGTCACACATTTACTG
AQHTSSGNSHTFTGVSWNSTIPP



GTGTTTCATGGAACAGCACGATTCCGCCTGGCGGCACAGCAAGTTCAGGT
GGTASSGFIASGSGEPTHCTING



TTTATAGCAAGTGGATCAGGTGAACCAACTCATTGTACAATAAACGGTGC
APCDEGSEPGGPGGPGTPSPDPG



ACCTTGCGATGAGGGCAGCGAACCGGGCGGCCCAGGTGGCCCAGGAACG
TQPGTGTPVERYGKVQVCGTQL



CCAAGCCCAGATCCGGGTACACAACCAGGAACGGGTACTCCGGTTGAGAG
CDEHGNPVQLRGMSTHGIQWFD



ATATGGTAAGGTCCAAGTTTGCGGAACGCAGTTGTGCGACGAGCACGGCA
HCLTDSSLDALAYDWKADIIRLS



ACCCGGTGCAATTGAGAGGAATGAGTACTCACGGTATACAATGGTTTGAT
MYIQEDGYETNPRGFTDRMHQL



CACTGTTTAACGGACAGTTCTTTGGATGCATTGGCTTACGATTGGAAGGCA
IDMATARGLYVIVDWHILTPGD



GATATTATAAGACTTAGTATGTACATTCAAGAGGACGGTTATGAAACTAA
PHYNLDRAKTFFAEIAQRHASK



CCCTAGAGGATTTACTGACAGGATGCACCAGTTGATTGACATGGCTACTGC
TNVLYEIANEPNGVSWASLKSYA



AAGGGGCTTATACGTGATAGTTGACTGGCATATATTGACGCCAGGCGACC
EEVIPVIRQRDPDSVIIVGTRGWS



CTCACTACAACCTTGATAGGGCTAAAACATTTTTTGCAGAAATAGCTCAGA
SLGVSEGSGPAEIAANPVNASNI



GACACGCAAGTAAGACTAATGTCTTGTACGAGATTGCTAACGAACCAAAT
MYAFHFYAASHRDNYLNALRE



GGAGTGTCTTGGGCAAGCATTAAGTCTTACGCTGAGGAAGTTATACCTGTA
ASELFPVFVTEFGTETYTGDGAN



ATAAGACAGAGGGACCCAGACTCTGTCATTATAGTCGGAACAAGGGGTTG
DFQMADRYIDLMAERKIGWTK



GTCAAGTCTTGGAGTGAGCGAAGGCAGCGGACCGGCAGAGATTGCTGCAA
WNYSDDFRSGAVFQPGTCASGG



ATCCTGTTAACGCTTCAAATATTATGTATGCATTTCACTTTTACGCTGCTTC
PWSGSSLKASGQWVRSKLQS



TCACAGAGATAATTATTTAAACGCATTGAGGGAAGCTAGCGAACTTTTTCC
(SEQID NO: 112)



GGTTTTTGTGACTGAGTTTGGAACAGAAACATACACTGGCGACGGAGCAA



ACGATTTTCAGATGGCTGACAGATATATTGACTTAATGGCAGAAAGAAAA



ATTGGTTGGACAAAGTGGAATTATTCTGATGATTTTAGGTCAGGAGCTGTT



TTTCAGCCAGGCACTTGCGCAAGTGGTGGACCTTGGAGCGGCTCTAGCTTG



AAGGCTTCAGGCCAATGGGTAAGGAGCAAGTTGCAGTCT (SEQ ID NO: 81)






Thermobifida

ATGACACCTTTAACTAGAAGGCTTAGGGCAGGAGCTGCAGCTATAGCAAT
AAP56348 AND AY298814.1



fusca

TGGTGCTTCAGCATTGATACCACTTACATCTAGCCCGGCTGCTGCTTCAGG
MTPLTRRLRAGAAAIAIGASALI


Endoglucanase
CACTGCAGATTGGCTTCATACAGACGGAAATAGAATTGTAGATTCAGCTG
PLTSSPAAASGTADWLHTDGNR


(gene:
GTAACGAAGTTTGGTTGACTGGCGCAAATTGGTTTGGATTTAATACATCTG
IVDSAGNEVWLTGANWFGFNTS


cel5B)
AGAGAATGTTTCACGGTTTATGGGCAGCTAATATAGAGGACATAACAAGT
ERMFHGLWAANIEDITSAMAER



GCTATGGCAGAGAGGGGCATAAATATGGTGAGAGTACCGATTAGTACGCA
GINMVRVPISTQLLLEWKNGQA



ACTTTTGTTAGAATGGAAGAATGGTCAGGCTGGTCCTTCAGGCGTTAACGA
GPSGVNEYVNPELAGMNTLEVF



ATATGTCAACCCTGAGCTTGCAGGAATGAATACACTTGAGGTTTTTGATTA
DYWLQLCEEYGLKVMLDVHSA



CTGGTTACAATTATGCGAAGAGTATGGTTTGAAGGTTATGTTAGATGTACA
EADNSGHYYPVWYKGDITTEDF



TTCTGCAGAAGCTGATAACTCTGGCCACTACTATCCTGTGTGGTATAAAGG
YTAWEWVTERYKNNDTIVAADI



TGATATAACTACAGAAGATTTTTATACTGCATGGGAGTGGGTTACAGAAA
KNEPHGKANETPRAKWDGSTDI



GATATAAGAATAATGATACAATAGTAGCAGCTGATATTAAAAACGAACCG
DNFKHVCETAGKRILAINPNMLI



CATGGAAAGGCTAATGAGACTCCTAGGGCAAAGTGGGATGGCAGTACAG
LCEGIEIYPKDGQDWSSTDGRD



ATATAGACAATTTTAAACACGTTTGTGAGACTGCTGGTAAAAGGATTCTTG
YYSTWWGGNLRGVADHPVDLG



CAATAAACCCAAACATGTTGATTTTGTGTGAAGGTATAGAGATATACCCTA
AHQDQLVYSPHDYGPSVFEQPW



AGGACGGCCAGGATTGGTCATCTACAGACGGAAGGGATTACTACTCAACT
FEGEWNRQTLTEDVWRPNWLYI



TGGTGGGGTGGAAATCTTAGAGGCGTTGCAGACCACCCAGTAGACTTAGG
HEDDIAPLLIGEWGGFLDGGDN



AGCACACCAAGATCAGTTGGTATACTCACCTCATGATTATGGCCCATCTGT
EKWMTALRSLIIDEKMHHTFWA



TTTTGAACAACCGTGGTTTGAAGGCGAGTGGAACAGACAGACTCTTACAG
LNPNSGDTGGLLNYDWTTWDE



AGGACGTGTGGAGGCCAAATTGGTTATATATTCACGAAGATGATATAGCT
AKYAFLKPALWQDANGKFVGL



CCACTTCTTATTGGTGAGTGGGGAGGCTTTTTAGACGGCGGTGACAACGA
DHDVPLGGVGSTTGVSLNQYYG



GAAGTGGATGACTGCATTGAGATCTCTTATAATTGATGAGAAGATGCATC
GGGPSQPPTEPTEPPTEPTEPPTE



ACACATTTTGGGCTTTAAATCCGAACTCAGGAGATACTGGTGGATTGCTTA
PTEPPANPTGALEVYYRNNSLA



ATTATGATTGGACAACATGGGATGAAGCAAAATACGCTTTTTTAAAGCCT
ADDSQIAPGLRLVNTGSSTVDA



GCATTGTGGCAAGATGCTAACGGAAAATTTGTGGGATTGGATCACGACGT
DVEIHYYFTNEPGGTLQFTCDW



CCCTTTGGGAGGCGTGGGATCAACTACAGGTGTTAGTCTTAATCAGTATTA
AQVGCANVNASFTSLSAPGADT



CGGTGGAGGTGGACCTTCACAGCCTCCAACTGAACCGACTGAACCGCCTA
SLVLTLSGSLAPGASTELQGRIH



CTGAACCAACGGAACCTCCGACAGAACCGACGGAGCCTCCAGCAAATCCT
TANWANFDESDDYSRGTNTDW



ACAGGCGCTTTAGAAGTATACTATAGGAATAACTCTTTAGCAGCTGATGA
ELSEVITAYLGGTLVWGTPPA



CTCACAAATTGCACCGGGCTTAAGATTGGTTAATACTGGATCATCTACGGT
(SEQ ID NO: 113)



AGACCTTGCTGATGTGGAAATTCATTATTATTTTACAAATGAACCTGGCGG



TACTTTACAGTTTACATGCGATTGGGCTCAAGTTGGCTGCGCTAATGTAAA



TGCATCTTTTACATCACTTAGCGCACCAGGCGCTGATACATCACTTGTGCT



TACATTGTCTGGCAGTCTTGCTCCTGGTGCAAGCACAGAGCTTCAAGGCAG



AATACACACAGCAAATTGGGCAAATTTTGACGAGTCAGATGACTATAGTA



GGGGAACGAATACTGACTGGGAATTGAGCGAAGTTATAACTGCATATCTT



GGAGGCACATTAGTATGGGGTACACCGCCTGCT (SEQ ID NO: 82)






Thermobifida

ATGAGATCACTTCTTTCACCTAGAAGATGGAGAACACTTGCATCAGGAGC
AAD39947



fusca Beta-

ACTTGCAGCAGCACTTGCAGCAGCAGTACTTTCACCTGGAGTAGCACATG
MRSLLSPRRWRTLASGALAAAL


1,4-
CAGCAGTAGCATGCTCAGTAGATTATGATGATTCAAATGATTGGGGATCA
AAAVLSPGVAHAAVACSVDYD


exocellulase
GGATTTGTAGCAGAAGTAAAAGTAACAAATGAAGGATCAGATCCTATACA
DSNDWGSGFVAEVKVTNEGSDP


E6(gene:
AAATTGGCAAGTAGGATGGACATTTCCTGGAAATCAACAAATAACAAATG
IQNWQVGWTFPGNQQITNGWN


celF)
GATGGAATGGAGTATTTTCACAATCAGGAGCAAATGTAACAGTAAGATAT
GVFSQSGANVTVRYPDWNPNIA



CCTGATTGGAATCCTAATATAGCACCTGGAGCAACAATATCATTTGGATTT
PGATISFGFQGTYSGSNDAPTSF



CAAGGAACATATTCAGGATCAAATGATGCACCTACATCATTTACAGTAAA
TVNGVTCSGSQPANLPPDVTLTS



TGGAGTAACATGCTCAGGATCACAACCTGCAAATCTTCCTCCTGATGTAAC
PANNSTFLVNDPIELTAVASDPD



ACTTACATCACCTGCAAATAATTCAACATTTCTTGTAAATGATCCTATAGA
GSIDRVEFAADNTVIGIDTTSPYS



ACTTACAGCAGTAGCATCAGATCCTGATGGATCAATAGATAGAGTAGAAT
FTWTDAAAGSYSVTAIAYDDQG



TTGCAGCAGATAATACAGTAATAGGAATAGATACAACATCACCTTATTCA
ARTVSAPIAIRVLDRAAVIASPPT



TTTACATGGACAGATGCAGCAGCAGGATCATATTCAGTAACAGCAATAGC
VRVPQGGTADFEVRLSNQPSGN



ATATGATGATCAAGGAGCAAGAACAGTATCAGCACCTATAGCAATAAGAG
VTVTVARTSGSSDLTVSSGSQLQ



TACTTGATAGAGCAGCAGTAATAGCATCACCTCCTACAGTAAGAGTACCT
FTSSNWNQPQKVTIASADNGGN



CAAGGAGGAACAGCAGATTTTGAAGTAAGACTTTCAAATCAACCTTCAGG
LAEAVFTVSAPGHDSAEVTVREI



AAATGTAACAGTAACAGTAGCAAGAACATCAGGATCATCAGATCTTACAG
DPNTSSYDQAFLEQYEKIKDPAS



TATCATCAGGATCACAACTTCAATTTACATCATCAAATTGGAATCAACCTC
GYFREFNGLLVPYHSVETMIVE



AAAAAGTAACAATAGCATCAGCAGATAATGGAGGAAATCTTGCAGAAGC
APDHGHQTTSEAFSYYLWLEAY



AGTATTTACAGTATCAGCACCTGGACATGATTCAGCAGAAGTAACAGTAA
YGRVTGDWKPLHDAWESMETF



GAGAAATAGATCCTAATACATCATCATATGATCAAGCATTTCTTGAACAAT
IIPGTKDQPTNSAYNPNSPATYIP



ATGAAAAAATAAAAGATCCTGCATCAGGATATTTTAGAGAATTTAATGGA
EQPNADGYPSPLMNNVPVGQDP



CTTCTTGTACCTTATCATTCAGTAGAAACAATGATAGTAGAAGCACCTGAT
LAQELSSTYGTNEIYGMHWLLD



CATGGACATCAAACAACATCAGAAGCATTTTCATATTATCTTTGGCTTGAA
VDNVYGFGFCGDGTDDAPAYIN



GCATATTATGGAAGAGTAACAGGAGATTGGAAACCTCTTCATGATGCATG
TYQRGARESVWETIPHPSCDDFT



GGAATCAATGGAAACATTTATAATACCTGGAACAAAAGATCAACCTACAA
HGGPNGYLDLFTDDQNYAKQW



ATTCAGCATATAAT
RYTNAPDADARAVQVMFWAHE



CCTAATTCACCTGCAACATATATACCTGAACAACCTAATGCAGATGGATAT
WAKEQGKENEIAGLMDKASKM



CCTTCACCTCTTATGAATAATGTACCTGTAGGACAAGATCCTCTTGCACAA
GDYLRYAMFDKYFKKIGNCVG



GAACTTTCATCAACATATGGAACAAATGAAATATATGGAATGCATTGGCT
ATSCPGGQGKDSAHYLLSWYYS



TCTTGATGTAGATAATGTATATGGATTTGGATTTTGCGGAGATGGAACAGA
WGGSLDTSSAWAWRIGSSSSHQ



TGATGCACCTGCATATATAAATACATATCAAAGAGGAGCAAGAGAATCAG
GYQNVLAAYALSQVPELQPDSP



TATGGGAAACAATACCTCATCCTTCATGCGATGATTTTACACATGGAGGAC
TGVQDWATSFDRQLEFLQWLQS



CTAATGGATATCTTGATCTTTTTACAGATGATCAAAATTATGCAAAACAAT
AEGGIAGGATNSWKGSYDTPPT



GGAGATATACAAATGCACCTGATGCAGATGCAAGAGCAGTACAAGTAATG
GLSQFYGMYYDWQPVWNDPPS



TTTTGGGCACATGAATGGGCAAAAGAACAAGGAAAAGAAAATGAAATAG
NNWFGFQVWNMERVAQLYYV



CAGGACTTATGGATAAAGCATCAAAAATGGGAGATTATCTTAGATATGCA
TGDARAEAILDKWVPWAIQHTD



ATGTTTGATAAATATTTTAAAAAAATAGGAAATTGCGTAGGAGCAACATC
VDADNGGQNFQVPSDLEWSGQ



ATGCCCTGGAGGACAAGGAAAAGATTCAGCACATTATCTTCTTTCATGGTA
PDTWTGTYTGNPNLHVQVVSYS



TTATTCATGGGGAGGATCACTTGATACATCATCAGCATGGGCATGGAGAA
QDVGVTAALAKTLMYYAKRSG



TAGGATCATCATCATCACATCAAGGATATCAAAATGTACTTGCAGCATATG
DTTALATAEGLLDALLAHRDSI



CACTTTCACAAGTACCTGAACTTCAACCTGATTCACCTACAGGAGTACAAG
GIATPEQPSWDRLDDPWDGSEG



ATTGGGCAACATCATTTGATAGACAACTTGAATTTCTTCAATGGCTTCAAT
LYVPPGWSGTMPNGDRIEPGAT



CAGCAGAAGGAGGAATAGCAGGAGGAGCAACAAATTCATGGAAAGGATC
FLSIRSFYKNDPLWPQVEAHLND



ATATGATACACCTCCTACAGGACTTTCACAATTTTATGGAATG
PQNVPAPIVERHRFWAQVEIATA



TATTATGATTGGCAACCTGTATGGAATGATCCTCCTTCAAATAATTGGTTT
FAAHDELFGAGAP (SEQ ID



GGATTTCAAGTATGGAATATGGAAAGAGTAGCACAACTTTATTATGTAAC
NO: 114)



AGGAGATGCAAGAGCAGAAGCAATACTTGATAAATGGGTACCTTGGGCAA



TACAACATACAGATGTAGATGCAGATAATGGAGGACAAAATTTTCAAGTA



CCTTCAGATCTTGAATGGTCAGGACAACCTGATACATGGACAGGAACATA



TACAGGAAATCCTAATCTTCATGTACAAGTAGTATCATATTCACAAGATGT



AGGAGTAACAGCAGCACTTGCAAAAACACTTATGTATTATGCAAAAAGAT



CAGGAGATACAACAGCACTTGCAACAGCAGAAGGACTTCTTGATGCACTT



CTTGCACATAGAGATTCAATAGGAATAGCAACACCTGAACAACCTTCATG



GGATAGACTTGATGATCCTTGGGATGGATCAGAAGGACTTTATGTACCTCC



TGGATGGTCAGGAACAATGCCTAATGGAGATAGAATAGAACCTGGAGCAA



CATTTCTTTCAATAAGATCATTTTATAAAAATGATCCTCTTTGGCCTCAAGT



AGAAGCACATCTTAATGATCCTCAAAATGTACCTGCACCTATAGTAGAAA



GACATAGATTTTGGGCACAAGTAGAAATAGCAACAGCATTTGCAGCACAT



GATGAACTTTTTGGA



GCAGGAGCACCT (SEQ ID NO: 83)






Thermobifida

ATGGGAGCACTTCCTTGGTGGGCATCAGCAGTAAGATCATCATCACAATTT
AAZ55662 AND CP000088



fusca

GAATCACCTTATGGAAGAACATCAGTACTTAGAAGACCTAGATCAAGATC
MGALPWWASAVRSSSQFESPYG


Cellulose
ACCTCTTGTAGCACTTACAGCAGCAACATGCGCAGTAGCACTTGGAGGAA
RTSVLRRPRSRSPLVALTAATCA


1,4-beta-
CAGCAGTACCTGCACAAGCAGATGAAGTAAATCAAATAAGAAATGGAGA
VALGGTAVPAQADEVNQIRNGD


cellobiosidase/
TTTTTCATCAGGAACAGCACCTTGGTGGGGAACAGAAAATATACAACTTA
FSSGTAPWWGTENIQLNVTDGM


endoglucanase.
ATGTAACAGATGGAATGCTTTGCGTAGATGTACCTGGAGGAACAGTAAAT
LCVDVPGGTVNPWDVIIGQDDIP


Glycosyl
CCTTGGGATGTAATAATAGGACAAGATGATATACCTCTTATAGAAGGAGA
LIEGESYAFSFTASSTVPVSIRAL


Hydrolase
ATCATATGCATTTTCATTTACAGCATCATCAACAGTACCTGTATCAATAAG
VQEPVEPWTTQMDERALLGPEA


family 9
AGCACTTGTACAAGAACCTGTAGAACCTTGGACAACACAAATGGATGAAA
ETYEFVFTSNVDWDDAQVAFQI


(locus_tag =
GAGCACTTCTTGGACCTGAAGCAGAAACATATGAATTTGTATTTACATCAA
GGSDEPWTFCLDDVALLGGAEP


Tfu_1627)
ATGTAGATTGGGATGATGCACAAGTAGCATTTCAAATAGGAGGATCAGAT
PVYEPDTGPRVRVNQVGYLPHG



GAACCTTGGACATTTTGCCTTGATGATGTAGCACTTCTTGGAGGAGCAGAA
PKKATVVTDATSALTWELADA



CCTCCTGTATATGAACCTGATACAGGACCTAGAGTAAGAGTAAATCAAGT
DGNVVASGQTKPHGADSSSGLN



AGGATATCTTCCTCATGGACCTAAAAAAGCAACAGTAGTAACAGATGCAA
VHTVDFSSYTTKGSDYTLTVDG



CATCAGCACTTACATGGGAACTTGCAGATGCAGATGGAAATGTAGTAGCA
ETSYPFDIDESVYEELRVDALSF



TCAGGACAAACAAAACCTCATGGAGCAGATTCATCATCAGGACTTAATGT
YYPQRSGIEILDSIAPGYGRPAG



ACATACAGTAGATTTTTCATCATATACAACAAAAGGATCAGATTATACACT
HIGVPPNQGDTDVPCAPGTCDY



TACAGTAGATGGAGAAACATCATATCCTTTTGATATAGATGAATCAGTATA
SLDVSGGWYDAGDHGKYVVNG



TGAAGAACTTAGAGTAGATGCACTTTCATTTTATTATCCTCAAAGATCAGG
GISVHQIMSIYERSQLADTAQPD



AATAGAAATACTTGATTCAATAGCACCTGGATATGGAAGACCTGCAGGAC
KLADSTLRLPETGNGVPDVLDE



ATATAGGAGTACCTCCTAATCAAGGAGATACAGATGTACCTTGCGCACCT
ARWEMEFLLKMQVPEGEPLAG



GGAACATGCGATTATTCACTTGATGTATCAGGAGGATGGTATGATGCAGG
MAHHKIHDEQWTGLPLLPSADP



AGATCATGGAAAATATGTAGTAAATGGAGGAATATCAGTACATCAAATAA
QPRYLQPPSTAATLNLAATAAQ



TGTCAATATATGAAAGATCACAACTTGCAGATACAGCACAACCTGATAAA
CARVFEPFDEDFAAECLAAAET



CTTGCAGATTCAACACTTAGACTTCCTGAAACAGGAAATGGAGTACCTGA
AWDAAKANPNIYAPAFGEGGGP



TGTACTTGATGAAGCAAGATGGGAAATGGAATTTCTTCTTAAAATGCAAG
YNDNNVTDEFYWAAAELFLTT



TACCTGAAGGAGAACCTCTTGCAGGAATGGCACATCATAAAATACATGAT
GKEEYRDAVTSSPLHTDDEEVF



GAACAATGGACAGGACTTCCTCTTCTTCCTTCAGCAGATCCTCAACCTAGA
RDGAFDWGWTAALARLQLATIP



TATCTTCAACCTCCTTCAACAGCAGCAACACTTAATCTTGCAGCAACAGCA
NDLADRDRVRQSVVDAADMYL



GCACAATGCGCAAGAGTATTTGAACCTTTTGATGAAGATTTTGCAGCAGA
ANVETSPWGLAYKPNNGVFVW



ATGCCTTGCAGCAGCAGAAACAGCATGGGATGCAGCAAAAGCAAATCCTA
GSNSAVLNNMVILAVAFDLTGD



ATATATATGCACCTGCATTTGGAGAAGGAGGAGGACCTTATAATGATAAT
TKYRDGVLEGMDYIFGRNALNQ



AATGTAACAGATGAATTTTATTGGGCAGCAGCAGAACTTTTTCTTACAACA
SYVTGYGDKDSRNQHSRWYAH



GGAAAAGAAGAATATAGAGATGCAGTAACATCATCACCTCTTCATACAGA
QLDPRLPNPPKGTLAGGPNSDST



TGATGAAGAAGTATTTAGAGATGGAGCATTTGATTGGGGATGGACAGCAG
TWDPVAQSKLTGCAPQMCYIDH



CACTTGCAAGACTTCAACTTGCAACAATACCTAATGATCTTGCAGATAGAG
IESWSTNELTINWNAPLSWIASFI



ATAGAGTAAGACAATCAGTAGTAGATGCAGCAGATATGTATCTTGCAAAT
ADQDDAGEPGGEEPGPGDDETP



GTAGAAACATCACCTTGGGGACTTGCATATAAACCTAATAATGGAGTATTT
PSKPGNLKASDITATSATLTWDA



GTATGGGGATCAAATTCAGCAGTACTTAATAATATGGTAATACTTGCAGTA
STDNVGVVGYKVSLVRDGDAE



GCATTTGATCTTACAGGAGATACAAAATATAGAGATGGAGTACTTGAAGG
EVGTTAQTSYTLTGLSADQEYT



AATGGATTATATATTTGGAAGAAATGCACTTAATCAATCATATGTAACAG
VQVVAYDAAGNLSTPATVTFTT



GATATGGAGATAAAGATTCAAGAAATCAACATTCAAGATGGTATGCACAT
EKEDETPTPSASCAVTYQTNDW



CAACTTGATCCTAGACTTCCTAATCCTCCTAAAGGAACACTTGCAGGAGGA
PGGFTASVTLTNTGSTPWDSWE



CCTAATTCAGATTCAACAACATGGGATCCTGTAGCACAATCAAAACTTAC
LRFTFPSGQTVSHGWSANWQQS



AGGATGCGCACCTCAAATGTGCTATATAGATCATATAGAATCATGGTCAA
GSDVTATSLPWNGSVPPGGSVNI



CAAATGAACTTACAATA
GFNGTWGGSNTKPEKFTVNGA



AATTGGAATGCACCTCTTTCATGGATAGCATCATTTATAGCAGATCAAGAT
VCSIG (SEQ ID NO: 115)



GATGCAGGAGAACCTGGAGGAGAAGAACCTGGACCTGGAGATGATGAAA



CACCTCCTTCAAAACCTGGAAATCTTAAAGCATCAGATATAACAGCAACA



TCAGCAACACTTACATGGGATGCATCAACAGATAATGTAGGAGTAGTAGG



ATATAAAGTATCACTTGTAAGAGATGGAGATGCAGAAGAAGTAGGAACA



ACAGCACAAACATCATATACACTTACAGGACTTTCAGCAGATCAAGAATA



TACAGTACAAGTAGTAGCATATGATGCAGCAGGAAATCTTTCAACACCTG



CAACAGTAACATTTACAACAGAAAAAGAAGATGAAACACCTACACCTTCA



GCATCATGCGCAGTAACATATCAAACAAATGATTGGCCTGGAGGATTTAC



AGCATCAGTAACACTTACAAATACAGGATCAACACCTTGGGATTCATGGG



AACTTAGATTTACATTTCCTTCAGGACAACAGTATCACATGGATGGTCAGC



AAATTGGCAACAATCAGGATCAGATGTAACAGCAACATCACTTCCTTGGA



ATGGATCAGTACCTCCTGGAGGATCAGTAAATATAGGATTTAATGGAACA



TGGGGAGGATCAAATACAAAACCTGAAAAATTTACAGTAAATGGAGCAGT



ATGCTCAATAGGA (SEQ ID NO: 84)






Caldicellulos

AAAACAGCAAGGCTTTTGGTGTGTTTTGTTTTGGTGTGCTTTATACTTACTA
KTARLLVCFVLVCFILTTTILLDN



iruptor

CAACGATTTTGCTTGATAATAACAAGGGAGAGGCAGCAATGTACAACTAT
NKGEAAMYNYGEALQKAIMFY



kristjanssonii

GGTGAGGCTTTGCAAAAGGCTATTATGTTTTACGAGTTTCAGATGTCAGGC
EFQMSGKLPKWIRNNWRGDSG


Predicted
AAGTTGCCGAAATGGATAAGGAATAACTGGAGGGGAGACTCAGGCCTTAA
LNDGKDNKIDLTGGWYDAGDH


based on
CGACGGCAAAGACAATAAGATAGACCTTACTGGAGGTTGGTATGACGCTG
VKFNLPMSYTATMLAWAVYEY


amino acid
GCGATCATGTCAAGTTTAACTTGCCAATGAGCTATACTGCAACAATGTTAG
KDAFVKSGQLQHILNQIEWVND


sequence -
CATGGGCTGTCTACGAATATAAGGACGCTTTTGTGAAAAGCGGACAATTA
YFVKCHPEKYVYYYQVGDGGK


Contig 00135
CAGCACATTCTTAACCAAATAGAGTGGGTAAACGACTATTTTGTGAAGTG
DHAWWGPAEVMPMERPSYKVT


or2202
CCACCCTGAAAAATACGTGTACTATTACCAAGTGGGTGATGGCGGTAAAG
KTNPGSTVVAETAAALAAGSIVI



ATCACGCATGGTGGGGACCGGCTGAGGTTATGCCTATGGAAAGGCCTTCA
KQRNSKKARIYLKHAKELYDFA



TATAAAGTGACGAAAACTAATCCTGGCTCAACTGTAGTTGCAGAAACGGC
AETKSDAGYTAANGYYNSWSG



TGCAGCTTTAGCTGCTGGTAGTATAGTTATTAAGCAAAGAAATAGTAAGA
FWDELSWAAVWLYLATGDKYY



AAGCTAGGATTTATCTTAAGCACGCAAAGGAGTTGTATGACTTTGCAGCA
LSEAKKYVSNWPKIAGSNTIDY



GAGACAAAGTCTGACGCTGGTTATACTGCAGCTAATGGCTATTACAATAG
RWAHCWDDVHYGAALLLAKIT



CTGGTCAGGATTTTGGGACGAATTAAGTTGGGCAGCAGTATGGTTGTACTT
DENTYKQIVEKHLDYWTIGYQG



GGCAACGGGTGATAAATACTATTTAAGCGAGGCTAAGAAATATGTGAGCA
QRIKYTPKGLAWLDQWGSLRY



ATTGGCCAAAAATTGCTGGTTCAAATACGATTGACTATAGGTGGGCTCATT
ATTTAFLAFVYSDWKGCPSSKK



GCTGGGATGACGTACACTATGGAGCAGCATTGCTTTTAGCAAAAATAACA
KVYRKFGEGQVNYALGSSGRSF



GATGAGAACACGTATAAACAGATTGTCGAAAAGCACCTTGATTATTGGAC
VVGFGKNPPKRPHHRTAHGSW



TATTGGTTACCAGGGACAAAGGATAAAATACACACCAAAGGGCCTTGCTT
ANSQSEPPYHRHILYGALVGGP



GGTTAGATCAGTGGGGTAGTTTGAGATACGCAACTACGACAGCTTTTTTAG
GLDDSYSDDVGNYVNNEVACD



CTTTTGTGTATTCAGACTGGAAAGGATGTCCTAGTTCAAAGAAGAAAGTGT
YNAGFVGALAKMYLLYGGKPIP



ACAGAAAATTTGGAGAAGGTCAAGTGAACTACGCTTTGGGCAGCTCAGGT
NFKAIEKPSNDEFFVEAGINASG



AGGAGTTTTGTTGTGGGATTTGGAAAAAACCCTCCAAAAAGACCTCATCA
SNFVEIKAIVYNQSGWPARVTN



TAGAACTGCTCATGGCAGTTGGGCAAATTCTCAATCAGAACCACCTTATCA
NLKFRYYINLSEIVSQGYKPSQIS



CAGGCATATTTTGTATGGTGCTTTGGTGGGCGGTCCAGGTTTAGATGATAG
LNTNYNQGAKVSGPYVVDSKK



CTATTCAGACGATGTTGGAAACTACGTAAATAACGAAGTTGCTTGCGATTA
HLYYILIDFSGTPIYPGGQDKYK



CAATGCTGGCTTTGTCGGAGCTTTAGCTAAAATGTACTTGTTATACGGTGG
KEVQFRIAAPQNARWDNSNDYS



AAAACCTATACCAAACTTTAAGGCAATAGAAAAGCCATCAAATGACGAGT
FKGLDKTGGGQVIKTKYIPLYD



TTTTTGTTGAAGCAGGCATTAATGCAAGCGGTTCAAATTTTGTTGAGATTA
GKKLVWGIEPNTKNLTLRTSQIP



AGGCTATTGTATATAACCAAAGTGGATGGCCAGCAAGAGTTACGAACAAT
ANGDADKKSKTILSKNTSSAKTS



CTTAAGTTTAGGTACTACATAAACCTTTCTGAGATTGTATCACAAGGTTAT
SKQNKEVKNVVKVLYKNMEIN



AAACCTTCACAAATAAGCCTTAACACAAATTACAACCAGGGAGCTAAAGT
KTSNSIRLYLKIINNSQETIDLSK



ATCAGGACCATATGTTGTAGATTCTAAGAAACATCTTTATTACATTCTTAT
VKIRYWYTADDGVMKQSAVCD



AGATTTTAGTGGTACGCCGATTTACCCTGGTGGACAGGACAAGTACAAAA
WAQIGAVNVTFRFVRLRKAVA



AAGAGGTACAGTTTAGAATTGCAGCTCCTCAGAACGCAAGATGGGATAAC
KADHYLEIGFTNNAGKIQPGKD



TCAAACGACTATAGCTTTAAAGGACTTGATAAAACAGGTGGCGGCCAAGT
SGDIQLRFNKSNWGNYDQSND



CATAAAGACGAAGTACATTCCATTGTACGACGGTAAAAAATTAGTTTGGG
WSWVQSMTSYGENKKITLYIDG



GAATAGAGCCGAATACTAAGAATTTAACGCTTAGGACAAGCCAGATACCG
KLVWGQEPTKDT (SEQ ID



GCAAATGGTGATGCAGACAAAAAGAGCAAAACGATTCTTTCTAAGAATAC
NO: 116)



GAGCTCAGCTAAGACAAGTTCTAAACAGAACAAGGAAGTAAAGAACGTG



GTGAAGGTACTTTACAAAAATATGGAAATTAACAAGACGAGTAACAGCAT



TAGGTTATACTTGAAGATAATTAATAACAGCCAGGAAACGATAGATTTGA



GCAAGGTGAAAATTAGATATTGGTACACTGCTGACGATGGAGTCATGAAA



CAGAGCGCAGTATGTGACTGGGCACAAATAGGTGCTGTCAATGTAACATT



TAGATTTGTGAGGTTAAGGAAAGCAGTGGCAAAAGCTGATCATTACTTAG



AGATTGGTTTTACAAACAACGCTGGTAAAATTCAGCCTGGAAAAGACTCA



GGCGATATTCAGCTTAGGTTTAATAAGTCAAACTGGGGCAACTACGACCA



ATCAAACGACTGGTCTTGGGTACAGTCTATGACAAGTTACGGAGAAAATA



AAAAGATAACTTTGTATATTGACGGCAAGTTGGTGTGGGGACAGGAGCCG



ACAAAAGACACA (SEQ ID NO: 85)






Caldicellulos

ATGAAAAAAATAATATTAAAGTCAGGAATACTTTTGTTAGTGGTAATTTTG
MKKIILKSGILLLVVILIVSILQILP



iruptor

ATAGTGTCTATACTTCAAATTTTACCGGTGTTTGCACAGAGCACACCATAT
VFAQSTPYEKEKYPHLLGNQAV



kristjanssonii

GAAAAGGAGAAGTACCCTCATCTTTTAGGTAACCAGGCAGTCAAAAAGCC
KKPSVAGRLQIIEKNGKKYLAD


Predicted
ATCTGTGGCAGGCAGACTTCAGATAATTGAAAAAAACGGCAAGAAATACC
QKGEIIQLRGMSTHGLQWYGDII


based on
TTGCTGACCAGAAGGGTGAGATTATTCAACTTAGGGGCATGAGTACTCAC
NKNAFEALSKDWECNVVRLAM


amino acid
GGATTACAATGGTATGGCGATATAATTAACAAAAACGCTTTTGAGGCTTTA
YVGEGGYASNPSIKQKVIEGIKL


sequence -
AGCAAGGACTGGGAATGTAACGTAGTGAGGTTAGCAATGTACGTGGGCGA
AIENDMYVIVDWHVLNPGDPNA


Contig 00163
GGGAGGTTATGCTAGTAATCCGTCTATAAAACAGAAAGTGATTGAGGGCA
EIYKGAKDFFKEIATSFPNDYHII


or2461
TAAAATTGGCTATAGAAAACGACATGTATGTGATTGTGGACTGGCATGTTT
YELCNEPNPNEPGVENSLDGWK



TAAACCCAGGAGATCCAAACGCTGAGATATATAAGGGCGCTAAGGATTTT
KVKAYAEPIIKMLRSLGNQNIIIV



TTTAAGGAGATTGCAACGAGTTTTCCAAACGATTATCACATAATTTATGAG
GSPNWSQRPDFAIQDPINDKNV



CTTTGCAACGAGCCTAACCCAAATGAGCCAGGTGTAGAAAATTCATTAGA
MYSVHFYSGTHKVDGYVFENM



CGGATGGAAGAAGGTAAAAGCATATGCTGAGCCGATTATAAAAATGTTGA
KNAFENGVPIFVSEWGTSLASG



GAAGCCTTGGCAATCAAAATATAATTATAGTTGGCAGTCCAAATTGGAGT
DGGPYLDEADKWLEYLNSNYIS



CAAAGACCTGATTTTGCTATACAGGATCCTATTAACGACAAAAACGTGAT
WVNWSLSNKNETSAAFVPYVS



GTACAGCGTTCACTTTTATTCTGGCACTCATAAGGTGGATGGTTATGTGTT
GMHDATSLDPGDDKVWDIKELS



TGAGAATATGAAGAATGCTTTTGAGAATGGCGTACCAATATTTGTCAGCG
ISGEYVRARIKGIAYKPIERNSQI



AATGGGGAACGTCTTTAGCTTCAGGTGATGGAGGCCCTTATTTAGATGAA
KEGETAPLGEKVLPSTFEDDTRQ



GCTGATAAATGGTTAGAGTACCTTAACAGCAATTATATTTCTTGGGTGAAT
GWDWDGPSGVKGPITIESINGSK



TGGAGTCTTTCAAACAAGAACGAGACTAGCGCTGCATTTGTGCCATATGTT
VLSFEVEYPEKKPQDGWATAAR



TCTGGTATGCACGATGCTACGAGCTTGGATCCTGGAGATGACAAAGTTTG
LILKEINAKREDNKYLAFDFYIK



GGATATAAAAGAACTTTCAATAAGCGGCGAGTACGTGAGAGCAAGAATA
PERVSKGMIQIFLAFSPPSLGYW



AAGGGCATTGCTTACAAGCCAATTGAGAGGAATAGTCAGATTAAAGAGGG
AQVQDSFNIDLLKLSSARKTEEG



AGAAACAGCACCTCTTGGCGAAAAAGTCCTTCCGTCAACTTTTGAGGATG
LYKFNVFFDLDKIQDGKVLSPDT



ATACAAGACAAGGTTGGGATTGGGACGGCCCGAGCGGCGTCAAGGGCCCT
LLRDIIIVIADGNSDFKGKMFIDN



ATAACTATAGAATCAATTAATGGAAGTAAAGTGCTTAGTTTTGAGGTTGA
VRFTNILFEDISFESSLYDTVSKL



ATATCCTGAGAAGAAACCGCAGGATGGCTGGGCTACAGCAGCTAGACTTA
YSKRVIKGTSAFKYLPDRSITRA



TATTAAAAGAAATAAACGCAAAAAGGGAGGACAACAAATATTTGGCATTT
EFAALCVRTLNLKIEKYDGRFSD



GACTTTTACATTAAGCCTGAGAGGGTGTCTAAAGGAATGATTCAGATATTT
VKSSAWYSDVVYTAYKNGLFG



CTTGCTTTTAGCCCACCGAGTTTAGGATACTGGGCTCAAGTTCAGGACTCA
QEKNKFFPERIMKREEVAALAIE



TTTAACATAGACTTGCTTAAGTTGAGTTCTGCAAGAAAAACTGAAGAGGG
VYKRLTGKIEVSLDDIQIADEGLI



ATTGTACAAGTTTAACGTGTTTTTTGACCTTGACAAGATTCAGGATGGTAA
NPQYRESVKLAVKLGIFELYSDG



AGTCCTTTCACCAGATACATTACTTAGGGATATTATAATTGTAATAGCTGA
TFAPGKSISRGEVATIFYNLLNL



CGGTAACAGCGACTTTAAGGGAAAAATGTTTATTGACAACGTGAGGTTTA
AGKI (SEQ ID NO: 117)



CAAATATATTGTTTGAGGATATTAGCTTTGAGAGCAGCCTTTACGACACTG



TGAGCAAGTTGTATAGCAAGAGAGTCATTAAGGGCACAAGCGCATTTAAG



TACCTTCCTGACAGATCTATTACGAGGGCAGAGTTTGCAGCTTTATGCGTA



AGAACATTGAACCTTAAGATAGAGAAGTACGACGGTAGATTTAGCGACGT



AAAGTCAAGCGCTTGGTACTCAGATGTGGTCTATACAGCATACAAGAACG



GTCTTTTTGGACAAGAAAAAAACAAGTTTTTTCCTGAGAGGATAATGAAG



AGGGAAGAGGTGGCTGCATTAGCAATTGAAGTTTATAAGAGGTTGACGGG



CAAGATAGAGGTGAGCTTAGACGATATACAAATTGCAGATGAGGGATTAA



TTAACCCTCAGTATAGGGAATCTGTGAAACTTGCAGTGAAGTTGGGAATA



TTTGAATTATATTCAGACGGTACATTTGCACCGGGCAAGAGTATAAGCAG



AGGCGAGGTCGCAACAATTTTTTACAATTTACTTAACTTGGCTGGTAAAAT



T (SEQ ID NO: 86)






Caldicellulos

ATGAAAGGATGCGTATATGGAAAACTTAAAAGATTTTCAGCACTTATACTT
MKGCVYGKLKRFSALILAILFLV



iruptor

GCAATACTTTTTCTTGTAGCAATACTTATAGGAATAGGATCAGCAAAAGTA
AILIGIGSAKVSKVSGATKKSFM



kristjanssonii

TCAAAAGTATCAGGAGCAACAAAAAAATCATTTATGGAATTTAATTTTGA
EFNFENKLATPFKASGKSMVLKI


Predicted
AAATAAACTTGCAACACCTTTTAAAGCATCAGGAAAATCAATGGTACTTA
DSTTAAEGSFSLLASGRKQIDDG


based on
AAATAGATTCAACAACAGCAGCAGAAGGATCATTTTCACTTCTTGCATCA
VLLDVTNLIDYSNEYTIALYVYH


amino acid
GGAAGAAAACAAATAGATGATGGAGTACTTCTTGATGTAACAAATCTTAT
KSSKLQRFVVSSEIETKSGKENK


sequence -
AGATTATTCAAATGAATATACAATAGCACTTTATGTATATCATAAATCATC
LLCEKVIIPNNWKKLDTSLNLTE


Contig00032
AAAACTTCAAAGATTTGTAGTATCATCAGAAATAGAAACAAAATCAGGAA
LKGIKKVWLKIYVPTSTTNFYID


geneor1015
AAGAAAATAAACTTCTTTGCGAAAAAGTAATAATACCTAATAATTGGAAA
LFTLKVSDNSHLIKFESFEDKSIA



AAACTTGATACATCACTTAATCTTACAGAACTTAAAGGAATAAAAAAAGT
GFIPQDKKCKLSVSKEKAYQGT



ATGGCTTAAAATATATGTACCTACATCAACAACAAATTTTTATATAGATCT
YSIKLQQTAKKQNTTVTLPVKG



TTTTACACTTAAAGTATCAGATAATTCACATCTTATAAAATTTGAATCATTT
TFEKGKSYSISFYVYQPILKSLNL



GAAGATAAATCAATAGCAGGATTTATACCTCAAGATAAAAAATGCAAACT
AIGVRFLENGKNTKEIVLGKVTV



TTCAGTATCAAAAGAAAAAGCATATCAAGGAACATATTCAATAAAACTTC
PRNKWTETFASYTPSLDSKVKD



AACAAACAGCAAAAAAACAAAATACAACAGTAACACTTCCTGTAAAAGG
FVIFIKPLSDVSYYYLDNFTISDD



AACATTTGAAAAAGGAAAATCATATTCAATATCATTTTATGTATATCAACC
GWYSAVPDLDLPSLSEKYKDYF



TATACTTAAATCACTTAATCTTGCAATAGGAGTAAGATTTCTTGAAAATGG
KVGVAVPYKALTNPVDVAFIKR



AAAAAATACAAAAGAAATAGTACTTGGAAAAGTAACAGTACCT
HFNSITAENEMKPEALEPYEGTF



AGAAATAAATGGACAGAAACATTTGCATCATATACACCTTCACTTGATTCA
NFSIADEYLDFCKKNNIAIRGHT



AAAGTAAAAGATTTTGTAATATTTATAAAACCTCTTTCAGATGTATCATAT
LVWHQQTPSWFFENPQTGEKLT



TATTATCTTGATAATTTTACAATATCAGATGATGGATGGTATTCAGCAGTA
NSEKDKKILLERLKKYIQTVVSR



CCTGATCTTGATCTTCCTTCACTTTCAGAAAAATATAAAGATTATTTTAAA
YKGRIYAWDVVNEAIDENQPDG



GTAGGAGTAGCAGTACCTTATAAAGCACTTACAAATCCTGTAGATGTAGC
FRRSDWFNILGPEYIEKAFIYAH



ATTTATAAAAAGACATTTTAATTCAATAACAGCAGAAAATGAAATGAAAC
QADPNALLFYNDYSTENPVKRE



CTGAAGCACTTGAACCTTATGAAGGAACATTTAATTTTTCAATAGCAGATG
YIYKLIKDLKEKGVPIHGVGLQC



AATATCTTGATTTTTGCAAAAAAAATAATATAGCAATAAGAGGACATACA
HITVSWPSVEEVERTIKLFSSIPGI



CTTGTATGGCATCAACAAACACCTTCATGGTTTTTTGAAAATCCTCAAACA
KIHVTEIDISVAKEFGEDIDEETK



GGAGAAAAACTTACAAATTCAGAA
RYLLIQQARKLKDLFEVFKKYK



AAAGATAAAAAAATACTTCTTGAAAGACTTAAAAAATATATACAAACAGT
NVVTSVSFWGLKDDYSWLKGD



AGTATCAAGATATAAAGGAAGAATATATGCATGGGATGTAGTAAATGAAG
FPLLFDKDYQPKFAFWSLIDPSV



CAATAGATGAAAATCAACCTGATGGATTTAGAAGATCAGATTGGTTTAAT
VPEE (SEQ ID NO: 118)



ATACTTGGACCTGAATATATAGAAAAAGCATTTATATATGCACATCAAGC



AGATCCTAATGCACTTCTTTTTTATAATGATTATTCAACAGAAAATCCTGT



AAAAAGAGAATATATATATAAACTTATAAAAGATCTTAAAGAAAAAGGA



GTACCTATACATGGAGTAGGACTTCAATGCCATATAACAGTATCATGGCCT



TCAGTAGAAGAAGTAGAAAGAACAATAAAACTTTTTTCATCAATACCTGG



AATAAAAATACATGTAACAGAAATAGATATATCAGTAGCAAAAGAATTTG



GAGAAGATATAGATGAAGAAACAAAAAGATATCTTCTTATACAACAAGCA



AGAAAACTTAAAGATCTTTTTGAAGTATTTAAAAAATATAAAAATGTAGT



AACATCAGTATCATTTTGGGGACTTAAAGATGATTATTCATGGCTTAAAGG



AGATTTTCCTCTTCTTTTTGATAAAGATTATCAACCTAAATTTGCATTTTGG



TCACTTATAGATCCTTCAGTAGTACCTGAAGAA (SEQ ID NO: 87)






Caldicellulos

ATGAAAAGAAAACTTATATCACTTATACTTGTATTTATATTTACACTTGCA
MKRKLISLILVFIFTLALLLPAYA



iruptor

CTTCTTCTTCCTGCATATGCAGATCAAAATCTTCCTGGAACATCATCATCA
DQNLPGTSSSQTVTSSTYDTTQT



kristjanssonii

CAAACAGTAACATCATCAACATATGATACAACACAAACACAAACATATCA
QTYQTTQNTTYSQTYNTQNSTP


Predicted
AACAACACAAAATACAACATATTCACAAACATATAATACACAAAATTCAA
TPTPTPTPTPITTPTPTPTPTPTTV


based on
CACCTACACCTACACCTACACCTACACCTACACCTATAACAACACCTACAC
TSTYSSTYSSNSTINVIPPISNDNI


amino acid
CTACACCTACACCTACACCTACAACAGTAACATCAACATATTCATCAACAT
KLKEPQKLTKEQKKTIISLIWQIN


sequence -
ATTCATCAAATTCAACAATAAATGTAATACCTCCTATATCAAATGATAATA
QLRVKFNKINAEVNYLRAKINA


Contig00132
TAAAACTTAAAGAACCTCAAAAACTTACAAAAGAACAAAAAAAAACAAT
YVQAAKRYDKIFFNQEMNKIIN


geneor2152
AATATCACTTATATGGCAAATAAATCAACTTAGAGTAAAATTTAATAAAA
EVNKTISQLQKELNKKNYSSSK



TAAATGCAGAAGTAAATTATCTTAGAGCAAAAATAAATGCATATGTACAA
VAELNKQLNQKLNELKVYEEV



GCAGCAAAAAGATATGATAAAATATTTTTTAATCAAGAAATGAATAAAAT
YKNQQQQAVDQAVYQIKQFVD



AATAAATGAAGTAAATAAAACAATATCACAACTTCAAAAAGAACTTAATA
QIQPTVSQKVYQINTIDKQIKVK



AAAAAAATTATTCATCATCAAAAGTAGCAGAACTTAATAAACAACTTAAT
LYEYHQIAKTSDYNKMVSILNE



CAAAAACTTAATGAACTTAAAGTATATGAAGAAGTATATAAAAATCAACA
VVSLYQTKVNTISEIKNLYTDILS



ACAACAAGCAGTAGATCAAGCAGTATATCAAATAAAACAATTTGTAGATC
KIENIVKNSLNMPKKYIQPMQEK



AAATACAACCTACAGTATCACAAAAAGTATATCAAATAAATACAATAGAT
KITIPGKGNSKIEIEIKKNPQQPQ



AAACAAATAAAAGTAAAACTTTATGAATATCATCAAATAGCAAAAACATC
KGKKK (SEQ ID NO: 119)



AGATTATAATAAAATGGTATCAATACTTAATGAAGTAGTATCACTTTATCA



AACAAAAGTAAATACAATATCAGAAATAAAAAATCTTTATACAGATATAC



TTTCAAAAATAGAAAATATAGTAAAAAATTCACTTAATATGCCTAAAAAA



TATATACAACCTATGCAAGAAAAAAAAATAACAATACCTGGAAAAGGAA



ATTCAAAAATAGAAATAGAAATAAAAAAAAATCCTCAACAACCTCAAAA



AGGAAAAAAAAAA (SEQ ID NO: 88)






Caldicellulos

CTTTCACCTACACCTACAAAAACACCTACACCTACATCAACACCTGCACCT
LSPTPTKTPTPTSTPAPTQTPTVT



iruptor

ACACAAACACCTACAGTAACACCTACACCTACACCTAATGCAGGAGGAAT
PTPTPNAGGILIITDTIVVKAGQT



kristjanssonii

ACTTATAATAACAGATACAATAGTAGTAAAAGCAGGACAAACATATGATG
YDGKGVKIIAQGMGDGSQSENQ


Predicted
GAAAAGGAGTAAAAATAATAGCACAAGGAATGGGAGATGGATCACAATC
KPIFKLEKGAKLKNVIIGAPGCD


based on
AGAAAATCAAAAACCTATATTTAAACTTGAAAAAGGAGCAAAACTTAAAA
GIHCYGDNVIENVMWEDVGED


amino acid
ATGTAATAATAGGAGCACCTGGATGCGATGGAATACATTGCTATGGAGAT
ALTVKGEGVVEVIGGSAKEAAD


sequence -
AATGTAATAGAAAATGTAATGTGGGAAGATGTAGGAGAAGATGCACTTAC
KVFQLNAPCTFKVKNFTATNIG


Contig00041
AGTAAAAGGAGAAGGAGTAGTAGAAGTAATAGGAGGATCAGCAAAAGAA
KLVRQNGGTTFKVVIYLENVTL


geneor1107
GCAGCAGATAAAGTATTTCAACTTAATGCACCTTGCACATTTAAAGTAAA
NNVKSCVAKSDSPVSELWYHNL



AAATTTTACAGCAACAAATATAGGAAAACTTGTAAGACAAAATGGAGGAA
VVNNCKTLFEFPSQSQIHQY



CAACATTTAAAGTAGTAATATATCTTGAAAATGTAACACTTAATAATGTAA
(SEQ ID NO: 120)



AATCATGCGTAGCAAAATCAGATTCACCTGTATCAGAACTTTGGTATCATA



ATCTTGTAGTAAATAATTGCAAAACACTTTTTGAATTTCCTTCACAATCAC



AAATACATCAATAT (SEQ ID NO: 89)






Caldicellulos

GTGAGCATAGAGAAAAGAGTTAATGATCTTTTGCAGAAAATGACTATTGA
VSIEKRVNDLLQKMTIEEKVYQ



iruptor

GGAGAAGGTGTATCAGTTGACTTCTATATTAGTCCAAGATATTCTTGAAAA
LTSILVQDILENDKFSPQKAKEKI



kristjanssonii

TGACAAGTTTAGCCCGCAGAAAGCTAAGGAAAAAATACCTAACGGAATTG
PNGIGQITRLAGASNLSPEEAAK


Predicted
GTCAGATAACAAGGCTTGCTGGCGCAAGTAATTTGAGCCCAGAAGAGGCA
TANEIQKFLIENTRLGIPAMIHEE


based on
GCAAAAACTGCTAATGAAATTCAAAAGTTTCTTATAGAGAACACAAGGTT
SCSGFMAKGATVFPQSIGVACTF


amino acid
GGGAATACCAGCTATGATTCATGAGGAGTCTTGTTCAGGTTTTATGGCTAA
DNEIVEELAKVIRTQMKAVGAH


sequence -
GGGCGCAACTGTATTTCCTCAGTCTATTGGAGTTGCTTGCACATTTGACAA
QALAPLIDVARDARWGRVEETF


Contig 00091
CGAAATTGTGGAAGAACTTGCAAAAGTGATAAGGACACAGATGAAAGCT
GEDPYLVANMAVSYVKGLQGD


or1761
GTGGGTGCACACCAGGCTTTGGCACCATTAATTGACGTCGCTAGGGATGC
DIKDGIVATGKHFVGYAMSEGG



AAGATGGGGCAGAGTTGAAGAGACTTTTGGTGAGGACCCTTACTTAGTAG
MNWAPVHIPERELREVYLYPFE



CTAATATGGCAGTTTCTTATGTAAAGGGATTACAGGGCGACGATATAAAG
VAVKVAGLKSIMPAYHEIDGIPC



GACGGAATAGTGGCAACAGGTAAGCATTTTGTTGGCTACGCAATGAGTGA
HANRKLLTDIARGEWGFDGIYV



GGGCGGAATGAATTGGGCACCAGTACACATTCCTGAAAGAGAATTGAGGG
SDYSGVKNLLDYHKSVKTYEEA



AAGTTTACTTGTATCCTTTTGAGGTCGCAGTTAAGGTGGCAGGCCTTAAAA
AALSLWAGLDIELPKIECFTEEFI



GTATAATGCCTGCTTATCACGAGATTGATGGCATTCCGTGCCACGCTAATA
KALKEGKFDMALVDAAVKRVL



GAAAATTGTTAACAGATATAGCTAGGGGAGAGTGGGGTTTTGATGGAATA
EMKFRLGLFDNPYIKTEGVVELF



TATGTTTCTGATTACAGCGGTGTGAAGAATTTACTTGACTATCACAAGAGC
DNKEQRQLSRKVAQESMVLLK



GTCAAGACGTATGAAGAAGCAGCTGCTCTTAGCTTGTGGGCTGGATTAGA
NDSFLPLSKDLKKIAVIGPNANS



TATTGAGTTGCCTAAAATAGAGTGTTTTACTGAAGAGTTTATAAAGGCACT
VRNLLGDYSYPAHIATLEMFFIK



TAAAGAAGGTAAATTTGATATGGCTTTAGTGGACGCTGCAGTGAAAAGAG
EDRGVGNEEEFVKNVINMKSIFE



TATTGGAAATGAAGTTTAGACTTGGCCTTTTTGACAATCCATACATTAAGA
AIKDKVSSNTEVVYAKGCDVNS



CAGAAGGTGTTGTAGAACTTTTTGACAACAAAGAGCAAAGGCAACTTAGC
QDKSGFEEAKKAAEGADAVILV



AGAAAAGTGGCACAAGAAAGTATGGTGTTATTGAAGAACGACTCTTTTCT
VGDKAGLRLDCTSGESRDRASL



TCCGTTAAGCAAGGACCTTAAGAAAATTGCAGTGATTGGCCCGAACGCAA
RLPGVQEDLVKEIVSVNPNTVV



ACAGTGTTAGAAACTTATTGGGTGACTATTCTTACCCGGCTCATATTGCTA
VLVNGRPVALDWIMENVKAVL



CTTTGGAAATGTTTTTTATTAAAGAGGACAGGGGAGTGGGCAATGAGGAA
EAWFPGEEGADAVADILFGDYN



GAGTTTGTGAAGAATGTCATTAACATGAAGTCAATTTTTGAGGCTATTAAG
PGGKLAISFPRDVGQVPVYYGH



GATAAGGTGAGCTCTAACACTGAAGTCGTGTACGCAAAAGGTTGCGATGT
KPSGGKSCWHGDYVEMSTKPLL



AAATAGCCAAGATAAATCAGGTTTTGAAGAGGCAAAGAAAGCTGCTGAA
PFGYGLSYTTFEYKNFAIEKEKI



GGCGCAGATGCAGTTATATTAGTAGTAGGAGACAAGGCAGGATTAAGATT
GMDESIKVSVEVENTGKYEGDE



AGATTGCACGAGCGGCGAGTCTAGAGATAGAGCATCTTTGAGGCTTCCAG
IVQLYTRKEEYLVTRPVKELKG



GCGTACAAGAAGATCTTGTCAAGGAAATTGTTTCTGTGAATCCAAACACG
YKRVHLKPGEKKKVVFELYPDL



GTGGTTGTATTGGTTAATGGCAGACCAGTTGCACTTGATTGGATAATGGAA
FAFYDYDMNRVVTPGVVEVMI



AATGTGAAAGCTGTACTTGAGGCATGGTTTCCAGGTGAAGAGGGCGCAGA
GASSEDIKFTGTFEIVGEKKDAK



TGCTGTCGCAGATATTTTGTTTGGAGACTATAATCCAGGCGGCAAGTTGGC
EIKNYLSRAWCE (SEQ ID



TATTAGCTTTCCAAGAGATGTAGGTCAAGTTCCAGTATATTACGGACACAA
NO: 121)



ACCGTCAGGCGGCAAATCTTGCTGGCACGGAGATTATGTTGAAATGTCAA



CGAAGCCGTTGTTGCCTTTTGGCTACGGTTTGTCTTATACAACGTTTGAGT



ACAAGAACTTTGCTATAGAAAAAGAGAAGATTGGTATGGACGAAAGTATT



AAAGTTTCAGTAGAAGTTGAAAACACAGGAAAATACGAGGGCGACGAGA



TAGTCCAACTTTATACGAGAAAGGAAGAGTATCTTGTGACAAGGCCAGTA



AAAGAATTGAAGGGATATAAAAGAGTGCACTTAAAACCGGGCGAAAAGA



AGAAAGTTGTGTTTGAATTATATCCGGACTTATTTGCTTTTTATGACTACG



ACATGAATAGGGTGGTTACTCCTGGTGTAGTTGAAGTGATGATTGGCGCTT



CAAGTGAAGATATTAAGTTTACTGGCACGTTTGAGATAGTGGGTGAGAAA



AAGGACGCAAAAGAGATTAAGAATTACTTGAGCAGAGCTTGGTGTGAA



(SEQ ID NO: 90)






Caldicellulos

TTAAATAAACTTCCTAGATATAAGGGCTTTAATTTGTTAGGCTTGTTTGTA
LNKLPRYKGFNLLGLFVPGRILG



iruptor

CCAGGCAGGATACTTGGATTTTTTGAGGACGATTTTAAGTGGATGGGCGA
FFEDDFKWMGEWGFNFARIPM



kristjanssonii

ATGGGGTTTTAACTTTGCAAGGATTCCTATGAACTACAGGAACTGGTTTGT
NYRNWFVEGSSDIKEEILQMIDR


Predicted
TGAGGGATCATCTGACATAAAAGAGGAAATTTTGCAAATGATAGACAGAG
VIEWGEKYEIHICLNIHGAPGYC


based on
TTATAGAGTGGGGCGAAAAGTACGAGATACATATTTGTCTTAACATACAC
VNEKTKQGYNLWKDEEPLELFV


amino acid
GGCGCTCCAGGATATTGCGTAAATGAAAAGACAAAACAGGGCTACAATTT
SYWQTFAKRYKGISSKMLSFNLI


sequence -
GTGGAAAGACGAAGAACCTTTAGAGCTTTTTGTAAGCTACTGGCAAACTTT
NEPRQFSEEEMTKEDFIRVMTYT


Contig 00017
TGCTAAAAGGTATAAGGGCATAAGCAGTAAAATGCTTTCATTTAACCTTAT
TQKIREIGKERLIIVDGVDYGNEP


or0462
AAACGAGCCAAGGCAATTTTCTGAGGAAGAAATGACTAAGGAGGACTTTA
VVELANLGVAQSCRAYIPFEVS



TTAGGGTTATGACTTACACAACTCAGAAAATAAGGGAGATAGGAAAGGAG
HWGAEWVEGSRNFTKPSWPLV



AGGTTAATTATAGTGGACGGTGTGGATTATGGCAATGAGCCTGTTGTAGA
RENGEIVDKEYLKKHYEKWAK



ATTAGCAAACCTTGGCGTGGCACAATCATGTAGAGCATATATACCGTTTGA
LISLGVGVICGEGGAYKYTPHD



GGTCAGTCATTGGGGTGCAGAATGGGTTGAAGGCTCAAGAAATTTTACAA
VVIRWFSDVLDILKEFGIGIALW



AACCTAGTTGGCCATTAGTAAGAGAAAATGGAGAAATTGTGGATAAAGAG
NLRGPFGIIDSGREDVEYEDFYG



TACTTGAAGAAGCACTACGAGAAATGGGCTAAGTTGATTTCATTAGGTGT
HKLDRKLLELLQRF (SEQ ID



GGGAGTGATATGCGGAGAAGGTGGAGCATATAAATACACGCCGCACGAT
NO: 122)



GTGGTCATAAGATGGTTTAGCGATGTATTAGATATTCTTAAGGAATTTGGT



ATAGGTATTGCTTTATGGAACCTTAGGGGTCCATTTGGTATTATAGATAGC



GGTAGAGAAGATGTTGAATACGAAGATTTTTATGGACACAAATTGGACAG



AAAGTTGTTAGAATTGCTTCAAAGATTT (SEQ ID NO: 91)






Caldocellum

ATGGTTGTGACATTTCTTTTTATATTAGGCGTCGTTTACGGAGTAAAGCCG
L32742 AND AAA91086



saccharolyticum

TGGCAAGAAGCAAGAGCTGGGAGTTTTAACTATGGAGAGGCATTACAGAA
MVVTFLFILGVVYGVKPWQEAR


Biomass
AGCAATTATGTTTTATGAATTTCAAATGTCGGGTAAATTGCCAAATTGGGT
AGSFNYGEALQKAIMFYEFQMS


degrading
AAGAAATAATTGGAGAGGAGATTCTGCTCTTAAAGACGGGCAAGACAATG
GKLPNWVRNNWRGDSALKDGQ


enzyme
GTCTTGATTTGACAGGTGGATGGTTTGATGCAGGCGATCATGTTAAATTTA
DNGLDLTGGWFDAGDHVKFNL


(celA)
ATTTACCAATGAGCTATACAGGTACGATGTTATCATGGGCAGCTTACGAAT
PMSYTGTMLSWAAYEYKDAFV



ATAAGGATGCTTTTGTTAAGAGTGGTCAACTTGAACATATACTAAATCAAA
KSGQLEHILNQIEWVNDYFVKC



TCGAATGGGTAAATGACTATTTCGTTAAGTGCCATCCTTCAAAATATGTTT
HPSKYVYYYQVGDGGKDHAW



ATTACTACCAGGTAGGCGATGGCGGCAAAGACCATGCCTGGTGGGGCCCG
WGPAEVMQMERPSFKVTQSSPG



GCAGAAGTAATGCAGATGGAGAGACCTTCATTTAAGGTGACACAATCATC
SAVVAETAASLAAASIVLKDRN



ACCTGGCTCAGCAGTGGTTGCTGAAACAGCTGCTTCTTTGGCGGCCGCTTC
PTKAATYLQHAKDLYEFAEVTK



AATAGTCCTTAAAGATAGGAATCCTACTAAAGCAGCTACTTACTTGCAAC
SDSGYTAANGYYNSWSGFYDEL



ATGCAAAGGATTTATACGAATTTGCCGAAGTAACAAAATCTGATAGTGGT
SWAAVWLYLATNDSTYLTKAE



TATACTGCAGCAAATGGTTACTATAATTCATGGTCCGGTTTTTATGACGAA
SYVQNWPKISGSNIIDYKWAHC



CTTTCATGGGCCGCAGTATGGTTGTACTTGGCAACTAATGATTCTACATAT
WDDVHNGAALLLAKITDKDTY



TTAACAAAAGCCGAATCTTACGTTCAAAATTGGCCAAAAATAAGCGGTTC
KQIIESHLDYWTTGYNGERIKYT



TAATATTATAGATTACAAGTGGGCTCATTGCTGGGATGATGTGCATAATGG
PKGLAWLDQWGSLRYATTTAF



TGCTGCTCTTTTACTCGCTAAGATCACTGATAAAGATACATACAAACAAAT
LAFVYSDWSGCPTGKKETYRKF



TATTGAATCACATCTTGATTATTGGACCACTGGTTATAATGGAGAAAGGAT
GESQIDYALGSTGRSFVVGFGTN



AAAATACACACCAAAAGGACTGGCATGGTTAGATCAGTGGGGGTCTCTTA
PPKRPHHRTAHSSWADSQSIPSY



GGTATGCAACGACAACAGCGTTTCTTGCATTTGTTTATTCAGATTGGAGTG
HRHTLYGALVGGPGSDDSYTDD



GTTGCCCTACAGGCAAAAAAGAAACTTATAGAAAGTTTGGTGAATCTCAG
ISNYVNNEVACDYNAGFVGALA



ATAGATTACGCACTTGGATCTACTGGTAGATCATTTGTCGTAGGTTTTGGC
KMYLLYGGNPIPDFKAIETPTND



ACAAACCCCCCTAAAAGACCTCATCATAGGACAGCACACTCTTCTTGGGC
EFFVEAGINASGTNFIEIKAIVNN



AGATTCTCAATCAATCCCGAGTTACCATAGACATACATTATATGGGGCCTT
QSGWPARATNKLKFRYFVDLSE



AGTAGGGGGGCCAGGATCAGATGATTCATATACTGATGATATATCAAATT
LIKAGYSPNQLTLSTNYNQGAK



ATGTGAATAACGAGGTAGCTTGCGATTATAATGCAGGGTTTGTTGGAGCA
VSGPYVWDSSRNIYYILVDFTGT



TTAGCAAAGATGTATTTATTATATGGTGGGAATCCTATCCCAGATTTTAAA
LIYPGGQDKYKKEVQFRIAAPQ



GCCATAGAAACACCAACCAACGACGAATTCTTTGTAGAAGCGGGTATAAA
NVQWDNSNDYSFQDIKGVSSGS



TGCTTCTGGTACAAATTTCATTGAAATAAAAGCAATCGTTAATAATCAGTC
VVKTKYIPLYDEDIKVWGEEPG



AGGATGGCCTGCAAGGGCAACTAATAAGTTAAAATTTAGATACTTTGTAG
TSGVSPTPTASVTPTPTPTPTATP



ATTTGTCAGAACTTATTAAAGCAGGATATAGCCCAAACCAGTTAACTTTGT
TPTPTPTVTPTPTVTATPTPTPTP



CGACAAATTATAATCAAGGCGCTAAAGTAAGTGGACCTTACGTGTGGGAT
TSTPTVTPTPTPVSTPATSGQIKV



AGCTCAAGAAATATATACTACATATTAGTTGACTTTACAGGCACGTTGATA
LYANKETNSTTNTIRPWLKVVN



TACCCTGGCGGACAAGATAAGTACAAGAAAGAAGTGCAGTTTAGAATAGC
SGSSSIDLSRVTIRYWYTVDGER



TGCTCCGCAAAATGTACAATGGGACAATAGCAATGACTACTCGTTTCAAG
AQSAISDWAQIGASNVTFKFVK



ATATAAAAGGCGTATCTTCTGGTTCGGTGGTTAAGACAAAATATATTCCTC
LSSSVSGADYYLEIGFKSGAGQL



TTTATGATGAAGATATAAAGGTATGGGGAGAAGAGCCAGGAACATCTGGT
QPGKDTGEIQIRFNKDDWSNYN



GTAAGCCCTACTCCTACGGCAAGTGTAACACCTACTCCTACGCCTACGCCG
QGNDWSWIQSMTSYGENEKVT



ACTGCAACTCCAACTCCAACACCAACGCCAACAGTTACTCCAACACCAAC
AYIDGVLVWGQEPSGTTPAPTST



TGTTACAGCAACACCTACCCCGACCCCTACTCCAACAAGTACACCTACGGT
PTVTVTPTPTPTPTVTPTPTVTAT



AACACCTACACCTACTCCTGTTAGCACACCTGCTACATCTGGGCAAATTAA
PTPTPTPTSTPVSTPATGGQIKVL



AGTGTTATACGCCAACAAAGAAACTAATTCCACAACTAATACAATTAGAC
YANKETNSTTNTIRPWLKVVNS



CATGGTTGAAAGTTGTAAATTCAGGCTCTAGCAGCATCGACTTGAGCAGA
GSSSIDLSRVTIRYWYTVDGERA



GTAACAATTAGATATTGGTATACAGTTGATGGCGAAAGGGCTCAATCTGC
QSAISDWAQIGASNVTFKFVKLS



AATTAGCGACTGGGCACAAATAGGTGCTAGCAATGTCACATTTAAATTTGT
SSVSGADYYLEIGFKSGAGQLQP



GAAATTGTCATCAAGTGTATCAGGTGCTGATTACTACCTTGAGATTGGATT
GKDTGEIQIRFNKDDWSNYNQG



TAAATCTGGAGCAGGACAATTACAGCCAGGCAAGGATACTGGAGAGATAC
NDWSWIQSMTSYGENEKVTAYI



AAATCAGATTTAATAAGGATGATTGGAGCAACTATAACCAAGGAAATGAT
DGVLVWGQEPSGATPAPTVTPT



TGGAGCTGGATTCAAAGCATGACGTCTTACGGCGAAAATGAAAAAGTCAC
PTVTPTPTPAPTPTATPTPTPTPT



AGCTTATATAGACGGCGTTTTGGTATGGGGACAGGAACCGAGCGGTACTA
VTPTPTVAPTPTPSSTPSGLGKY



CACCAGCTCCTACATCAACACCTACTGTCACAGTIACCCCTACACCAACTC
GQRFMWLWNKIHDPASGYFNQ



CGACACCAACTGTGACACCAACTCCAACAGTCACTGCAACACCTACACCA
DGIPYHSVETLICEAPDYGHLTT



ACACCGACCCCAACATCAACTCCAGTTTCAACACCAGCTACAGGCGGTCA
SEAFSYYVWLEAVYGKLTGDW



AATAAAAGTTCTTTATGCAAACAAAGAAACCAATTCAACAACAAATACTA
SKFKTAWDTLEKYMIPSAEDQP



TACGGCCCTGGCTGAAAGTAGTTAACTCAGGCTCATCATCTATTGACCTTT
MRSYDPNKPATYAGEWETPDK



CTAGAGTTACAATAAGATACTGGTATACAGTAGACGGTGAAAGAGCACAA
YPSPLEFNVPVGKDPLHNELVST



TCTGCTATTTCTGATTGGGCCCAAATAGGAGCATCAAACGTTACGTTTAAA
YGSTLMYGMHWLMDVDNWYG



TTCGTCAAATTGTCATCGAGCGTGTCAGGAGCTGATTATTATCTTGAAATT
YGKRGDGVSRASFINTFQRGPEE



GGCTTTAAATCTGGCGCTGGACAGTTACAACCGGGTAAAGATACAGGAGA
SVWETVPHPSWEEFKWGGPNGF



AATTCAAATTAGGTTTAACAAGGATGATTGGTCAAACTACAATCAGGGCA
LDLFIKDQNYSKQWRYTNAPDA



ATGATTGGAGTTGGATTCAATCTATGACAAGTTACGGAGAGAATGAAAAA
DARAIQATYWAKVWAKEQGKF



GTTACGGCTTATATAGATGGCGTCCTTGTATGGGGGCAAGAGCCAAGCGG
NEISSYVGKAAKMGDYLRYAM



CGCTACTCCTGCACCAACAGTTACTCCGACTCCAACGGTAACGCCAACTCC
FDKYFKPLGCQDKNAAGGTGY



TACACCTGCACCTACACCTACAGCTACCCCAACTCCGACTCCAACACCCAC
DSAHYLLSWYYAWGGALDGA



GGTCACACCTACGCCCACGGTAGCCCCAACTCCTACACCATCGAGTACAC
WSWKIGCSHAHFGYQNPMAAW



CAAGTGGCCTGGGCAAATATGGACAAAGGTTTATGTGGCTATGGAACAAA
ALANDSDMKPKSPNGASDWAK



ATACATGACCCAGCTAGCGGCTATTTCAATCAAGATGGAATACCGTATCAT
SLKRQIEFYRWLQSAEGAIAGG



AGTGTGGAAACTTTGATTTGTGAAGCACCTGATTATGGCCATCTTACTACT
ATNSWNGRYEKYPAGTATFYG



TCTGAGGCATTTTCATACTACGTATGGTTAGAGGCGGTTTATGGAAAATTA
MAYEPNPVYRDPGSNTWFGFQ



ACAGGAGATTGGTCAAAATTTAAAACTGCCTGGGATACACTTGAAAAATA
AWSMQRVAEYYYVTGDKDAG



TATGATACCTAGTGCTGAGGATCAGCCTATGCGATCATATGACCCGAATA
TLLEKWVSWIKSVVKLNSDGTF



AACCAGCAACATATGCTGGAGAATGGGAAACACCGGATAAGTACCCTAGC
AIPSTLDWSGQPDTWNGTYTGN



CCCTTAGAATTTAATGTACCTGTTGGCAAAGATCCGTTACATAATGAATTA
PNLHVKVVDYGTDLGITASLAN



GTTAGCACATATGGATCTACGCTTATGTATGGTATGCACTGGTTAATGGAT
ALLYYSAGTKKYGVFDEEAKNL



GTTGATAACTGGTATGGCTACGGAAAACGTGGAGATGGCGTTAGCAGAGC
AKELLDRMWKLYRDEKGLSAP



ATCTTTTATAAATACATTTCAGAGGGGACCAGAAGAATCTGTTTGGGAAA
EKRADYKRFFEQEVYIPAGWTG



CAGTGCCACATCCATCATGGGAAGAGTTTAAATGGGGTGGACCAAACGGC
KMPNGDVIKSGVKFIDIRSKYKQ



TTTTTGGATTTGTTTATTAAAGATCAAAATTATTCAAAACAATGGAGATAC
DPDWPKLEAAYKSGQVPEFRYH



ACTAATGCGCCTGACGCAGATGCAAGAGCAATTCAAGCCACTTACTGGGC
RFWAQCDIAIVNATYEILFGNQ



TAAGGTTTGGGCCAAAGAACAAGGCAAGTTTAATGAAATAAGCAGTTATG
(SEQ ID NO: 123)



TTGGTAAGGCAGCTAAAATGGGCGATTACTTAAGATATGCTATGTTCGATA



AGTACTTTAAACCTCTGGGATGCCAAGATAAGAATGCAGCAGGGGGTACG



GGATATGATTCAGCTCACTATTTACTTAGTTGGTATTATGCTTGGGGAGGA



GCTTTGGACGGAGCATGGTCGTGGAAAATAGGATGCTCACATGCTCATTTT



GGATATCAAAATCCAATGGCAGCTTGGGCATTAGCAAATGACTCGGATAT



GAAACCAAAATCGCCAAATGGAGCTTCAGATTGGGCAAAATCATTAAAGA



GACAGATAGAATTTTATAGATGGTTGCAATCAGCCGAAGGCGCCATAGCA



GGCGGTGCAACGAATTCATGGAATGGTAGATATGAAAAATACCCTGCAGG



AACAGCAACATTTTATGGTATGGCCTATGAACCGAATCCCGTATATAGGG



ATCCCGGAAGTAATACGTGGTTTGGATTTCAGGCTTGGTCCATGCAGAGA



GTAGCTGAATATTATTATGTAACAGGCGATAAAGATGCAGGCACTCTTTTA



GAAAAATGGGTATCATGGATCAAATCTGTCGTAAAATTAAATAGCGATGG



GACATTTGCGATACCCTCTACATTGGATTGGTCAGGACAACCAGATACGTG



GAATGGCACGTATACAGGAAATCCAAACCTTCATGTTAAAGTCGTGGACT



ATGGAACAGATTTAGGCATAACAGCAAGCTTGGCAAATGCTTTGTTGTACT



ATTCCGCAGGGACTAAAAAATATGGTGTATTTGACGAAGAAGCTAAAAAT



CTTGCAAAAGAGTTGCTTGACAGGATGTGGAAACTCTACAGAGATGAAAA



AGGACTTTCTGCACCAGAAAAGAGAGCCGATTATAAAAGATTTTTCGAAC



AAGAAGTGTACATACCTGCAGGATGGACTGGAAAAATGCCAAATGGCGAT



GTTATTAAAAGTGGCGTTAAGTTTATAGATATAAGATCAAAATACAAGCA



GGATCCAGATTGGCCAAAACTAGAAGCAGCTTACAAATCAGGGCAAGTTC



CTGAATTTAGATATCATAGATTTTGGGCACAATGCGATATCGCAATTGTTA



ACGCAACTTACGAAATTCTTTTTGGCAATCAG (SEQ ID NO: 92)






Caldocellum

ATGAAAAGAAACCTTTTTAGAATAGTATCAAGGGTTGTGCTTATTGCTTTT
X13602 and CAA31936



saccharolyticum

ATTGCATCAATTAGCTTGGTCGGAGCAATGAGCTATTTTCCTGTGGAAACA
MKRNLFRIVSRVVLIAFIASISLV


CelB
CAAGCTGCACCAGATTGGAGCATACCGAGCTTATGTGAGAGCTATAAGGA
GAMSYFPVETQAAPDWSIPSLCE


(coded_by =
CGATTTTATGATAGGAGTTGCTATTCCGGCAAGATGCCTTTCAAATGATAC
SYKDDFMIGVAIPARCLSNDTD


“X13602.1:
AGACAAAAGAATGGTACTTAAACACTTTAACAGTATTACTGCAGAGAATG
KRMVLKHFNSITAENEMKPESL


679 . . . 3798”)
AGATGAAGCCAGAGAGCTTATTGGCTGGCCAGACAAGTACTGGATTAAGT
LAGQTSTGLSYRFSTADAFVDF



TATAGATTTAGCACGGCTGACGCATTTGTTGATTTTGCTAGTACGAATAAG
ASTNKIGIRGHTLVWHNQTPDW



ATTGGCATTAGGGGACACACTTTAGTATGGCATAATCAGACACCGGACTG
FFKDSNGQRLSKDALLARLKQY



GTTTTTTAAGGACAGCAATGGACAAAGACTTAGCAAAGACGCATTGTTAG
IYDVVGRYKGKVYAWDVVNEA



CTAGACTTAAACAATATATATACGACGTGGTTGGTAGGTACAAAGGTAAA
IDENQPDSYRRSTWYEICGPEYI



GTCTATGCATGGGATGTAGTTAACGAGGCAATTGATGAAAATCAGCCTGA
EKAFIWAHEADPNAKLFYNDYN



TTCTTATAGGAGAAGCACATGGTACGAAATTTGCGGACCAGAATACATTG
TEISKKRDFIYNMVKNLKSKGIPI



AAAAGGCATTTATTTGGGCTCACGAAGCAGATCCTAATGCAAAATTGTTTT
HGIGMQCHINVNWPSVSEIENSI



ACAATGATTATAACACGGAGATAAGCAAAAAGAGGGACTTTATATACAAC
KLFSSIPGIEIHITELDMSLYNYG



ATGGTGAAGAACCTTAAGAGCAAGGGCATTCCAATACACGGCATAGGCAT
SSENYSTPPQDLLQKQSQKYKEI



GCAGTGCCACATAAATGTCAACTGGCCGAGTGTAAGTGAAATTGAAAATA
FTMLKKYKNVVKSTFWGLKDD



GCATTAAGTTATTTTCAAGCATTCCTGGTATAGAGATACACATAACTGAGT
YWLRSFYGKNDWPLLFFEDYSA



TGGACATGTCTTTGTATAACTACGGTTCTTCAGAGAACTACAGCACTCCAC
KPAYWAVIEASGVTTSSPTPTPT



CTCAAGATCTTTTACAGAAGCAATCTCAAAAGTATAAAGAGATATTTACTA
PTVTVTPTPTPTPTPTVTATPTPT



TGTTGAAGAAATATAAAAACGTTGTCAAGAGCGTGACATTTTGGGGACTT
PTPVSTPATGGQIKVLYANKETN



AAAGATGACTATAGTTGGTTAAGATCATTTTACGGCAAGAACGACTGGCC
STTNTIRPWLKVVNSGSSSIDLSR



ATTACTTTTTTTTGAGGACTACAGCGCTAAACCAGCATACTGGGCTGTTAT
VTIRYWYTVDGERAQSAVSDW



TGAAGCAAGTGGCGTAACTACATCAAGTCCTACGCCAACACCGACTCCTA
AQIGASNVTFKFVKLSSSVSGAD



CAGTTACGGTGACACCGACACCAACTCCAACACCTACGCCGACAGTCACT
YYLEIGFKSGAGQLQPGKDTGEI



GCAACGCCGACTCCTACGCCAACGCCTGTTTCTACTCCAGCAACAGGCGG
QIRFNKSDWSNYNQGNDWSWL



ACAGATTAAAGTGCTTTATGCTAACAAGGAAACAAATAGTACTACAAATA
QSMTSYGENEKVTAYIDGVLV



CAATTAGACCTTGGTTAAAAGTAGTTAATTCAGGAAGCTCTAGTATAGATC
WGQEPSGATPAPTMTVAPTATP



TTTCTAGGGTAACGATTAGGTACTGGTATACTGTCGATGGAGAAAGAGCA
TPTLSPTVTPTPAPTQTAIPTPTL



CAGTCTGCAGTTAGTGATTGGGCTCAGATTGGTGCAAGCAATGTAACATTT
TPNPTPTSSIPDDTNDDWLYVSG



AAGTTTGTAAAATTATCAAGTTCTGTCTCAGGAGCAGATTATTACTTGGAG
NKIVDKDGRPVWLTGINWFGYN



ATAGGCTTTAAGTCTGGTGCTGGACAACTTCAACCTGGTAAGGATACGGG
TGTNVFDGVWSCNLKDTLAEIA



TGAAATTCAGATAAGATTTAATAAAAGCGATTGGTCTAATTACAACCAGG
NRGFNLLRVPISAELILNWSQGI



GCAATGACTGGTCATGGCTTCAGAGCATGACATCATATGGCGAAAATGAG
YPKPNINYYVNPELEGKNSLEVF



AAAGTGACGGCTTATATTGACGGTGTTTTAGTCTGGGGTCAAGAGCCTAGT
DIVVQTCKEVGLKIMLDIHSIKT



GGCGCTACGCCTGCTCCGACGATGACAGTGGCACCGACTGCTACACCGAC
DAMGHIYPVWYDEKFTPEDFYK



GCCAACTTTATCTCCGACGGTTACTCCGACGCCAGCACCGACTCAGACGG
ACEWITNRYKNDDTIIAFDLKNE



CTATACCAACTCCTACGCTTACTCCTAACCCGACACCAACAAGTTCTATTC
PHGKPWQDTTFAKWDNSTDINN



CGGATGATACGAATGATGACTGGTTGTACGTAAGTGGCAACAAAATTGTC
WKYAAETCAKRILNINPNLLIVI



GATAAGGATGGCAGACCAGTTTGGCTTACTGGCATAAATTGGTTTGGCTAC
EGIEAYPKDDVTWTSKSSSDYY



AACACAGGTACGAACGTGTTTGACGGCGTCTGGTCATGTAATTTGAAAGA
STWWGGNLRGVRKYPINLGKY



CACTTTAGCTGAGATAGCAAATAGGGGATTTAATTTGCTTAGAGTCCCAAT
QNKVVYSPHDYGPSVYQQPWF



AAGCGCAGAATTAATTTTGAACTGGAGTCAAGGTATATATCCGAAACCAA
YPGFTKESLLQDCWRPNWAYIM



ATATTAACTACTATGTAAATCCAGAGTTAGAAGGAAAAAATAGCTTAGAG
EENIAPLLIGEWGGHLDGADNE



GTTTTTGATATAGTCGTGCAGACATGCAAAGAAGTTGGCTTGAAAATAAT
KWMKYLRDYIIENHIHHTFWCF



GCTTGATATTCATTCTATAAAAACGGACGCTATGGGTCATATTTATCCAGT
NANSGDTGGLVGYDFTTWDEK



ATGGTATGACGAAAAATTTACGCCTGAGGATTTTTACAAGGCATGCGAAT
KYSFLKPALWQDSQGRFVGLDH



GGATAACGAACAGATACAAAAATGATGACACTATTATAGCTTTTGACCTT
KRPLGTNGKNINITTYYNNNEPE



AAAAACGAACCACATGGAAAGCCGTGGCAGGATACAACATTTGCAAAAT
PVPASK (SEQ ID NO: 124)



GGGACAATAGCACTGATATTAACAACTGGAAGTACGCTGCTGAGACTTGC



GCAAAGAGAATTTTGAATATAAACCCTAATCTTTTAATTGTAATAGAGGGC



ATTGAGGCATACCCGAAAGACGATGTGACTTGGACATCTAAGTCATCAAG



CGATTATTACAGTACGTGGTGGGGTGGAAATTTAAGAGGCGTTAGGAAAT



ATCCAATAAATTTGGGTAAATATCAGAACAAGGTCGTGTATAGCCCTCAT



GATTACGGTCCTTCTGTATATCAGCAACCTTGGTTTTATCCGGGCTTTACTA



AAGAATCATTACTTCAGGACTGTTGGAGGCCTAACTGGGCATATATAATG



GAAGAAAATATTGCACCTTTGCTTATAGGAGAGTGGGGAGGCCATTTAGA



TGGTGCTGATAACGAGAAATGGATGAAGTACTTAAGGGATTATATTATAG



AGAACCATATTCATCACACGTTTTGGTGCTTTAATGCTAACAGTGGAGATA



CAGGCGGTTTAGTGGGTTACGACTTTACTACATGGGACGAGAAGAAATAC



AGCTTTTTGAAGCCAGCTTTATGGCAAGACAGCCAGGGCAGATTTGTAGG



TTTAGATCATAAAAGGCCTTTGGGCACTAATGGAAAGAACATAAATATTA



CGACGTACTACAACAACAATGAACCTGAGCCAGTTCCTGCTTCAAAG (SEQ



ID NO: 93)






Caldocellum

ATGAGACTAAAAACAAAAATAAGAAAGAAATGGTTAAGTGTTTTATGCAC
L01257 AND AAA71887



saccharolyticum

AGTAGTGTTTTTGTTGAATATTCTTTTTATAGCTAATGTCACAATTTTACCT
MRLKTKIRKKWLSVLCTVVFLL


beta-
AAAGTTGGAGCAGCTACAAGTAATGATGGAGTTGTAAAAATTGATACAAG
NILFIANVTILPKVGAATSNDGV


mannanase
CACTCTTATAGGCACTAATCATGCCCATTGTTGGTACCGTGACAGATTGGA
VKIDTSTLIGTNHAHCWYRDRL


(manA)
CACAGCTTTAAGAGGGATCAGAAGTTGGGGCATGAATTCGGTTAGAGTAG
DTALRGIRSWGMNSVRVVLSNG



TGTTGTCAAATGGTTACAGATGGACAAAAATCCCCGCATCCGAAGTTGCA
YRWTKIPASEVANIISLSRSLGFK



AATATAATAAGCTTGTCAAGAAGTCTTGGATTCAAAGCAATAATCCTTGA
AIILEVHDTTGYGEDGAACSLAQ



AGTGCACGATACGACAGGTTATGGAGAAGATGGAGCAGCTTGCTCTTTAG
AVEYWKEIKSVLDGNEDFVIINI



CACAGGCTGTGGAATACTGGAAAGAAATAAAGAGCGTATTAGATGGCAAT
GNEPYGNNNYQNWVNDTKNAI



GAAGATTTTGTTATTATAAACATTGGAAATGAGCCGTATGGTAATAATAAT
KALRDAGFKHTIMVDAPNWGQ



TATCAAAATTGGGTAAATGATACTAAAAATGCAATAAAAGCACTAAGAGA
DWSNTMRDNAQSIMEADPLRN



TGCAGGATTTAAGCATACTATTATGGTAGATGCACCTAATTGGGGTCAAG
LVFSIHMYGVYNTASKVEEYIKS



ATTGGTCAAATACGATGAGAGATAATGCTCAATCTATAATGGAAGCTGAT
FVDKGLPLVIGEFGHQHTDGDP



CCTTTAAGGAATCTTGTATTTTCTATACATATGTACGGGGTTTATAATACA
DEEAIVRYAKQYKIGLFSWSWC



GCCAGCAAAGTAGAAGAATATATAAAATCTTTTGTGGATAAAGGTTTACC
GNSSYVGYLDMVNNWDPNNPT



TTTAGTTATAGGTGAGTTTGGCCACCAACACACAGATGGAGATCCAGATG
PWGQWYKTNAIGTSSTPTPTST



AAGAGGCAATAGTTAGATATGCAAAGCAATATAAAATTGGATTGTTTAGT
VTPTPTPTPTPTPTVTATPTPTPT



TGGAGCTGGTGTGGCAATTCTTCATACGTAGGGTATTTAGATATGGTCAAT
PVSTPATSGQIKVLYANKETNST



AATTGGGACCCAAATAACCCTACTCCTTGGGGGCAATGGTATAAAACGAA
TNTIRPWLKVVNSGSSSIDLSRV



TGCAATAGGCACTTCTTCTACACCTACACCAACAAGCACAGTGACTCCTAC
TIRYWYTVDGERAQSAISDWAQ



ACCAACACCAACACCTACTCCTACGCCAACAGTAACAGCAACACCAACAC
IGASNVTFKFVKLSSSVSGADYY



CTACACCTACACCTGTTTCAACACCAGCGACATCTGGTCAAATAAAAGTGT
LEIGFKSGAGQLQPGKDTGEIQM



TGTACGCTAATAAGGAAACGAACAGTACAACGAATACTATCAGACCTTGG
RFNKDDWSNYNQGNDWSWIQS



CTTAAAGTAGTTAATTCAGGCTCTAGTTCTATAGACCTTAGTAGGGTGACT
MTSYGENEKVTAYIDGVLVWG



ATCAGGTATTGGTATACAGTAGATGGGGAAAGGGCCCAGTCAGCAATAAG
QEPSGATPAPAPTATPTPTPTVTP



CGACTGGGCTCAGATAGGAGCATCCAATGTAACATTTAAATTCGTGAAGC
TPTVTPTPTVTATPTPTPTPTPTP



TTAGCTCATCAGTATCTGGCGCTGATTACTATCTTGAAATTGGATTTAAAA
VSTPATGGQIKVLYANKETNSTT



GCGGGGCCGGACAACTACAGCCTGGGAAAGATACAGGTGAAATACAAAT
NTIRPWLKVVNSGSSSIDLSRVTI



GAGATTTAATAAAGACGATTGGTCAAATTATAACCAAGGTAATGACTGGA
RYWYTVDGERAQSAISDWAQIG



GTTGGATACAGTCCATGACAAGTTATGGCGAAAATGAAAAGGTAACAGCT
ASNVTFKFVKLSSSVSGADYYL



TACATAGATGGTGTATTGGTTTGGGGACAGGAACCATCAGGCGCAACACC
EIGFKSGAGQLQPGKDTGEIQIR



TGCACCTGCACCGACAGCAACTCCAACACCTACTCCGACAGTAACACCAA
FNKSDWSNYNQGNDWSWIQSM



CACCTACAGTAACGCCAACGCCAACGGTTACAGCAACTCCAACGCCAACA
TSYGENEKVTAYIDGVLVWGQE



CCAACCCCTACACCTACACCAGTTTCAACGCCTGCGACTGGAGGACAAAT
PSGTTPSPTSTPTVTVTPTPTPTP



AAAGGTTCTTTATGCAAATAAAGAAACAAATTCGACAACGAATACTATCA
TPTPTPTVTPTPTVTPTPTVTATP



GGCCTTGGTTAAAGGTAGTTAATAGCGGGAGTTCTAGTATAGATCTTAGTA
TPTPTPIPTVTPLPTISPSPSVVEIT



GAGTCACAATAAGATATTGGTATACTGTAGATGGTGAAAGAGCACAAAGT
INTNAGRTQISPYIYGANQDIEG



GCAATATCAGATTGGGCACAAATTGGCGCATCTAATGTCACATTTAAATTT
VVHSARRLGGNRLTGYNWENN



GTTAAGCTTTCGTCGTCAGTCAGTGGGGCAGATTACTATTTGGAGATCGGT
FSNAGNDWYHSSDDYLCWSMG



TTCAAATCTGGGGCAGGCCAATTGCAGCCAGGTAAGGATACAGGCGAGAT
ISGEDAKVPAAVVSKFHEYSLK



ACAAATCAGATTCAATAAATCTGATTGGTCCAACTATAATCAAGGCAACG
NNAYSAVTLQMAGYVSKDNYG



ATTGGTCATGGATACAGTCTATGACTAGTTATGGAGAGAACGAAAAGGTG
TVSENETAPSNRWAEVKFKKDA



ACTGCTTACATTGATGGAGTTTTAGTCTGGGGACAAGAGCCCAGCGGAAC
PLSLNPDLNDNFVYMDEFINYLI



TACACCGAGCCCGACATCAACACCAACTGTTACGGTAACACCTACACCAA
NKYGMASSPTGIKGYILDNEPDL



CGCCGACTCCAACTCCGACTCCTACACCAACGGTAACGCCAACACCGACT
WASTHPRIHPNKVTCKELIEKSV



GTAACTCCAACTCCTACAGTCACAGCCACACCGACTCCTACCCCAACACCC
ELAKVIKTLDPSAEVFGYASYGF



ATCCCTACAGTAACACCATTACCTACAATATCTCCAAGCCCTTCTGTAGTG
MGYYSLQDAPDWNQVKGEHR



GAAATTACGATAAATACAAATGCAGGCAGAACACAGATAAGTCCATACAT
WFISWYLEQMKKASDSFGKRLL



CTATGGTGCTAATCAAGATATTGAAGGCGTAGTACACAGTGCCAGAAGAT
DVLDLHWYPEARGGNIRVCFDG



TGGGAGGCAATAGACTAACAGGTTATAATTGGGAAAATAATTTTAGCAAC
ENDTSKEVVIARMQAPRTLWDP



GCGGGCAACGATTGGTATCATTCCAGTGACGATTACTTATGTTGGTCAATG
TYKTSVKGQITAGENSWINQWF



GGAATCTCAGGAGAAGATGCTAAAGTACCCGCAGCAGTAGTTTCAAAATT
SDYLPIIPNVKADIEKYYPGTKL



TCACGAGTACTCTCTAAAGAATAATGCATACAGCGCTGTGACTTTACAAAT
AISEFDYGGRNHISGGIALADVL



GGCTGGTTATGTATCTAAGGACAATTATGGTACTGTCAGTGAAAATGAAA
GIFGKYGVNFAARWGDSGSYA



CAGCACCATCGAATAGATGGGCTGAAGTAAAATTTAAAAAGGATGCGCCT
AAAYNIYLNYDGKGSKYGNTN



TTGTCCCTTAATCCAGACCTGAACGATAACTTTGTTTATATGGATGAGTTT
VSANTSDVENMPVYASINGQDD



ATTAATTATTTAATAAACAAATATGGAATGGCCTCGTCTCCTACTGGTATA
SELHIILINRNYDQKLQVKINITS



AAAGGATATATTCTGGACAACGAACCAGATCTTTGGGCGAGCACCCACCC
TPKYTKAEIYGFDSNSPEYKKM



GAGAATACATCCAAATAAAGTAACATGTAAAGAATTGATTGAGAAAAGTG
GNIDNIESNVFTLEVPKFNGVSH



TAGAACTTGCAAAAGTAATTAAGACACTTGATCCTTCTGCGGAAGTATTTG
SITLDFNVSIKIIQNEVIKFIRNLV



GCTATGCATCATATGGGTTTATGGGATATTACTCGCTACAGGACGCGCCGG
FMRALV (SEQ ID NO: 125)



ATTGGAATCAGGTTAAGGGGGAACATCGATGGTTTATAAGTTGGTATTTA



GAACAAATGAAAAAAGCATCCGATTCATTTGGAAAAAGGTTATTAGATGT



ATTAGATTTACACTGGTATCCTGAGGCAAGGGGAGGGAATATCAGAGTTT



GCTTTGACGGTGAAAATGATACCTCAAAAGAAGTAGTAATCGCTAGGATG



CAAGCCCCAAGAACTCTATGGGACCCTACATATAAAACAAGTGTTAAGGG



ACAAATAACGGCTGGAGAAAATTCGTGGATAAATCAGTGGTTTTCAGATT



ATCTCCCAATTATCCCAAATGTTAAGGCCGATATTGAGAAGTACTATCCAG



GTACAAAGCTAGCTATAAGCGAATTTGACTATGGGGGTCGTAACCACATA



TCTGGAGGAATTGCTTTAGCTGACGTACTAGGCATTTTTGGCAAATATGGC



GTTAATTTTGCGGCTAGATGGGGCGATTCAGGTTCATATGCCGCAGCTGCA



TATAACATATATCTTAATTATGATGGAAAGGGTTCGAAATATGGTAATACG



AATGTTTCTGCAAATACAAGTGACGTAGAGAATATGCCGGTATATGCTTCA



ATAAACGGTCAAGACGATTCAGAATTGCATATAATACTTATCAACAGGAA



CTACGATCAAAAATTACAGGTTAAAATTAATATTACATCAACTCCAAAAT



ACACAAAAGCAGAAATATACGGATTCGATTCTAATAGCCCTGAATATAAA



AAGATGGGAAATATAGACAATATTGAGTCTAACGTTTTTACCCTTGAAGTG



CCAAAATTTAATGGCGTGAGCCATAGCATCACATTAGATTTTAACGTGTCC



ATCAAAATTATTCAAAATGAAGTAATCAAGTTTATCAGAAATTTAGTGTTC



ATGAGGGCACTTGTT (SEQ ID NO: 94)






Clostridium

ATGAGAAAATTTTGGTCTTTTGCAATAATTATATCTTTACTTGTAACAGGA
CAA39010 AND X55299



stercorarium

TTGTTTATTCATACTCCTAAAGCTGAGGCAGCTGGTTACAATTACGGCGAA
MRKFWSFAIIISLLVTGLFIHTPK


Avicellase I
GCTCTTCAAAAGGCAATAATGTTTTACGAGTTTCAGAGGAGCGGAAAGTT
AEAAGYNYGEALQKAIMFYEFQ


(celZ)
GCCAGAGAACAAGAGGGACAATTGGAGGGGTGACAGCGGCTTAAATGAT
RSGKLPENKRDNWRGDSGLND



GGAGCAGATGTTGGTTTAGACCTTACAGGCGGATGGTATGATGCTGGTGA
GADVGLDLTGGWYDAGDHVKF



TCACGTGAAGTTTAATTTGCCTATGGCATATAGTCAAACTATGTTAGCTTG
NLPMAYSQTMLAWAAYEAEEA



GGCAGCTTACGAAGCAGAAGAAGCTCTTGAAAGATCAGGCCAGATGGGAT
LERSGQMGYLLDAIKWVSDYLI



ATTTGTTAGACGCAATAAAATGGGTTTCTGATTATCTTATAAAATGCCACC
KCHPSPNVFYYQVGDGHLDHS



CAAGTCCTAATGTTTTTTACTACCAGGTGGGTGATGGCCACTTGGACCATT
WWGPAEVMQMDRPAYKVDLA



CATGGTGGGGCCCGGCAGAAGTAATGCAAATGGATAGACCAGCTTATAAA
NPGSTVVAEAAAALASAAVVFA



GTAGACCTTGCTAATCCAGGTTCTACAGTAGTGGCAGAGGCTGCAGCTGCT
DRDPAYAATCIQHAKELYNFAEI



TTGGCTAGCGCTGCAGTAGTTTTTGCAGATAGAGATCCTGCATACGCTGCA
TKSDSGYTAASGFYDSHSGFYD



ACTTGTATACAACATGCAAAGGAGTTGTATAATTTTGCAGAGATTACAAA
ELSWAGVWLYLATGDETYLNK



GTCAGATTCTGGCTACACAGCAGCTAGTGGCTTTTACGATAGCCACTCAGG
AEQYVAYWGTEPQTNIISYKWA



ATTTTATGACGAGCTTAGCTGGGCTGGCGTTTGGCTTTATTTAGCTACAGG
HCWDDVHYGACLLLAKITGKQI



CGATGAAACATACCTTAACAAAGCTGAACAATATGTGGCATACTGGGGTA
YKEAIERHLDYWSVGYNGERV



CTGAGCCACAAACAAATATAATTTCTTATAAGTGGGCACATTGTTGGGAC
HYTPKGLAWLDSWGSLRYATT



GACGTTCATTACGGAGCTTGCTTGCTTTTAGCAAAAATTACTGGCAAACAA
TAFLASVYADWEGCSREKAAIY



ATATACAAAGAGGCAATAGAAAGACACCTTGATTATTGGAGCGTTGGTTA
NDFAKQQIDYALGSSGRSYVVG



CAACGGAGAGAGGGTTCATTATACACCTAAGGGATTGGCTTGGTTGGATA
FGVNPPKRPHHRTAHSSWADSM



GCTGGGGAAGTCTTAGATATGCTACGACAACTGCATTTTTGGCAAGTGTTT
SVPDYHRHVLIGALVGGPGKDD



ACGCAGATTGGGAGGGCTGCAGCAGGGAAAAAGCTGCAATTTATAATGAC
SYTDDINNYINNEVACDYNAGF



TTTGCTAAACAACAGATAGATTACGCATTGGGCTCAAGTGGTAGATCTTAT
VGALAKMYEDYGGSPIPDLNAF



GTAGTTGGTTTTGGCGTGAATCCGCCAAAAAGACCGCACCACAGGACTGC
EEITNDEFFVMAGINASGQNFIEI



TCACAGTTCTTGGGCTGATTCTATGAGTGTTCCTGACTACCACAGACACGT
KALLHNQSGWPARVADKLSFR



ACTTATAGGTGCTTTAGTTGGAGGCCCAGGTAAGGACGATTCATACACGG
YFVDLTELIEAGYSASDVTITTN



ATGACATAAACAATTATATAAATAACGAGGTTGCTTGCGATTACAATGCT
YNAGAKVTGLHPWNEAENIYY



GGTTTTGTGGGCGCATTGGCTAAGATGTATGAAGATTACGGCGGATCTCCG
VNVDFTGTKIYPGGQSAYRKEV



ATACCTGACTTGAATGCTTTTGAGGAAATAACTAACGATGAATTTTTTGTT
QFRIAAPQNTNFWNNDNDYSFR



ATGGCAGGAATTAATGCATCTGGCCAGAATTTTATAGAGATTAAGGCATT
DIKGVTSGNTVKTVYIPVYDDG



ACTTCATAATCAATCAGGTTGGCCTGCTAGGGTAGCAGATAAGTTAAGTTT
VLVFGVENGIKYGNTYLREGTD



TAGGTATTTTGTCGATTTAACGGAGTTAATAGAGGCTGGATACAGCGCTTC
YTVSGDTVTILKSFLNSFDTSTV



TGACGTCACAATAACTACAAATTATAACGCAGGCGCAAAAGTAACTGGTT
QLIFDFSAGRDPVLTVNIIDTTTS



TACACCCATGGAATGAAGCTGAGAACATTTATTACGTGAACGTTGATTTTA
ASIVPTTADFDKNPDASRDVKV



CGGGAACAAAGATATATCCTGGCGGTCAGTCAGCATACAGAAAAGAGGTG
KLVPNGNTLLAVKKDGEALVLG



CAGTTTAGGATTGCTGCTCCACAGAATACGAATTTTTGGAATAATGACAAC
RDYSIDGDEVTIFREYLADQPVG



GATTATTCATTTAGGGATATAAAAGGCGTTACAAGCGGCAATACAGTCAA
RVTLTFDFDRGTDPVLTINITDSR



AACAGTGTATATTCCTGTTTATGACGATGGTGTGTTAGTTTTTGGAGTGGA
QVETGVIQIQMFNGNTSDKTNGI



AAATGGAATAAAGTACGGTAACACTTACTTAAGAGAAGGAACGGATTACA
MPRYRLTNTGTTPIRLSDVKIRY



CGGTCAGCGGCGACACTGTGACAATATTGAAATCATTTCTTAATAGCTTTG
YYTIDGEKDQNFWCDWSSVGS



ATACTTCAACAGTTCAGTTAATATTTGACTTTAGCGCTGGTAGGGATCCAG
NNITGTFVKMAEPKEGADYYLE



TATTGACAGTGAACATAATTGACACGACAACGAGCGCAAGCATAGTCCCA
TGFTDGAGYLQPNQSIEVQNRFS



ACAACGGCAGATTTTGACAAAAATCCGGATGCATCTAGAGATGTTAAAGT
KADWTDYIQTNDYSFSTNTSYG



GAAATTAGTACCTAATGGAAATACGCTTCTTGCAGTGAAAAAAGACGGTG
SNDRITVYISGVLVSGIEP (SEQ



AGGCTTTGGTGTTAGGCAGGGACTACAGTATAGATGGCGACGAGGTAACA
ID NO: 126)



ATATTTAGGGAGTATTTAGCTGATCAGCCGGTAGGCAGAGTGACTCTTACA



TTTGACTTTGATAGGGGTACTGATCCGGTTTTAACAATTAATATAACGGAT



AGCAGGCAAGTAGAGACAGGAGTTATACAAATTCAGATGTTTAACGGCAA



CACGAGTGATAAAACTAACGGTATAATGCCGAGGTACAGGTTGACAAACA



CTGGAACAACACCTATAAGATTGAGTGATGTAAAAATAAGGTACTACTAC



ACAATAGACGGAGAGAAGGATCAAAATTTTTGGTGCGACTGGTCAAGTGT



AGGTTCTAATAATATTACGGGTACATTTGTAAAGATGGCTGAGCCAAAAG



AGGGCGCAGATTATTACCTTGAAACGGGTTTTACTGATGGCGCTGGCTATT



TGCAGCCAAATCAAAGCATTGAGGTTCAGAACAGATTTAGTAAGGCAGAC



TGGACTGATTATATACAAACGAATGATTATAGCTTTAGCACTAACACGTCA



TACGGTTCAAACGACAGGATTACTGTGTACATTAGCGGTGTGTTGGTTAGC



GGAATAGAACCA (SEQ ID NO: 95)






Clostridium

ATGAAAAGAAGGTTAATGAAGGGAATATCATTGTTAACGCTTGTATTTTTG
CAA93280



stercorarium

ATTGGTATAATGTTGCAACTTAGCTTAAAGAGCGAATTAACAGCTTACGCT
MKRRLMKGISLLTLVFLIGIMLQ


Avicellase II
AGTAGCGATGACCCTTACAAGCAGAGGTTTTTGGAATTATGGGAGGAATT
LSLKSELTAYASSDDPYKQRFLE


(celY)
GCATGACCCTTCTAATGGTTATTTTAGTTCACACGGCATTCCTTACCATGC
LWEELHDPSNGYFSSHGIPYHA



AGTTGAAACATTAATAGTGGAAGCTCCTGACTACGGCCACTTGACTACATC
VETLIVEAPDYGHLTTSEAMSY



AGAAGCAATGTCTTACTATTTATGGTTGGAGGCTTTATACGGCAAATTTAC
YLWLEALYGKFTGDFSYFMKA



AGGTGACTTTAGCTATTTTATGAAGGCATGGGAGACAATTGAAAAATACA
WETIEKYMIPTEQDQPNRSMAG



TGATACCTACAGAGCAAGACCAGCCTAACAGGAGCATGGCAGGCTATAAC
YNPAKPATYAPEWEEPSMYPSQ



CCTGCAAAACCGGCTACGTACGCACCTGAATGGGAAGAACCGAGTATGTA
LDFSAPVGIDPIYNELVSTYGTN



CCCATCACAGTTAGACTTTAGCGCACCAGTGGGCATAGACCCAATATACA
TIYGMHWLLDVDNWYGFGRRA



ACGAGTTGGTTAGCACATACGGAACGAACACAATATACGGTATGCACTGG
DRISSPAYINTFQRGSQESVWETI



TTGCTTGACGTTGATAATTGGTACGGCTTTGGAAGAAGGGCAGATAGAAT
PQPCWDDLTIGGRNGFLDLFVG



TAGTTCTCCAGCTTATATAAACACTTTTCAGAGGGGAAGTCAGGAGAGCG
DSQYSAQFKYTNAPDADARAIQ



TATGGGAAACAATACCTCAACCGTGTTGGGATGACTTAACAATTGGAGGA
ATYWANQWAKEHGVNLSQYV



AGAAATGGCTTTCTTGACTTGTTTGTGGGAGACAGTCAGTACTCAGCACAA
KKASRMGDYLRYAMFDKYFRK



TTTAAGTATACAAACGCACCGGACGCTGATGCTAGAGCTATACAGGCAAC
IGDSKQAGTGYDAAHYLLSWY



ATACTGGGCAAACCAGTGGGCAAAAGAACATGGAGTTAATTTGAGTCAAT
YAWGGGITADWAWIIGCSHVH



ACGTGAAAAAGGCATCAAGAATGGGTGATTACCTTAGATATGCAATGTTT
AGYQNPMTAWILANDPEFKPES



GATAAATATTTTAGAAAAATTGGCGACTCTAAGCAGGCTGGAACGGGATA
PNGANDWAKSLERQLEFYQWL



CGATGCAGCACACTACTTACTTAGCTGGTACTACGCTTGGGGAGGCGGTAT
QSAEGAIAGGATNSYKGRYETL



AACAGCTGATTGGGCTTGGATTATAGGCTGCTCACACGTTCACGCTGGCTA
PAGISTFYGMAYEEHPVYLDPGS



CCAAAATCCAATGACAGCATGGATTCTTGCTAACGACCCGGAATTTAAAC
NTWFGFQAWTMQRVAEYYYLT



CAGAATCTCCTAACGGAGCAAACGACTGGGCTAAGAGCTTGGAAAGGCAA
GDTRAEQLLDKWVDWIKSVVR



TTAGAGTTTTACCAATGGCTTCAAAGTGCTGAAGGCGCAATAGCTGGAGG
LNSDGTFEIPGNLEWSGQPDTW



TGCTACAAATTCTTACAAAGGAAGATACGAAACATTGCCGGCTGGTATTA
TGTYTGNPNLHVSVVSYRTDLG



GCACATTTTACGGTATGGCATACGAAGAACACCCTGTGTACCTTGATCCAG
AAGSLANALLYYAKTSGDDEAR



GTAGTAACACATGGTTTGGCTTTCAGGCTTGGACGATGCAGAGGGTTGCA
NLAKELLDRMWNLYRDDKGLS



GAGTACTATTACTTAACTGGTGACACAAGAGCTGAGCAGCTTTTGGATAA
APETREDYVRFFEQEVYVPQGW



ATGGGTGGATTGGATTAAAAGCGTGGTTAGGTTAAACTCAGATGGCACAT
SGTMPNGDRIEPGVTFLDIRSKY



TTGAAATTCCTGGCAACTTGGAGTGGTCTGGACAGCCTGATACGTGGACTG
LNDPDYPKLQQAYNEGKAPVFN



GTACATATACTGGAAACCCTAATTTACATGTAAGTGTCGTTTCTTATAGGA
YHRFWAQCDIAIANGLYSILFGS



CTGACTTGGGCGCAGCTGGATCTTTGGCTAATGCTTTGCTTTATTATGCAA
EQANDSFITPTSATFDKNNQEDI



AGACAAGCGGCGACGATGAGGCTAGAAATTTAGCTAAAGAATTGCTTGAC
SVTVTYNGNTLLGIKSGSSYLIE



AGAATGTGGAACCTTTACAGAGATGACAAGGGATTGAGCGCACCGGAAAC
GVDYIVNGDVIIIKKEFLAGQAT



TAGAGAGGATTATGTGAGGTTTTTTGAACAAGAAGTCTACGTGCCACAGG
GSISLLFDFSAGLDRTLTIDIIDTG



GTTGGAGCGGAACAATGCCTAATGGCGATAGAATTGAACCTGGTGTTACT
GGEEPVEPVEPVEGVLIIQSFNA



TTTCTTGATATAAGGAGTAAATACTTGAATGATCCGGACTATCCTAAGTTG
NTQEISNSIMPRFRIYNSGNTSIPL



CAACAGGCTTACAACGAAGGAAAAGCACCGGTCTTTAATTATCACAGATT
SEVKLRYYYTVDGDKPQNFWC



TTGGGCTCAATGCGACATAGCTATAGCAAACGGATTGTACAGCATTTTATT
DWASIGSSNVTGTFVKMDGATT



TGGCTCTGAGCAAGCAAACGATTCATTTATAACACCTACAAGTGCAACATT
GADYYLEIGFTPQAGTLEPGASI



TGACAAAAACAATCAGGAAGATATATCTGTAACAGTGACTTATAATGGCA
EVQGRFSKIDWTDYTQTNDYSF



ACACTTTGCTTGGCATAAAGAGCGGTTCTTCATATTTGATAGAAGGCGTTG
NPTASSYVDFNKITAYISGNLVY



ACTATATAGTCAATGGCGACGTGATTATTATAAAGAAAGAGTTTCTTGCTG
GIEP (SEQ ID NO: 127)



GTCAGGCTACAGGAAGTATTAGCTTGCTTTTTGACTTTAGCGCAGGCTTAG



ACAGAACATTAACAATTGACATAATAGACACTGGTGGAGGCGAAGAGCCG



GTTGAGCCAGTAGAACCTGTTGAGGGTGTTTTAATTATACAGTCATTTAAC



GCAAACACACAGGAGATTTCAAATAGCATTATGCCTAGGTTTAGAATTTAT



AATTCAGGTAATACAAGCATTCCATTGAGCGAAGTGAAACTTAGGTATTA



CTACACAGTAGACGGCGATAAACCTCAAAATTTTTGGTGCGATTGGGCAT



CTATTGGTTCATCTAATGTGACTGGAACATTTGTGAAAATGGATGGAGCTA



CAACGGGTGCTGATTACTATTTAGAGATAGGATTTACTCCGCAGGCTGGCA



CTTTAGAGCCTGGAGCTAGTATAGAAGTACAGGGTAGGTTTAGTAAAATA



GACTGGACGGACTATACTCAGACTAATGACTATAGCTTTAACCCGACAGC



TTCTTCATATGTGGACTTTAACAAGATTACTGCATACATAAGCGGCAACCT



TGTTTATGGTATTGAGCCT (SEQ ID NO: 96)






Eubacterium

ATGAAAGGAAATTGGTTAAAGGACGTACTTAGAAGGTTTGCAGTTATAGC
BAE46390


cellulo-
TATGATGTTGGTGATGGTCTTTACACTTTTGCCTGCAACTGCTCAAGGTAC
MKGNWLKDVLRRFAVIAMMLV


solvens
GGAAGCAGCTTCAGGCGACATTGTATTGTTTAGCGGCTCAAAACACGTTG
MVFTLLPATAQGTEAASGDIVLF


Cel5A
AGTTTACGGATTGGGGTGGCACAGACTGGCCAAGTGCATACGAATTACAG
SGSKHVEFTDWGGTDWPSAYEL


(cel5A)
CCGCCTTACCAAACTATGCCATTTGATTTGAACAAGAATTTTGAGATTAAA
QPPYQTMPFDLNKNFEIKVDYS



GTTGATTATTCAGGTGCTGATATAGTGTTGATTTTTGCAAGATGGGAACAC
GADIVLIFARWEHGSKPQIWAQI



GGTTCTAAACCGCAGATATGGGCACAAATTTCACCGTATTACGTTGTTGAT
SPYYVVDGTAVFTKEQIAKAYG



GGCACAGCTGTTTTTACGAAGGAACAGATAGCTAAAGCATATGGAAGTGA
SDDFSDLDYIGVKPLPSADGMT



CGATTTTTCAGACTTAGATTATATAGGTGTGAAACCGTTGCCATCTGCTGA
VTKIVASYTSGSSDDVDINLKGI



TGGCATGACAGTTACAAAGATAGTCGCAAGCTATACGAGTGGATCATCTG
AGEWANGVNIGWNLGNTLDAY



ACGACGTGGATATTAATCTTAAGGGAATTGCTGGAGAGTGGGCTAACGGC
DTNRFKSSKGHNNPADIETCWG



GTAAATATAGGATGGAATTTGGGTAACACTCTTGATGCATATGACACGAA
NPVTTKAMIDDIKAQGFNAVRV



CAGGTTTAAGAGCTCAAAAGGTCATAACAATCCTGCTGACATAGAGACTT
PVTWDFEIDDNDGYKVNEAWM



GCTGGGGAAACCCAGTCACTACGAAGGCAATGATAGATGACATAAAGGCT
ARVKEVVDYVMDNDLYCILNV



CAAGGCTTTAACGCTGTGAGGGTTCCGGTGACATGGGATTTTGAAATAGA
HHDTGEQGWLKASTANYNKNV



CGATAACGACGGTTATAAGGTGAATGAGGCTTGGATGGCAAGGGTTAAAG
KKFKALWKQIAAEFKNYDNKL



AGGTTGTAGACTATGTCATGGATAATGATTTGTATTGCATTTTAAACGTAC
AFEGFNEMLDEKNSWNYPGTD



ATCACGATACAGGAGAGCAGGGCTGGTTAAAGGCTTCTACAGCAAATTAC
AGDAINLYNQAFVDVVRASGG



AATAAAAACGTTAAGAAATTTAAAGCACTTTGGAAACAAATAGCTGCAGA
KNGKRPLICNTYAGCTEAGALN



GTTTAAAAACTACGACAACAAACTTGCTTTTGAGGGCTTTAATGAGATGTT
SFKIPNDTVDNAIIAQVHFYQPT



AGACGAAAAAAATAGTTGGAATTATCCTGGTACAGATGCTGGAGATGCTA
GYCFDMNPNQGQNMDVDYKTC



TAAATTTGTATAACCAGGCATTTGTCGACGTGGTCAGAGCATCTGGTGGCA
GGESAADTLAMMLYKRFTEKGI



AGAATGGAAAAAGGCCGCTTATATGTAATACATATGCAGGCTGTACTGAG
PCIVGEFAASHKKNDDNRAEWV



GCTGGTGCTTTGAACAGCTTTAAGATTCCGAACGATACTGTTGATAACGCA
DYVVRKTGTYGVKCFWWDNG



ATAATTGCTCAGGTACATTTTTATCAACCAACGGGATACTGTTTTGACATG
GTFTPNYSTGLDYYNSMGIYNR



AATCCTAACCAGGGTCAAAACATGGATGTCGACTACAAAACATGTGGCGG
NTMQFEYPKVADALVNAANGG



AGAGTCAGCTGCAGACACATTGGCTATGATGCTTTATAAAAGATTTACGG
AKPTTAPTKKPTSTPKPTATLKP



AAAAGGGCATTCCATGCATAGTTGGAGAGTTTGCAGCTTCTCACAAAAAG
TTKPTTKPTTKPNPTSGADSGEII



AACGACGACAACAGAGCAGAATGGGTGGATTACGTCGTTAGAAAGACGG
LFSGSNHADFKAWGGDDWPSA



GAACATATGGTGTGAAATGTTTTTGGTGGGATAATGGAGGTACATTTACGC
FEISPKYEPMKLDLNKNFEIKVD



CGAATTACAGCACTGGTCTTGATTATTACAACTCAATGGGCATTTACAACA
YNGADIVLIFARWDKDIWAQISP



GGAATACAATGCAGTTTGAGTACCCAAAGGTAGCAGACGCTCTTGTGAAT
YYVVDGTAVFTKEQIAKAYGSD



GCTGCAAACGGAGGTGCTAAACCGACTACAGCTCCGACTAAAAAGCCAAC
DFSGLDYIAVKPLPSEEGVTVTK



ATCTACTCCAAAGCCGACGGCTACATTGAAACCGACTACAAAGCCTACGA
VSGIYTNGGSEDVDINLKGIAGE



CTAAGCCTACAACGAAACCTAATCCGACGAGTGGCGCAGACTCTGGTGAA
WANGVNIGWNLGNTLDAYDTN



ATAATTCTTTTTTCTGGTAGTAATCACGCTGATTTTAAAGCATGGGGCGGT
RFTRTKGHNNPADIETCWGNPV



GATGATTGGCCTTCAGCTTTTGAAATAAGTCCTAAATATGAGCCAATGAAG
TTKAMIDDIKAQGFNAVRVPVT



TTAGACCTTAATAAAAACTTTGAAATAAAGGTGGATTACAACGGAGCAGA
WDYEIDDNDGYKVNEAWMAR



CATTGTTCTTATATTTGCTAGGTGGGATAAGGATATTTGGGCTCAGATAAG
VKEVVDYVMDNDMYCIVNVHH



CCCATACTATGTCGTAGACGGTACTGCAGTATTTACTAAAGAGCAAATTGC
DTGEQGWLKASTANYAKNEKK



AAAGGCTTACGGTTCAGATGACTTTTCAGGATTAGACTATATAGCTGTTAA
FKALWKQIAAEFKNYDHKLAFE



GCCTCTTCCGAGTGAAGAAGGCGTAACTGTTACAAAAGTGAGCGGTATTT
GFNEMLDEKNSWNYPGADAGE



ACACAAATGGAGGCTCTGAGGATGTTGACATAAACTTGAAAGGCATAGCT
AINLYNQAFVDVVRASGGKNSD



GGTGAATGGGCAAACGGTGTTAACATTGGCTGGAACCTTGGAAATACATT
RPLICNTYAGCTEAGALNSFEIP



GGACGCTTACGATACTAATAGATTTACGAGAACAAAGGGACACAATAACC
NDTVENAIIAQVHFYQPTGYCFD



CGGCAGATATTGAAACGTGTTGGGGTAATCCGGTTACAACTAAAGCTATG
MNPNQGQNMDVDYKTCGGESA



ATTGACGATATTAAAGCACAGGGATTTAACGCAGTCAGAGTCCCAGTTAC
ADTLAMMLYKRFTEKGIPCIVG



TTGGGATTACGAGATTGACGACAACGACGGATACAAAGTTAACGAGGCTT
EFAASHKQNDDNRAAWVDYVV



GGATGGCTAGAGTGAAGGAAGTAGTGGATTACGTTATGGATAATGATATG
SKTGKYGVKCFWWDNGGTFTP



TATTGCATAGTCAATGTGCACCACGACACGGGTGAACAAGGATGGCTTAA
NYSTGLDYYNSMGIYNRNTMKF



GGCAAGCACAGCAAATTATGCTAAAAATGAAAAAAAGTTTAAGGCTTTGT
EYPKVADALVKAANGGTMPTV



GGAAGCAGATTGCAGCTGAATTTAAGAACTACGACCACAAGTTAGCATTT
APTKKPTATPTPTKKPTSTPKPT



GAAGGCTTTAATGAGATGCTTGATGAGAAGAACTCATGGAACTACCCAGG
VKPTQTPKPTRKPGKRVKYSAL



TGCTGATGCAGGAGAAGCAATTAACCTTTACAATCAGGCTTTTGTGGATGT
DLDGNVSSGNLIP (SEQID



AGTGAGGGCTAGCGGCGGAAAAAACTCTGATAGACCATTAATTTGCAACA
NO: 128)



CTTACGCTGGTTGCACGGAAGCAGGCGCACTTAATTCATTTGAAATACCAA



ACGACACAGTTGAGAACGCTATTATAGCACAAGTCCACTTTTACCAGCCG



ACTGGTTATTGTTTTGATATGAATCCAAATCAAGGCCAGAATATGGACGTT



GATTATAAGACTTGCGGAGGCGAAAGTGCAGCTGATACGCTTGCAATGAT



GTTGTACAAGAGGTTTACAGAGAAAGGTATACCGTGTATTGTGGGTGAAT



TTGCTGCAAGCCATAAACAAAACGACGATAATAGGGCAGCATGGGTCGAC



TATGTTGTGTCTAAAACAGGCAAATACGGCGTTAAGTGCTTTTGGTGGGAT



AACGGTGGCACGTTTACACCAAACTATTCAACGGGATTAGACTACTATAA



TAGTATGGGTATATATAATAGAAACACTATGAAGTTTGAATATCCTAAAGT



GGCTGATGCATTGGTAAAAGCAGCTAATGGTGGAACTATGCCGACAGTAG



CACCAACGAAGAAACCTACAGCAACACCGACTCCAACAAAAAAACCTACT



AGCACACCGAAGCCTACAGTTAAACCGACGCAAACGCCGAAACCAACAA



GAAAGCCGGGAAAAAGAGTAAAATATTCAGCTTTAGATTTGGACGGCAAT



GTGAGTAGTGGTAATCTTATTCCA (SEQ ID NO: 97)






Celulomonas

ATGGTTAGCAGAAGGTCTAGCCAAGCAAGAGGAGCTTTGACGGCAGTGGT
CAA40993



fimi CenC

TGCTACTCTTGCATTGGCTTTAGCTGGTAGTGGCACGGCATTAGCTGCATC
MVSRRSSQARGALTAVVATLAL


(cenC)
GCCTATAGGGGAAGGAACATTCGATGACGGCCCTGAAGGTTGGGTAGCTT
ALAGSGTALAASPIGEGTFDDGP



ATGGAACTGATGGTCCGTTGGATACATCAACAGGCGCTCTTTGTGTTGCAG
EGWVAYGTDGPLDTSTGALCV



TCCCAGCTGGCTCTGCACAGTACGGAGTGGGTGTCGTACTTAATGGCGTTG
AVPAGSAQYGVGVVLNGVAIEE



CTATTGAAGAGGGAACTACATATACATTAAGGTATACAGCAACGGCTTCT
GTTYTLRYTATASTDVTVRALV



ACAGACGTAACGGTGAGAGCATTAGTTGGGCAAAACGGTGCACCATATGG
GQNGAPYGTVLDTSPALTSEPR



CACAGTTCTTGACACGAGTCCGGCTTTGACGTCAGAACCTAGACAGGTAA
QVTETFTASATYPATPAADDPE



CTGAAACATTCACTGCATCAGCTACGTACCCAGCAACTCCTGCTGCAGACG
GQIAFQLGGFSADAWTFCLDDV



ATCCGGAGGGCCAAATAGCTTTTCAGTTAGGTGGCTTCAGCGCAGATGCTT
ALDSEVELLPHTSFAESLGPWSL



GGACATTTTGCCTTGACGATGTGGCATTAGATAGCGAAGTAGAGCTTTTAC
YGTSEPVFADGRMCVDLPGGQG



CTCATACGAGTTTCGCAGAATCTTTGGGCCCGTGGAGCTTGTATGGAACTT
NPWDAGLVYNGVPVGEGESYV



CGGAGCCAGTCTTTGCTGATGGGAGAATGTGTGTTGACTTACCAGGCGGTC
LSFTASATPDMPVRVLVGEGGG



AGGGTAATCCTTGGGATGCTGGATTAGTCTATAATGGGGTACCGGTGGGC
AYRTAFEQGSAPLTGEPATREY



GAAGGTGAGAGTTACGTTTTGTCGTTTACAGCAAGTGCTACGCCGGATATG
AFTSNLTFPPDGDAPGQVAFHL



CCAGTAAGAGTCCTTGTGGGAGAAGGGGGTGGAGCTTATAGGACTGCTTT
GKAGAYEFCISQVSLTTSATPPP



TGAACAGGGATCTGCACCGCTTACTGGGGAGCCAGCAACGAGGGAGTACG
GYEPDTGPRVRVNQVGYLPFGP



CTTTCACTAGCAACCTTACGTTTCCGCCTGACGGCGATGCACCAGGTCAGG
KRATLVTDAAEPVAWELRDAD



TGGCATTTCACCTTGGAAAGGCTGGAGCATACGAATTTTGCATTTCACAAG
GVVVADGTSEPRGVEPSAAQAV



TAAGTTTAACGACTTCTGCAACACCTCCGCCAGGTTACGAACCTGACACTG
HVLDFSDVTTQGAGYTLVADGE



GACCGAGAGTTAGAGTAAATCAGGTCGGGTATTTACCATTCGGTCCGAAG
TSRPFDIDGDLYQQLRYDALNY



AGAGCAACACTTGTGACTGACGCAGCAGAACCGGTTGCTTGGGAATTAAG
FYLARSGTEIEADVVGEEYARE



GGATGCTGATGGTGTAGTTGTCGCAGATGGAACGAGTGAACCTAGAGGCG
AGHVGVAPNQGDTDVPCIGPRD



TTGAACCATCAGCTGCACAAGCTGTACATGTTTTAGACTTTTCGGATGTAA
YYDGWTCDYRLDVSGGWYDA



CTACGCAGGGAGCTGGCTATACACTTGTTGCTGACGGAGAAACGAGTAGA
GDHGKYVVNGGIAVGQLLQTY



CCGTTTGATATAGACGGTGATTTATACCAACAGTTAAGATACGACGCTTTG
ERALHAGTADALADGTLDVPEH



AATTATTTCTATCTTGCAAGAAGCGGAACTGAAATTGAAGCAGACGTCGTT
GNDVPDVLDEARWELEWMLSM



GGTGAAGAATACGCAAGGGAGGCAGGACACGTAGGCGTGGCACCAAACC
IVPEGEYAGMVHHKVHDEGWT



AAGGCGACACAGACGTGCCTTGTATTGGTCCTAGAGATTATTACGACGGA
GLPLLPADDPQARSLHRPSTAAT



TGGACTTGCGATTACAGGTTAGACGTTTCGGGAGGTTGGTACGACGCTGGT
LNLSAVAAQGARLLEPYDPQLA



GATCACGGAAAATACGTAGTCAACGGGGGCATTGCAGTGGGTCAATTACT
QTLLEAARTTWAAAQEHPALY



TCAGACTTATGAAAGGGCTTTGCATGCAGGGACAGCAGATGCTTTAGCAG
APGEAGADGGGAYNDSQVADE



ACGGCACGCTTGATGTTCCGGAACACGGTAATGATGTACCAGACGTCTTA
FYWAAAELYLTTGEDAFATAVT



GACGAGGCTAGGTGGGAGCTTGAATGGATGCTTTCGATGATTGTCCCTGA
TSPLHTADVFTADGFGWGSVAA



AGGAGAGTATGCTGGGATGGTTCATCATAAAGTTCACGACGAGGGATGGA
LGRLDLATVPNELPGLDAVQSS



CTGGTTTACCTTTGCTTCCTGCAGACGATCCGCAAGCTAGGAGTTTGCATA
VVEGAQEYLAAQAGQGFGSLYS



GGCCAAGCACAGCTGCTACACTTAATTTAAGCGCAGTTGCAGCACAGGGA
PPGGEYVWGSSSQVANNLVVV



GCTAGGCTTCTTGAACCTTACGATCCACAACTTGCTCAGACTCTTTTAGAG
ATAYDLTGDERFRAATLEGLDY



GCAGCTAGAACTACATGGGCAGCTGCACAAGAACACCCTGCTCTTTACGC
LFGRNALNQSYVTGWGEVASH



ACCTGGTGAGGCAGGGGCTGACGGCGGAGGCGCTTATAACGATAGTCAGG
QQHSRWFAHQLDPSLPSPPPGSL



TAGCTGACGAGTTTTATTGGGCTGCTGCAGAGCTTTACTTGACGACTGGCG
AGGPNSQAATWDPTTKAAFPDG



AGGACGCATTCGCAACGGCAGTCACTACGTCACCGCTTCATACTGCTGAC
CAPSACYVDEIQAWSTNELTVN



GTCTTTACGGCTGACGGCTTTGGGTGGGGCAGCGTTGCAGCTTTGGGTAGG
WNSALSWVASWVADQGSAEPV



CTTGACTTAGCTACAGTCCCTAATGAACTTCCGGGATTAGATGCTGTACAA
PTAPVVTRQPVDATVALGADAT



AGTTCAGTGGTTGAAGGCGCACAGGAATATTTGGCTGCACAGGCTGGACA
FTAEASGVPAPTVRWQVRAGRG



AGGTTTTGGAAGTCTTTATAGCCCACCGGGTGGCGAGTACGTGTGGGGTTC
WKDVAGATGTTLTVRATARTD



TAGTAGCCAAGTCGCAAACAATTTAGTGGTTGTTGCTACAGCTTATGATCT
GTRYRAVFTNAAGSVESAVVRL



TACAGGCGACGAGAGGTTCAGAGCAGCTACTCTTGAAGGACTTGATTACC
TVERAAPVVTQHPADVRARVGT



TTTTTGGTAGGAATGCTTTAAACCAAAGTTATGTCACTGGTTGGGGAGAGG
RAVFRAAADGYPTPCVVWQVR



TTGCTTCACACCAGCAACATTCTAGGTGGTTTGCACATCAATTGGATCCAT
WGGGSWRPIPWATSTTLSVPVT



CTTTGCCTTCGCCGCCTCCAGGCTCGCTTGCTGGCGGGCCGAATAGCCAGG
VLAAGTEYRAVFTNAVGTAATE



CTGCAACTTGGGACCCAACTACAAAGGCAGCTTTCCCTGACGGGTGCGCT
PAELAVQRPRS (SEQ ID NO: 129)



CCTAGCGCTTGCTACGTTGATGAAATACAGGCTTGGTCAACGAACGAGTT



AACGGTAAACTGGAACTCGGCTCTTAGTTGGGTCGCTTCATGGGTAGCTGA



TCAGGGGTCTGCAGAGCCAGTCCCGACGGCACCAGTTGTGACAAGACAAC



CTGTTGACGCAACAGTAGCTTTAGGAGCAGACGCAACTTTCACAGCAGAG



GCTTCAGGTGTGCCAGCTCCTACAGTTAGGTGGCAAGTTAGAGCAGGAAG



GGGGTGGAAGGACGTCGCTGGTGCAACAGGCACTACATTGACAGTGAGGG



CAACTGCTAGAACTGATGGGACGAGGTATAGAGCAGTATTTACTAACGCA



GCTGGGAGTGTGGAGAGCGCAGTTGTAAGGCTTACAGTCGAAAGAGCAGC



TCCAGTGGTTACACAACATCCAGCTGATGTTAGAGCAAGGGTAGGTACGA



GGGCAGTGTTTAGGGCAGCAGCTGACGGATATCCAACACCGTGTGTTGTTT



GGCAAGTCAGATGGGGGGGCGGTTCTTGGAGGCCAATTCCTTGGGCAACG



AGCACTACATTATCGGTACCAGTGACAGTACTTGCTGCAGGAACTGAATA



CAGGGCTGTTTTTACAAATGCAGTAGGTACTGCTGCAACAGAGCCTGCTG



AACTTGCAGTCCAAAGACCGAGGAGT (SEQ ID NO: 98)






Celulomonas

ATGCCTAGAACAACTCCAGCACCTGGACATCCAGCTAGGGGTGCAAGGAC
AAA56791



fimi Exo-

AGCACTTAGGACGACAAGAAGGAGAGCAGCTACGTTGGTAGTTGGGGCTA
MPRTTPAPGHPARGARTALRTT


glucanase
CGGTAGTCTTGCCTGCTCAAGCAGCAACAACTTTAAAAGAGGCAGCTGAT
RRRAATLVVGATVVLPAQAATT


(cex)
GGAGCTGGTAGAGACTTTGGCTTTGCTCTTGATCCAAATAGGTTATCGGAA
LKEAADGAGRDFGFALDPNRLS



GCACAGTACAAAGCAATTGCAGATTCTGAATTTAACTTAGTTGTGGCTGAG
EAQYKAIADSEFNLVVAENAMK



AATGCAATGAAATGGGATGCTACTGAACCTAGCCAAAATTCATTCTCGTTC
WDATEPSQNSFSFGAGDRVASY



GGAGCTGGCGACAGGGTGGCATCTTATGCAGCTGACACGGGCAAGGAACT
AADTGKELYGHTLVWHSQLPD



TTATGGACACACATTGGTTTGGCATAGCCAGTTACCAGACTGGGCAAAGA
WAKNLNGSAFESAMVNHVTKV



ACTTGAACGGTTCGGCATTTGAGTCAGCTATGGTAAATCACGTGACTAAA
ADHFEGKVASWDVVNEAFADG



GTTGCAGATCATTTTGAAGGCAAGGTAGCTTCATGGGATGTAGTGAACGA
DGPPQDSAFQQKLGNGYIETAF



GGCTTTCGCAGATGGAGATGGTCCTCCACAAGATAGCGCTTTCCAACAGA
RAARAADPTAKLCINDYNVEGI



AGTTGGGCAATGGATACATTGAAACGGCTTTCAGGGCAGCAAGGGCTGCA
NAKSNSLYDLVKDFKARGVPLD



GATCCTACAGCTAAGTTGTGTATAAACGATTACAATGTAGAAGGTATTAAT
CVGFQSHLIVGQVPGDFRQNLQ



GCAAAGAGTAATTCACTTTACGATTTGGTTAAAGACTTCAAAGCTAGGGG
RFADLGVDVRITELDIRMRTPSD



CGTCCCATTAGATTGCGTGGGATTTCAGTCTCATCTTATAGTTGGTCAAGT
ATKLATQAADYKKVVQACMQV



ACCTGGCGATTTTAGGCAAAACTTACAGAGATTTGCAGACTTGGGAGTGG
TRCQGVTVWGITDKYSWVPDV



ATGTTAGGATTACTGAACTTGATATAAGAATGAGAACACCAAGCGACGCT
FPGEGAALVWDASYAKKPAYA



ACTAAATTAGCAACACAGGCAGCTGATTATAAAAAGGTAGTCCAGGCATG
AVMEAFGASPTPTPTTPTPTPTT



TATGCAAGTGACAAGGTGCCAGGGTGTGACTGTGTGGGGTATTACAGATA
PTPTPTSGPAGCQVLWGVNQW



AATATTCATGGGTACCTGACGTGTTTCCAGGCGAGGGGGCAGCTCTTGTGT
NTGFTANVTVKNTSSAPVDGWT



GGGACGCTTCTTACGCTAAAAAGCCTGCATATGCTGCAGTCATGGAAGCA
LTFSFPSGQQVTQAWSSTVTQSG



TTCGGCGCTTCGCCAACACCAACTCCTACGACACCTACACCGACTCCAACA
SAVTVRNAPWNGSIPAGGTAQF



ACGCCGACGCCTACGCCAACTAGCGGCCCTGCTGGATGCCAAGTATTATG
GFNGSHTGTNAAPTAFSLNGTP



GGGGGTGAATCAGTGGAATACGGGCTTCACAGCTAATGTGACGGTAAAAA
CTVG (SEQ ID NO: 130)



ATACTTCGAGCGCTCCAGTAGATGGTTGGACATTAACATTTTCTTTTCCTA



GCGGACAACAAGTGACTCAGGCTTGGTCAAGTACAGTTACTCAATCTGGC



AGCGCAGTAACAGTGAGAAATGCTCCATGGAACGGTTCAATTCCTGCTGG



AGGCACTGCTCAGTTTGGTTTTAATGGATCTCACACAGGCACAAATGCTGC



ACCAACTGCTTTTTCTTTAAATGGAACACCTTGTACTGTAGGTCTCGAGTG



ATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGT



TTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTT



GAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCA



TAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCT



TTT (SEQ ID NO: 99)





Acido-
ATGCCGAGGGCATTAAGGAGAGTCCCGGGGTCAAGGGTTATGCTTAGAGT
ABK52387


thermus
GGGTGTAGTTGTGGCTGTATTGGCATTAGTTGCAGCTTTGGCTAATTTAGC
MPRALRRVPGSRVMLRVGVVV


cellulolyticus
AGTTCCTAGGCCAGCAAGAGCTGCTGGCGGAGGTTATTGGCACACAAGCG
AVLALVAALANLAVPRPARAA


glycoside
GCAGAGAGATATTAGATGCTAATAACGTGCCTGTTAGGATTGCAGGCATT
GGGYWHTSGREILDANNVPVRI


hydrolase,
AACTGGTTCGGATTTGAAACGTGTAATTACGTAGTTCACGGCCTTTGGAGC
AGINWFGFETCNYVVHGLWSR


family 5
AGAGACTATAGGAGTATGTTGGATCAAATTAAGTCATTAGGATACAATAC
DYRSMLDQIKSLGYNTIRLPYSD


(locus_tag =
AATAAGACTTCCATACAGCGATGACATTCTTAAGCCGGGGACGATGCCGA
DILKPGTMPNSINFYQMNQDLQ


“Acel_0614”)
ACTCGATAAACTTTTACCAGATGAATCAAGATTTACAGGGCTTGACGAGTT
GLTSLQVMDKIVAYAGQIGLRII


Cel5A
TACAAGTGATGGATAAAATTGTAGCATACGCTGGACAGATAGGTTTAAGA
LDRHRPDCSGQSALWYTSSVSE



ATAATTCTTGACAGGCATAGACCTGATTGCTCAGGTCAAAGTGCATTATGG
ATWISDLQALAQRYKGNPTVVG



TATACGAGTAGTGTCTCAGAAGCTACATGGATATCTGATTTGCAAGCACTT
FDLHNEPHDPACWGCGDPSIDW



GCACAGAGGTACAAGGGGAACCCAACAGTGGTGGGGTTTGATTTACACAA
RLAAERAGNAVLSVNPNLLIFVE



CGAGCCACATGATCCGGCTTGCTGGGGTTGTGGAGATCCTAGCATTGATTG
GVQSYNGDSYWWGGNLQGAG



GAGATTGGCTGCAGAGAGGGCTGGTAATGCTGTGCTTAGTGTAAATCCGA
QYPVVLNVPNRLVYSAHDYATS



ACTTATTGATATTTGTGGAAGGCGTTCAAAGTTATAACGGTGACTCATACT
VYPQTWFSDPTFPNNMPGIWNK



GGTGGGGTGGAAATCTTCAGGGCGCTGGTCAATATCCTGTAGTTTTAAACG
NWGYLFNQNIAPVWLGEFGTTL



TACCGAACAGACTTGTATATAGCGCTCACGACTATGCAACTTCAGTTTATC
QSTTDQTWLKTLVQYLRPTAQY



CTCAGACATGGTTTAGTGACCCAACTTTTCCTAATAACATGCCAGGAATTT
GADSFQWTFWSWNPDSGDTGGI



GGAATAAGAACTGGGGCTACCTTTTTAACCAAAACATAGCACCAGTGTGG
LKDDWQTVDTVKDGYLAPIKSS



TTAGGTGAGTTCGGTACTACTTTGCAGTCTACAACAGACCAGACTTGGCTT
IFDPVGASASPSSQPSPSVSPSPSP



AAAACATTAGTGCAGTATTTAAGACCAACTGCACAATACGGCGCTGATAG
SPSASRTPTPTPTPTASPTPTLTPT



CTTTCAGTGGACTTTTTGGAGTTGGAATCCTGACAGTGGCGATACTGGGGG
ATPTPTASPTPSPTAASGARCTA



AATATTGAAGGATGATTGGCAAACTGTTGATACGGTGAAAGATGGTTATC
SYQVNSDWGNGFTVTVAVTNS



TTGCACCTATAAAAAGTAGCATATTCGACCCTGTGGGAGCTAGTGCTAGCC
GSVATKTWTVSWTFGGNQTITN



CTTCATCTCAACCTAGCCCATCTGTTTCACCTAGTCCAAGCCCGTCACCAA
SWNAAVTQNGQSVTARNMSYN



GCGCAAGTAGAACTCCGACTCCTACGCCAACACCGACTGCTTCTCCAACTC
NVIQPGQNTTFGFQASYTGSNA



CTACGTTGACTCCGACGGCTACGCCGACTCCTACGGCAAGCCCGACGCCA
APTVACAAS (SEQ ID NO: 131)



AGTCCAACGGCTGCTTCTGGAGCAAGATGTACGGCTTCTTATCAGGTAAAT



TCTGACTGGGGTAACGGGTTTACGGTGACAGTCGCTGTGACTAATTCAGGT



TCGGTAGCTACAAAGACTTGGACAGTAAGCTGGACTTTTGGAGGCAACCA



AACAATTACAAACTCTTGGAACGCTGCAGTTACTCAAAACGGTCAGTCTGT



GACAGCAAGAAACATGTCGTATAATAACGTAATACAGCCTGGCCAAAACA



CTACATTTGGATTCCAGGCTTCTTATACTGGATCAAACGCAGCTCCGACAG



TGGCATGCGCTGCATCACTCGAGTGATAAAACGAAAGGCTCAGTCGAAAG



ACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAG



GACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAG



GGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTAAGCAG



AAGGCCATCCTGACGGATGGCCTTTT (SEQ ID NO: 100)





Acido-
ATGCCTGGGCTTAGAAGGAGACTTAGGGCTGGTATAGTTTCTGCAGCTGC
YP_872376


thermus
ATTGGGCTCTTTAGTTAGCGGGCTTGTGGCAGTCGCTCCAGTAGCACATGC
MPGLRRRLRAGIVSAAALGSLV


cellulolyticus
TGCAGTAACTTTAAAAGCTCAGTACAAAAACAACGATAGTGCACCGTCGG
SGLVAVAPVAHAAVTLKAQYK


glycoside
ATAATCAGATTAAACCAGGGTTGCAACTTGTGAATACGGGCAGCTCTAGC
NNDSAPSDNQIKPGLQLVNTGSS


hydrolase
GTCGATTTGAGTACTGTAACGGTTAGGTATTGGTTTACTAGGGATGGAGGT
SVDLSTVTVRYWFTRDGGSSTL


family
TCAAGTACATTAGTATATAACTGTGACTGGGCTGCAATGGGTTGCGGTAAC
VYNCDWAAMGCGNIRASFGSV


protein
ATTAGGGCATCGTTCGGCAGCGTGAATCCAGCAACACCTACAGCAGATAC
NPATPTADTYLQLSFTGGTLAA


(locus_tag =
GTACCTTCAGTTGAGTTTTACTGGAGGTACGTTAGCTGCTGGTGGGTCGAC
GGSTGEIQNRVNKSDWSNFDET


“Acel_0617”)
GGGGGAAATTCAAAACAGAGTTAATAAATCGGACTGGTCAAACTTTGACG
NDYSYGTNTTFQDWTKVTVYV



AGACAAACGATTATTCATACGGTACTAACACGACATTTCAAGACTGGACG
NGVLVWGTEPSGATASPSASAT



AAAGTCACTGTCTACGTAAATGGCGTGCTTGTATGGGGAACTGAGCCATC
PSPSSSPTTSPSSSPSPSSSPTPTPS



AGGTGCAACAGCATCACCGTCTGCTAGCGCAACTCCGAGCCCTTCATCTAG
SSSPPPSSNDPYIQRFLTMYNKIH



CCCGACGACAAGTCCTTCGAGTTCTCCAAGCCCTTCAAGTTCTCCGACTCC
DPANGYFSPQGIPYHSVETLIVE



GACACCTTCGAGTAGCTCTCCACCTCCATCATCGAACGACCCGTACATACA
APDYGHETTSEAYSFWLWLEAT



GAGGTTTTTAACAATGTACAATAAAATTCACGATCCTGCTAATGGCTATTT
YGAVTGNWTPFNNAWTTMETY



TAGCCCTCAGGGGATACCTTACCATAGCGTTGAAACGTTAATTGTCGAAGC
MIPQHADQPNNASYNPNSPASY



ACCAGACTACGGGCACGAAACGACTTCAGAGGCTTATTCGTTCTGGCTTTG
APEEPLPSMYPVAIDSSVPVGHD



GTTAGAAGCTACGTACGGGGCTGTGACAGGTAACTGGACACCATTTAATA
PLAAELQSTYGTPDIYGMHWLA



ACGCATGGACGACTATGGAAACGTACATGATTCCTCAGCACGCAGACCAA
DVDNIYGYGDSPGGGCELGPSA



CCTAACAACGCATCGTACAATCCTAATAGTCCGGCTAGCTATGCACCAGA
KGVSYINTFQRGSQESVWETVT



AGAGCCGCTTCCATCTATGTATCCAGTAGCTATAGATTCATCGGTTCCGGT
QPTCDNGKYGGAHGYVDLFIQG



AGGACATGATCCTTTAGCAGCTGAGTTGCAGTCTACATACGGTACGCCTGA
STPPQWKYTDAPDADARAVQA



CATTTACGGAATGCACTGGTTGGCAGATGTCGATAACATTTACGGATATGG
AYWAYTWASAQGKASAIAPTIA



CGACAGCCCGGGTGGTGGCTGTGAACTTGGCCCTTCAGCTAAAGGAGTGT
KAAKLGDYLRYSLFDKYFKQV



CGTACATTAATACTTTTCAAAGAGGTAGTCAGGAAAGTGTTTGGGAAACA
GNCYPASSCPGATGRQSETYLIG



GTAACGCAGCCAACATGTGATAACGGAAAGTACGGGGGAGCACACGGTT
WYYAWGGSSQGWAWRIGDGA



ACGTTGACTTATTTATACAGGGCAGCACACCACCTCAATGGAAATACACA
AHFGYQNPLAAWAMSNVTPLIP



GACGCTCCTGACGCAGACGCAAGGGCTGTACAGGCAGCTTATTGGGCTTA
LSPTAKSDWAASLQRQLEFYQW



CACTTGGGCTTCAGCACAAGGTAAGGCTTCAGCTATTGCACCTACTATAGC
LQSAEGAIAGGATNSWNGNYGT



TAAGGCTGCAAAATTGGGAGACTATTTGAGATACAGCTTATTCGACAAAT
PPAGDSTFYGMAYDWEPVYHD



ATTTTAAACAAGTCGGAAATTGCTACCCAGCTAGTTCTTGCCCAGGTGCAA
PPSNNWFGFQAWSMERVAEYY



CGGGGAGACAGTCAGAGACTTACTTGATAGGGTGGTATTACGCTTGGGGA
YVTGDPKAKALLDKWVAWVKP



GGGAGTTCTCAGGGATGGGCATGGAGAATAGGTGATGGGGCTGCTCACTT
NVTTGASWSIPSNLSWSGQPDT



CGGATATCAGAACCCTCTTGCTGCATGGGCAATGAGCAATGTGACACCGC
WNPSNPGTNANLHVTITSSGQD



TTATTCCTTTAAGCCCAACGGCTAAGTCAGACTGGGCAGCTTCGCTTCAAA
VGVAAALAKTLEYYAAKSGDT



GACAGTTGGAGTTCTACCAATGGTTACAGAGCGCTGAGGGTGCAATTGCT
ASRDLAKGLLDSIWNNDQDSLG



GGAGGGGCTACTAACAGCTGGAATGGCAATTATGGCACACCTCCAGCTGG
VSTPETRTDYSRFTQVYDPTTGD



CGATAGTACATTCTACGGGATGGCTTATGATTGGGAGCCTGTTTATCACGA
GLYIPSGWTGTMPNGDQIKPGA



CCCACCTAGCAACAATTGGTTTGGATTCCAGGCATGGTCGATGGAGAGGG
TFLSIRSWYTKDPQWSKVQAYL



TAGCTGAGTACTATTACGTCACGGGTGATCCGAAAGCAAAGGCTTTGCTTG
NGGPAPTFNYHRFWAESDFAM



ACAAATGGGTGGCTTGGGTTAAACCAAATGTAACTACAGGAGCATCTTGG
ANADFGMLFPSGSPSPTPSPTPTS



AGCATTCCTAGTAACTTATCTTGGTCAGGGCAACCGGACACGTGGAACCC
SPSPTPSSSPTPSPSPSPTGDTTPP



AAGTAATCCTGGCACTAACGCTAATTTGCATGTCACAATTACGAGTAGCG
SVPTGLQVTGTTTSSVSLSWTAS



GTCAGGATGTGGGAGTGGCAGCAGCTTTAGCTAAAACTTTAGAGTATTAC
TDNVGVAHYNVYRNGTLVGQP



GCTGCAAAGTCAGGCGATACAGCTAGTAGAGACTTGGCTAAAGGTCTTTT
TATSFTDTGLAAGTSYTYTVAA



AGATAGCATATGGAATAACGATCAAGATAGCCTTGGTGTATCAACACCAG
VDAAGNTSAQSSPVTATTASPSP



AGACAAGAACGGATTACAGTAGATTCACACAGGTTTATGATCCTACTACA
SPSPSPTPTSSPSPTPSPTPSPTSTS



GGCGATGGCCTTTACATTCCGAGCGGTTGGACGGGAACTATGCCGAACGG
GASCTATYVVNSDWGSGFTTTV



GGATCAAATAAAGCCTGGAGCTACATTCTTATCTATAAGAAGCTGGTATA
TVTNTGTRATSGWTVTWSFAG



CAAAAGATCCACAGTGGTCGAAAGTACAGGCTTACTTGAACGGTGGCCCT
NQTVTNYWNTALTQSGKSVTA



GCACCGACGTTTAATTATCATAGGTTTTGGGCTGAAAGTGACTTCGCAATG
KNLSYNNVIQPGQSTTFGFNGSY



GCTAACGCAGATTTTGGTATGCTTTTTCCAAGCGGATCGCCATCACCGACG
SGTNTAPTLSCTAS (SEQ ID



CCAAGTCCAACGCCGACTTCTAGTCCTTCACCGACACCTAGCAGTTCTCCT
NO: 132)



ACGCCGAGTCCTAGCCCATCGCCGACGGGTGACACTACTCCTCCGTCGGT



GCCGACTGGTTTACAGGTCACTGGCACTACGACTTCGAGTGTTTCTTTGTC



ATGGACAGCTTCGACAGACAACGTTGGAGTAGCACATTATAATGTGTATA



GGAATGGAACACTTGTAGGACAACCTACTGCAACGAGTTTTACGGATACT



GGTTTAGCTGCAGGGACATCGTATACGTACACTGTAGCTGCAGTCGATGC



AGCTGGGAATACGAGCGCTCAGTCAAGTCCAGTGACAGCAACAACGGCAA



GTCCGAGTCCTAGCCCATCACCTAGTCCGACTCCGACGAGTAGCCCTTCGC



CGACACCGTCACCTACACCGTCACCGACAAGCACGAGTGGGGCAAGCTGT



ACTGCTACATATGTTGTAAATTCAGATTGGGGCTCGGGTTTCACGACTACA



GTCACGGTGACTAATACTGGCACAAGAGCAACTTCGGGCTGGACGGTGAC



TTGGAGTTTCGCTGGGAACCAAACAGTCACTAACTACTGGAACACGGCTTT



GACACAAAGCGGAAAGAGTGTAACGGCAAAAAATCTTAGTTATAATAACG



TAATTCAGCCGGGACAATCGACAACGTTTGGGTTTAATGGCAGTTATAGC



GGTACTAACACGGCACCAACATTGTCTTGCACTGCAAGT (SEQ ID NO: 101)





Acido-
ATGGGAACATATCCTATAAGATCGGTCAGCGGTGGCGTTGCACTTGCTGC
ABK51910 AND YP_871896


thermus
ATGCGCTGTTCTTACTATGACAACGGCTGCAGCAGCTACGCCTATTCACGA
MGTYPIRSVSGGVALAACAVLT


cellulolyticus
TGCTAGTTCGCCTCACACTATTCCACCTCATGCTAGGTTGTACACACCGCC
MTTAAAATPIHDASSPHTIPPHA


Biomass
ACCGGACAAAGGAGCAATTAAGCAAATAACAGATTTACTTAAAGCTAGGG
RLYTPPPDKGAIKQITDLLKARD


degrading
ACGTCAGGGACGCAAGATTGATTGCTGAGATGATAAGCACTCCTCAGGCA
VRDARLIAEMISTPQAVWFTGG


enzyme
GTTTGGTTTACGGGGGGTACACCGGATCAGGTGAGAAGGGACGTCCACAG
TPDQVRRDVHRVVTKAAAHHAI


(locus_tag =
AGTTGTTACTAAAGCAGCTGCACACCACGCAATTCCTGTGTTAGTTGCTTA
PVLVAYNIPFRDCSQYSAGGAV


“Acel_0135”)
CAATATACCGTTTAGAGATTGCTCACAGTACAGCGCTGGAGGCGCTGTTG
DTAAYEAWIDGFAAGIGDKRAI



ATACAGCAGCATATGAGGCTTGGATAGATGGCTTTGCAGCAGGCATAGGA
VLLEPDSLGIIPYNTDINGNAEW



GATAAGAGAGCTATAGTTCTTTTGGAACCTGATAGTTTAGGCATAATACCA
CKPDLSGTGLTPDEANQARYDQ



TACAACACAGATATTAATGGAAATGCTGAGTGGTGCAAGCCAGACCTTTC
LNYAVDALEAHRNVSVYLDGT



AGGTACAGGCCTTACACCTGACGAGGCTAACCAAGCTAGATATGATCAAT
HSGWLGVGDIAQRLVRAGVQR



TAAATTATGCAGTGGACGCTCTTGAAGCACACAGAAATGTATCTGTTTACC
AQGFFVNVSNYQTTERQIKYGT



TTGATGGTACGCATAGCGGTTGGTTAGGCGTAGGAGATATAGCTCAAAGA
WISECIAFANDPEEGGWRLGHY



CTTGTGAGGGCTGGTGTTCAGAGAGCTCAAGGCTTTTTTGTAAACGTGAGT
SWCASQYYPANPNDFSTWVQT



AATTATCAAACTACAGAGAGGCAGATAAAGTACGGAACATGGATTTCAGA
DQWYASNLGTAVPTTHFVIDTS



ATGCATAGCATTTGCAAATGACCCAGAAGAGGGTGGGTGGAGATTAGGCC
RNGRGPNDMTAYAAAPYNQPA



ATTATTCTTGGTGTGCTAGCCAATACTATCCTGCAAATCCTAACGACTTTTC
SVISALQGGSWCNPPGRGLGLRP



AACTTGGGTTCAGACAGATCAGTGGTACGCTAGTAATTTGGGTACTGCAGT
TVNTGVPLLDAYLWVKIPGESD



ACCAACAACTCACTTCGTCATTGACACTTCTAGAAACGGAAGGGGTCCGA
GQCDAAGGARAWDYSAYTEPG



ACGATATGACAGCTTATGCTGCAGCTCCTTATAACCAGCCTGCTAGCGTAA
WPTDPSQQALFDPLWGLYDPPA



TATCGGCTCTTCAGGGAGGAAGTTGGTGCAACCCACCTGGCAGAGGTTTA
GQWFPQQALQLAQLAVPPLQPQ



GGATTGAGGCCTACAGTGAATACAGGCGTTCCTCTTTTAGACGCTTACCTT
WPVPPVHH (SEQ ID NO: 133)



TGGGTAAAGATTCCAGGTGAATCTGATGGACAGTGCGATGCAGCTGGCGG



TGCTAGGGCTTGGGATTATAGCGCTTACACTGAACCTGGATGGCCAACAG



ACCCTTCACAACAGGCTTTATTCGATCCTTTATGGGGCCTTTACGACCCGC



CAGCAGGGCAATGGTTTCCTCAACAGGCTTTACAACTTGCTCAACTTGCAG



TGCCTCCGTTGCAACCACAGTGGCCTGTTCCACCAGTCCATCAC (SEQ ID



NO: 102)






Butyrivibrio

ATGCATAAGAGCAAGTGTATTAAAAGGGTCTTTACATTTTTGTTAGCACTT
P20847



fibrisolvens

TTTGTTTTTGTCATGGCAATTCCTGCAACTAAGGTCAGTGCTGCTGGAGGT
MHKSKCIKRVFTFLLALFVFVM


Cellulase
ACGGATAGGAGCGCTACTCAAGTAGTTTCTGACATGAGAGTTGGCTGGAA
AIPATKVSAAGGTDRSATQVVS


1(end1)
TATTGGTAACTCACTTGACAGTTTTGGTCAGAGCTATAATTTTCCATACAC
DMRVGWNIGNSLDSFGQSYNFP



GAGCCTTAATGAAACGTATTGGGGCAACCCGGCAACAACTAAGGCTTTAA
YTSLNETYWGNPATTKALIDEV



TTGACGAGGTCGCAAAGGCTGGATTTAATACAATAAGGATTCCTGTAAGT
AKAGFNTIRIPVSWGQYTTGSD



TGGGGACAATACACGACAGGCAGTGACTACCAGATTCCAGATTTTGTCAT
YQIPDFVMNRVKEVVDYCIVND



GAATAGGGTAAAAGAGGTGGTTGACTATTGTATTGTTAACGATATGTACG
MYVILNSHHDINSDYCFYVPNN



TTATTCTTAACAGCCACCATGATATAAACAGCGACTATTGCTTTTACGTCC
ANKDRSEKYFKSIWTQIAKEFK



CGAATAACGCAAACAAGGACAGGTCTGAAAAATACTTTAAGAGCATTTGG
NYDYHLVFETMNEPRLVGHGEE



ACGCAGATAGCTAAGGAGTTTAAGAACTACGATTACCACCTTGTATTTGA
WWFPRNNPSNDIREAVACINDY



AACGATGAATGAGCCTAGATTAGTCGGACATGGTGAAGAATGGTGGTTTC
NQVALDAIRATGGNNATRCVM



CGAGGAATAACCCATCAAATGACATTAGGGAAGCAGTAGCTTGCATTAAT
VPGYDASIEGCMTDGFKMPNDT



GACTATAACCAAGTTGCATTAGACGCTATTAGGGCAACAGGCGGCAATAA
ASGRLILSVHAYIPYYFALASDT



CGCAACTAGATGTGTAATGGTTCCAGGTTACGACGCATCTATTGAAGGCTG
YVTRFDDNLKYDIDSFFNDLNS



CATGACAGACGGATTTAAAATGCCGAACGATACGGCTTCAGGTAGGTTGA
KFLSRNIPVVVGETSATNRNNTA



TTCTTTCAGTACACGCATACATACCGTATTACTTTGCTTTGGCATCAGACA
ERVKWADYYWGRAARYSNVA



CATACGTGACTAGGTTTGACGATAACCTTAAATATGACATAGACAGTTTTT
MVLWDNNIYQNNSAGSDGECH



TTAATGACCTTAATTCTAAATTTTTGAGCAGGAACATTCCAGTCGTGGTCG
MYIDRNSLQWKDPEIISTIMKHV



GCGAAACATCTGCAACAAACAGGAACAATACGGCTGAAAGAGTTAAATG
DGTPATINGKEIPSTEQPDPTPVD



GGCAGATTATTACTGGGGAAGAGCTGCAAGATACAGTAACGTTGCTATGG
PDPTPVDPDPTPVDPDPTPVDPD



TTTTATGGGATAACAACATTTACCAGAATAACAGCGCTGGTTCAGACGGA
PQPVDPTPVSGALKAEYTINNW



GAGTGTCACATGTACATAGATAGGAACTCACTTCAGTGGAAAGATCCTGA
GSGYQVLIKVKNDSASRVDGWT



AATTATAAGTACTATTATGAAGCACGTGGACGGAACTCCAGCAACGATTA
LKISKSEVKIDSSWCVNIAEEGG



ACGGAAAAGAAATACCGTCTACTGAACAACCTGATCCAACACCGGTAGAT
YYVITPMSWNSSLEPSASVDFGI



CCTGACCCAACACCAGTAGACCCTGATCCGACGCCGGTTGATCCAGACCC
QGSGSIGTSVNISVQ (SEQ ID



TACACCAGTTGATCCTGATCCGCAACCAGTCGATCCGACGCCTGTTTCAGG
NO: 134)



AGCATTGAAGGCTGAATACACGATTAACAACTGGGGCAGCGGTTATCAGG



TTCTTATTAAAGTCAAAAATGATAGCGCTTCTAGAGTGGATGGATGGACG



CTTAAGATTTCTAAATCAGAGGTTAAGATAGATTCTAGTTGGTGCGTAAAT



ATAGCTGAAGAAGGCGGTTATTACGTTATAACTCCTATGTCATGGAACAGT



AGTTTGGAGCCATCTGCAAGTGTTGACTTTGGTATTCAGGGAAGCGGCAGT



ATAGGAACAAGTGTCAACATATCTGTGCAA (SEQ ID NO: 103)






Anaero-

GGATCATTTAATTATGGTGAAGCATTACAAAAAGCTATAATGTTTTACGAG
CAB06786



cellum

TTTCAGATGTCTGGCAAGTTGCCTAACTGGGTAAGAAACAACTGGAGGGG
GSFNYGEALQKAIMFYEFQMSG



thermo-

AGATAGCGCATTGAAAGACGGTCAAGATAATGGCTTAGACCTTACTGGAG
KLPNWVRNNWRGDSALKDGQD



philum 1,4-

GTTGGTTTGATGCTGGCGATCATGTTAAGTTTAATTTGCCAATGAGTTATA
NGLDLTGGWFDAGDHVKFNLP


beta-
CTGGAACGATGTTATCATGGGCAGTGTACGAATATAAAGACGCTTTTGTCA
MSYTGTMLSWAVYEYKDAFVK


glucanase
AAAGCGGTCAGCTTGAGCACATTTTGAATCAAATAGAGTGGGTAAATGAT
SGQLEHILNQIEWVNDYFVKCH


(celA)
TACTTTGTGAAGTGTCACCCGTCTAAATATGTCTACTACTACCAGGTTGGC
PSKYVYYYQVGDGSKDHAWW



GATGGAAGTAAAGATCATGCATGGTGGGGTCCTGCTGAAGTAATGCAAAT
GPAEVMQMERPSFKVTQSSPGS



GGAAAGACCATCATTTAAGGTTACACAGTCTAGCCCGGGCAGTACTGTAG
TVVTETAASLAAASIVLKDRNPT



TGACAGAAACGGCAGCTTCATTAGCAGCTGCATCTATTGTTCTTAAAGACA
KAATYLQHAKELYEFAEVTKSD



GGAATCCTACTAAGGCTGCAACATATTTGCAACATGCTAAAGAATTATAT
AGYTAANGYYNSWSGFYDELS



GAGTTTGCAGAAGTCACAAAAAGCGATGCTGGATATACGGCAGCAAATGG
WAAVWLYLATNDSTYLTKAES



TTATTATAACTCATGGAGTGGCTTTTACGATGAACTTTCTTGGGCTGCAGT
YVQNWPKISGSNTIDYKWAHC



ATGGTTGTATTTAGCTACTAATGACAGCACATACCTTACGAAGGCAGAGTC
WDDVHNGAALLLAKITGKDIYK



ATATGTTCAAAATTGGCCAAAAATAAGTGGATCTAACACTATTGATTACA
QIIESHLDYWITGYNGERIKYTP



AATGGGCTCATTGCTGGGATGACGTGCACAATGGTGCAGCTTTATTGCTTG
KGLAWLDQWGSLRYATTTAFL



CAAAGATAACAGGCAAAGATATTTATAAACAGATAATAGAAAGCCATTTA
AFVYSDWVGCPSTKKEIYRKFG



GATTATTGGATTACGGGATACAATGGTGAAAGAATAAAGTATACTCCTAA
ESQIDYALGSAGRSFVVGFGTNP



AGGATTGGCTTGGCTTGACCAATGGGGCTCATTAAGGTACGCAACAACAA
PKRPHHRTAHSSWADSQSIPSYH



CGGCTTTTTTGGCATTTGTATATAGTGATTGGGTTGGTTGTCCATCTACTAA
RHTLYGALVGGPGSDDSYTDDI



GAAAGAGATTTATAGAAAATTTGGAGAGAGCCAGATAGATTACGCTCTTG
SNYVNNEVACDYNAGFVGALA



GCTCAGCTGGTAGATCTTTTGTCGTAGGATTTGGCACAAACCCGCCTAAGA
KMYQLYGGNPIPDFKAIETPTND



GGCCACATCACAGAACTGCTCATTCAAGTTGGGCAGACAGCCAATCTATT
EFFVEAGINASGTNFIEIKAIVNN



CCTTCATATCACAGGCACACTTTATACGGTGCTTTGGTGGGAGGCCCAGGT
QSGWPAKATDKLKFRYFVDLSE



AGTGATGATAGCTATACAGACGATATATCTAATTACGTTAATAACGAAGT
LIKAGYSPNQLTLSTNYNQGAK



AGCATGCGATTATAATGCAGGATTTGTCGGCGCTCTTGCAAAAATGTATCA
VSGPYVWDASKNIYYILVDFTG



GTTATACGGTGGAAATCCGATACCTGACTTTAAAGCTATTGAAACGCCAA
TLIYPGGQDKYKKEVQFRIAAPQ



CTAATGATGAATTTTTTGTGGAAGCAGGCATAAACGCTTCAGGAACAAAT
NVQWDNSNDYSFQDIKGVSSGS



TTTATTGAGATAAAGGCAATTGTTAATAACCAAAGTGGTTGGCCTGCTAAA
VVKTKYIPLYDGDVKVWGDGP



GCAACGGATAAATTGAAGTTTAGATATTTTGTAGACCTTAGCGAATTAATA
GTSGATPTPTATATPTPTPTVTPT



AAAGCTGGATACTCTCCAAATCAGTTAACTTTGTCAACAAATTATAACCAA
PTPTPTSTATPTPTPTPTVTPTPTP



GGCGCAAAGGTTAGTGGTCCGTACGTATGGGATGCTAGCAAAAATATTTA
TPTATPTSTPTPTSTPSSTPVAGG



TTATATACTTGTCGATTTTACGGGAACTTTAATATACCCTGGCGGTCAAGA
QIKVLYANKETNSTTNTIRPWLK



CAAATATAAGAAAGAGGTGCAGTTTAGAATTGCAGCTCCACAAAATGTTC
VVNTGSSSIDLSRVTIRYWYTVD



AGTGGGATAACTCTAATGACTACTCATTTCAGGATATAAAGGGAGTCAGT
GDKAQSAISDWAQIGASNVTFK



AGCGGCTCTGTAGTGAAAACAAAATATATTCCTTTGTACGACGGTGACGTT
FVKLSSSVSGADYYLEIGFKSGA



AAGGTCTGGGGAGATGGCCCGGGTACATCTGGAGCTACGCCGACTCCAAC
GQLQAGKDTGEIQIRFNKSDWS



AGCAACGGCAACGCCTACTCCGACACCTACTGTTACTCCTACGCCGACAC
NYNQGNDWSWMQSMTNYGEN



CTACGCCGACTTCTACTGCAACTCCGACGCCTACGCCTACTCCAACGGTGA
VKVTAYIDGVLVWGQEPSGATP



CACCGACTCCTACGCCAACGCCTACTGCAACACCGACAAGCACGCCAACA
TPTATPAPTVTPTPTPTPTSTPTA



CCAACTTCTACGCCATCAAGCACACCGGTTGCTGGCGGACAGATTAAAGT
TPTATPTPTPTPSSTPVAGGQIKV



CTTGTACGCAAATAAGGAGACTAATTCTACAACGAACACGATTAGGCCAT
LYANKETNSTTNTIRPWLKVVN



GGTTAAAAGTGGTCAATACAGGATCATCTTCAATAGACTTATCTAGGGTA
TGSSSDDLSRVTIRYWYTVDGDK



ACGATTAGATACTGGTATACGGTTGACGGCGATAAAGCACAAAGCGCTAT
AQSAISDWAQIGASNVTFKFVK



ATCTGACTGGGCACAGATTGGTGCAAGTAACGTTACGTTTAAATTTGTAAA
LSSSVSGADYYLEIGFKSGAGQL



GTTATCATCTAGTGTTTCTGGAGCAGATTATTACCTTGAAATAGGCTTTAA
QAGKDTGEIQIRFNKSDWSNYN



AAGCGGAGCAGGACAGTTACAAGCTGGAAAGGATACGGGCGAGATTCAA
QGNDWSWMQSMTNYGENVKV



ATAAGGTTTAATAAAAGCGATTGGTCTAATTATAACCAAGGAAACGACTG
TAYIDGVLVWGQEPSGATPTPT



GTCATGGATGCAGAGCATGACAAACTATGGCGAAAATGTGAAAGTAACTG
ATPAPTVTPTPTPTPTSTPTATPT



CTTATATTGATGGAGTATTAGTGTGGGGACAAGAACCAAGCGGTGCTACA
ATPTPTPTPSSTPSVVGEYGQRF



CCTACGCCAACTGCTACGCCTGCACCGACAGTAACTCCTACGCCGACACC
MWLWNKIHDPANGYFNQDGIP



AACACCGACGAGTACACCTACGGCAACTCCGACTGCTACGCCGACACCAA
YHSVETLICERPDYGHLTTSEAF



CTCCAACGCCGAGCTCTACTCCTGTGGCAGGCGGTCAAATAAAGGTACTTT
SYYVWLEAVYGKLTGDWSKFK



ATGCTAACAAAGAAACGAACAGCACTACAAATACAATAAGACCGTGGCTT
TAWDTLEKYMIPSAEDQPMRSY



AAGGTCGTAAACACTGGCAGTTCAAGTATTGATTTGAGCAGAGTTACAAT
DPNKPATYAGEWETPDKYPSPL



AAGGTATTGGTACACAGTGGATGGAGACAAGGCTCAGTCAGCAATAAGCG
EFNVPVGKDPLHNELVSTYGST



ATTGGGCTCAAATAGGCGCTTCAAATGTGACGTTTAAATTTGTAAAATTGA
LMYGMHWLMDVDNWYGYGK



GTAGTTCAGTCAGCGGCGCTGACTACTATTTAGAGATTGGATTTAAGTCTG
RGDGVSRASFINTFQRGPEESVW



GTGCTGGTCAACTTCAGGCTGGTAAAGACACTGGTGAAATACAGATTAGA
ETVPHPSWEEFKWGGPNGFLDL



TTTAACAAGTCAGATTGGAGTAACTATAATCAAGGAAATGATTGGAGTTG
FIKDQNYSKQWRYTDAPDADA



GATGCAGTCTATGACGAATTACGGAGAGAACGTAAAGGTTACAGCATACA
RAIQATYWAKVWAKEQGKFNE



TAGACGGCGTGCTTGTATGGGGTCAGGAACCTTCAGGTGCAACTCCGACT
ISSYVAKAARMGDYLRYAMFD



CCAACAGCAACGCCGGCTCCTACGGTTACACCGACTCCTACGCCGACTCCT
KYFKPLGCQDKNAAGGTGYDS



ACGTCAACGCCGACTGCTACACCTACAGCAACACCAACGCCTACTCCTAC
AHYLLSWYYAWGGALDGAWS



ACCTTCTTCAACGCCTAGCGTTGTAGGTGAATACGGACAGAGATTTATGTG
WKIGSSHVHFGYQNPMAAWAL



GTTGTGGAATAAAATTCACGATCCGGCTAACGGCTATTTTAATCAAGATGG
ANDSDMKPKSPNGASDWAKSL



TATACCATATCACTCTGTCGAGACTCTTATTTGTGAAAGACCTGACTACGG
KRQIEFYRWLQSAEGAIAGGAT



ACACTTAACAACATCAGAAGCATTTAGTTATTACGTGTGGTTGGAGGCTGT
NSWNGRYEKYPAGTATFYGMA



TTACGGCAAGTTGACGGGTGATTGGAGCAAATTTAAAACTGCATGGGATA
YEPNPVYHDPGSNTWFGFQAWS



CATTAGAAAAGTACATGATACCGTCTGCTGAGGACCAACCAATGAGGTCA
MQRVVEYYYVTGDKDAGALLE



TACGATCCTAATAAACCAGCAACTTACGCTGGAGAGTGGGAAACACCTGA
KWVSWVKSVVKLNSDGTFAIPS



TAAATACCCGAGTCCATTGGAATTTAACGTACCTGTAGGTAAGGACCCACT
TLDWKRQPDTWNGAYTGNSNL



TCATAATGAGTTAGTTAGCACGTATGGATCTACTTTGATGTACGGCATGCA
HVKVVDYGTDLGITASLANALL



CTGGCTTATGGATGTAGATAATTGGTATGGTTACGGAAAAAGAGGCGACG
YYSAGTKKYGVFDEGAKNLAK



GTGTCTCAAGGGCAAGTTTTATTAACACATTTCAGAGAGGACCTGAAGAA
ELLDRMWKLYRDEKGLSAPEK



AGCGTGTGGGAGACAGTTCCGCATCCATCTTGGGAAGAATTTAAGTGGGG
RADYKRFFEQEVYIPAGWIGKM



CGGTCCTAATGGATTTTTAGATTTATTTATAAAAGATCAAAATTATTCAAA
PNGDVIKSGVKFIDIRSKYKQDP



ACAGTGGAGATATACGGACGCACCTGATGCTGATGCAAGGGCTATTCAAG
DWPKLEAAYKSGQAPEFRYHRF



CAACTTACTGGGCTAAGGTATGGGCAAAAGAGCAGGGCAAATTTAATGAA
WAQCDIAIANATYEILFGNQ



ATAAGTAGCTACGTGGCTAAGGCAGCTAGAATGGGTGACTACTTGAGGTA
(SEQ ID NO: 135)



CGCAATGTTTGATAAATATTTTAAACCACTTGGATGCCAAGATAAGAACG



CTGCAGGCGGTACAGGATACGACTCTGCTCACTATTTACTTTCATGGTACT



ACGCATGGGGCGGTGCTTTAGACGGAGCATGGAGTTGGAAAATAGGAAGC



TCTCACGTTCATTTTGGCTACCAGAATCCTATGGCTGCATGGGCATTGGCT



AACGATTCAGATATGAAGCCGAAAAGTCCAAACGGTGCAAGCGATTGGGC



TAAATCTCTTAAGAGACAAATTGAGTTTTATAGATGGTTACAATCAGCAGA



AGGAGCTATAGCAGGCGGTGCTACGAATAGTTGGAATGGAAGGTATGAAA



AATACCCTGCAGGCACTGCTACATTTTATGGTATGGCATACGAGCCAAACC



CTGTATATCACGATCCGGGAAGCAATACGTGGTTTGGCTTTCAGGCTTGGT



CTATGCAAAGAGTTGTAGAATACTATTATGTCACTGGTGACAAAGATGCA



GGAGCTTTGCTTGAAAAGTGGGTGTCATGGGTTAAATCAGTAGTCAAATT



AAATAGTGATGGCACATTTGCAATTCCAAGCACATTGGACTGGAAGAGGC



AGCCTGATACGTGGAACGGTGCTTACACTGGAAATTCTAATCTTCATGTGA



AAGTTGTAGATTATGGCACAGACTTAGGTATAACGGCATCATTGGCAAAC



GCTCTTTTATACTATAGTGCAGGAACTAAGAAATACGGCGTCTTTGATGAG



GGTGCTAAAAATTTGGCAAAGGAACTTTTAGATAGAATGTGGAAATTGTA



TAGGGACGAAAAAGGACTTAGCGCTCCGGAGAAGAGGGCAGATTATAAA



AGATTTTTTGAACAAGAAGTGTACATTCCAGCTGGCTGGATAGGTAAGAT



GCCTAATGGAGATGTTATAAAATCTGGCGTAAAATTTATTGACATAAGGTC



AAAGTATAAACAGGATCCAGATTGGCCTAAATTAGAGGCAGCTTACAAGA



GTGGTCAAGCACCGGAATTTAGATATCATAGATTTTGGGCTCAGTGTGACA



TTGCAATAGCTAACGCAACATATGAAATTTTGTTTGGAAATCAA (SEQ ID



NO: 104)






Anaero-

ATGAGGAAAATTATTTTAAAGTTTTGTGCACTTATGATGGTAGTGATATTG
CAB01405



cellum

ATTGTGTCAATACTTCAAATTTTGCCTGTGTTTGCTCAGTCAATATTATATG
MRKIILKFCALMMVVILIVSILQI



thermo-

AAAAGGAAAAGTACCCGCATTTACTTGGTAATCAGGTTGTCAAAAAGCCA
LPVFAQSILYEKEKYPHLLGNQV



philum

AGCGTGGCTGGTAGGTTGCAGATTATAGAGAAGGATGGCAAGAAATATTT
VKKPSVAGRLQIIEKDGKKYLA


Endoglucanase
AGCTGATCAAAAAGGTGAAATAATTCAGTTGAGGGGTATGAGCACACACG
DQKGEIIQLRGMSTHGLQWYGD


(celD)
GCTTACAATGGTATGGAGATATAATAAACAAGAATGCTTTTAAGGCTCTTA
IINKNAFKALSKDWECNVIRLA



GCAAGGACTGGGAATGCAACGTCATAAGGTTAGCTATGTATGTGGGAGAG
MYVGEGGYASNPSIKEKVIEGIK



GGTGGATATGCTTCAAATCCTTCAATTAAAGAGAAAGTGATAGAGGGTAT
LAIENDMYVIVDWHVLNPGDPN



AAAGTTGGCAATTGAAAATGATATGTATGTGATTGTCGACTGGCATGTTTT
AEIYKGAKDFFKEIATSFPNDYH



AAACCCGGGCGATCCTAACGCAGAGATTTATAAGGGAGCAAAAGATTTTT
IIYELCNEPNPNEPGVENSLDGW



TTAAAGAAATAGCTACTAGCTTTCCTAACGACTATCATATTATATACGAGC
KKVKAYAQPIIKMLRSLGNQNIII



TTTGCAATGAGCCAAACCCTAATGAGCCAGGTGTTGAAAATTCTTTAGACG
VGSPNWSQRPDFAIQDPINDKN



GATGGAAAAAGGTGAAAGCATATGCTCAACCTATTATAAAGATGTTGAGG
VMYSVHFYSGTHKVDGYVFEN



TCATTGGGAAATCAAAACATAATTATAGTGGGAAGCCCTAATTGGAGTCA
MKNAFENGVPIFVSEWGTSLAS



GAGGCCGGATTTTGCAATACAAGATCCGATAAACGACAAAAACGTGATGT
GDGGPYLDEADKWLEYLNSNYI



ACTCTGTACACTTTTACAGCGGCACGCATAAAGTCGACGGATATGTATTTG
SWVNWSLSNKNETSAAFVPYIN



AGAATATGAAAAACGCTTTTGAGAATGGTGTGCCTATTTTTGTGAGCGAAT
GMHDATPLDPGDDKVWDIEELS



GGGGAACGAGTCTTGCATCTGGAGATGGTGGACCATATTTAGATGAAGCT
ISGEYVRARIKGIAYQPIKRDNKI



GATAAATGGTTAGAATATTTAAACAGCAACTACATATCATGGGTAAACTG
KEGENAPLGEKVLPSTFEDDTR



GTCATTGAGCAATAAAAACGAGACAAGCGCAGCTTTTGTACCTTACATAA
QGWDWDGPSGVKGPITIESANG



ATGGCATGCACGATGCTACTCCACTTGATCCTGGTGATGATAAGGTCTGGG
SKALSFNVEYPEKKPQDGWATA



ATATTGAAGAGTTGTCTATAAGCGGTGAGTATGTGAGAGCAAGGATAAAA
ARLILKDINVERGNNKYLAFDFY



GGAATTGCTTACCAACCAATTAAAAGGGACAATAAGATAAAAGAGGGTG
LKPDRASKGMIQMFLAFSPPSLG



AGAATGCACCTTTGGGCGAAAAGGTACTTCCAAGCACATTTGAGGATGAC
YWAQVQDSFNIDLGKTVKCKK



ACAAGGCAGGGCTGGGATTGGGATGGACCATCTGGCGTAAAAGGCCCAAT
DRRTEVYKFNVFFDLDKIQDNK



TACTATAGAATCAGCTAATGGCTCAAAAGCATTATCTTTTAACGTGGAATA
VLSPDTLLRDIIVVIADGNSDFK



CCCGGAGAAGAAACCTCAAGATGGCTGGGCAACAGCAGCTAGATTGATAT
GKMYIDNVRFTNTLFEDINFENS



TGAAGGACATAAATGTCGAGAGGGGCAATAATAAGTACCTTGCATTTGAC
LYDVIDKLYSKGIIKGISVFKYLP



TTTTATCTTAAGCCGGACAGAGCTTCAAAAGGTATGATACAGATGTTTTTG
DKNITRAEFAALCVRALNLKIEK



GCTTTTAGCCCACCTAGTTTAGGATACTGGGCTCAAGTTCAAGATTCTTTT
YDGRFSDVKSGNWYSDVVYTA



AACATAGATTTGGGTAAGACGGTCAAGTGTAAAAAGGACAGGAGAACGG
YKNKLFEIKENKFFPENILKREE



AGGTTTACAAGTTTAACGTGTTTTTTGATTTGGACAAGATACAGGACAACA
AVALAIEVYKRLTGKIEVNTDD



AGGTGCTTTCACCGGACACATTGTTAAGGGATATTATAGTCGTTATTGCAG
VPIADEKLINPQYRESVKLAIKL



ATGGAAACAGTGACTTTAAGGGAAAGATGTACATTGATAACGTGAGGTTT
GIVDLYSDGTFEPNKSVSRGEVA



ACAAACACATTGTTTGAAGATATTAATTTTGAAAACTCTTTATATGACGTT
TILYNL (SEQ ID NO: 136)



ATAGATAAACTTTATAGCAAGGGAATAATTAAAGGTATATCTGTCTTTAAG



TATTTACCAGATAAGAATATAACGAGAGCTGAGTTTGCAGCTTTATGCGTA



AGAGCTCTTAATTTAAAAATTGAGAAGTACGATGGTAGGTTTAGCGACGT



CAAAAGCGGTAATTGGTACTCAGATGTGGTTTACACGGCATACAAGAACA



AATTATTTGAGATAAAGGAAAATAAGTTTTTTCCTGAGAATATATTGAAGA



GGGAAGAGGCTGTGGCATTGGCTATAGAAGTTTACAAGAGACTTACAGGC



AAAATAGAGGTGAATACAGACGACGTTCCAATAGCTGACGAGAAGTTAAT



TAACCCACAGTACAGGGAAAGCGTTAAGTTGGCTATAAAGTTGGGTATAG



TGGATTTGTACTCAGACGGAACTTTTGAGCCAAATAAATCTGTATCAAGAG



GCGAAGTAGCAACTATTTTATACAACCTTCTCGAGTGATAAAACGAAAGG



CTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACG



CTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAG



CAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGC



ATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTT (SEQ ID



NO: 105)






Anaero-

ATGAAAAAGAGAAAATTTAAGATATTATATTTGTTTCTTATAATTGTACTT
MKKRKFKILYLFLIIVLSVSFIISI



cellum

TCAGTTTCTTTTATAATTAGTATTGTGTTTCCTAGCTTTTTTAAGGCAGCTC
VFPSFFKAAQTTSTNINFEGRDK



thermo-

AAACAACTAGCACAAACATTAATTTTGAAGGAAGGGATAAGTTGACGTTT
LTFFAYGKAKITIDQNIAQEGKK



philum

TTTGCATACGGTAAGGCTAAGATTACTATAGATCAGAACATAGCACAAGA
SIKVTDRKSVWDSFGIDVKDVL


Predicted
GGGAAAAAAGAGCATAAAAGTCACAGACAGGAAGAGTGTCTGGGATTCT
QRGKTWVVSAYVKHKGKKPIEF


based on
TTTGGCATAGATGTCAAGGACGTGTTGCAAAGGGGCAAGACATGGGTGGT
SITAIYNDGRGLKYLQLGEKIVIP


amino acid
GAGCGCTTACGTGAAACATAAAGGTAAGAAACCAATAGAGTTTAGCATTA
NKWDKIVAKWKPTLKNPMDLII


sequence -
CGGCTATATACAATGACGGAAGGGGTTTGAAGTACCTTCAGTTGGGCGAA
AIHPTVDKTTAYNVDNIQIMTEE


Contig 00009
AAAATAGTGATACCTAACAAATGGGACAAAATTGTGGCTAAGTGGAAACC
VYQSQAVVFKDTFESNLTNWQP


or0219
AACTCTTAAGAACCCTATGGACCTTATAATTGCAATTCACCCTACAGTCGA
RGDTVKLKIDNTKSHNGNKSLY



TAAGACTACGGCTTACAATGTTGACAACATTCAGATAATGACTGAAGAGG
VSGRSAFWHGVQIPVTKYLVAG



TGTACCAGTCACAAGCAGTAGTTTTTAAGGACACATTTGAAAGCAACTTG
KVYKFSVWLYHQSIDKQGFGLT



ACAAACTGGCAGCCTAGAGGAGATACTGTAAAACTTAAAATTGATAATAC
IQRKMANDEQYKYDWITGSQIE



TAAGTCACACAACGGTAACAAGTCTTTGTACGTGTCAGGTAGGTCTGCTTT
GDGWVEISGNYYVPKDGKIEEL



TTGGCACGGAGTTCAAATTCCAGTAACTAAGTACTTAGTTGCAGGAAAGG
VFCVSSWNPTLAFWVDDVTISD



TGTACAAGTTTTCAGTTTGGTTATACCATCAAAGTATTGACAAGCAGGGCT
PFKLQGPNYNLPSLKEKYKEDF



TTGGATTGACAATTCAAAGGAAGATGGCTAACGACGAACAATATAAGTAC
KVGVAIGYGELISDIDTQFIKKHF



GACTGGATTACGGGTAGCCAGATTGAAGGAGATGGATGGGTAGAAATATC
NSITPGNEMKPESVLKGPNNYDF



AGGCAACTATTACGTGCCTAAAGATGGCAAGATTGAAGAGTTAGTGTTTT
TIADAFVDFATKNKMGIRGHTL



GTGTCTCAAGCTGGAATCCGACTCTTGCATTTTGGGTGGATGATGTGACAA
VWHNQTPDWFFKDENGNFLKK



TTTCAGACCCTTTTAAGTTGCAGGGCCCGAATTACAACTTGCCTAGCTTAA
DELLKRLKNHIYTVVSRYKGKI



AAGAGAAGTACAAAGAGGACTTTAAGGTAGGTGTAGCAATAGGATATGG
YAWDVVNEAIDETQPDGYRRSN



CGAATTAATTTCTGATATTGACACACAATTTATAAAGAAACATTTTAACAG
WYNICGPEYIEKAFIWAHEADP



TATTACTCCTGGTAACGAGATGAAGCCTGAGAGCGTTTTAAAGGGTCCAA
QAKLFYNDYNTEIPQKRMFIYN



ACAATTACGACTTTACTATTGCAGACGCTTTTGTGGACTTTGCAACAAAGA
MIKNLKAKGVPIHGIGLQCHINI



ACAAGATGGGCATAAGGGGTCATACATTGGTATGGCATAACCAAACGCCT
DNPSVEDIEETIKLFSTIPGLEIQI



GATTGGTTTTTTAAGGATGAGAACGGTAACTTTTTGAAGAAAGACGAATT
TELDMSFYQWGSSVYYAEPSRE



GCTTAAGAGGTTGAAGAACCACATTTACACAGTGGTGTCAAGATATAAGG
MLLKQAKKYYELFNLFKKYKN



GTAAAATATACGCATGGGATGTAGTTAACGAGGCTATAGATGAAACTCAA
VIKSVTFWGLKDDNSWLRGVFN



CCGGACGGCTACAGGAGATCTAATTGGTATAACATTTGCGGACCAGAATA
KPDFPLLFDEHYDGKPAFWALI



TATTGAGAAGGCATTTATATGGGCACACGAAGCTGACCCTCAAGCTAAAT
DYSILPQNANLPTPPAIPKVKAK



TATTTTACAACGACTATAACACGGAAATACCACAGAAAAGAATGTTTATA
K (SEQ ID NO: 137)



TATAACATGATAAAAAACCTTAAGGCAAAGGGCGTGCCGATTCATGGTAT



TGGATTGCAGTGCCACATAAACATAGATAATCCTAGCGTAGAGGACATTG



AAGAGACTATTAAACTTTTTTCTACTATACCGGGTTTGGAGATACAAATTA



CGGAACTTGACATGAGCTTTTATCAGTGGGGTTCATCAGTGTACTATGCTG



AACCTTCTAGAGAAATGTTATTGAAGCAGGCAAAAAAGTACTACGAATTA



TTTAACCTTTTTAAGAAGTACAAGAACGTAATAAAGTCTGTGACATTTTGG



GGCTTAAAGGATGACAATTCTTGGTTAAGGGGCGTATTTAATAAGCCAGA



CTTTCCTCTTTTGTTTGACGAGCATTACGACGGAAAGCCTGCATTTTGGGC



TTTAATTGACTATAGCATATTGCCTCAAAACGCTAACTTGCCAACACCTCC



AGCAATTCCGAAGGTTAAAGCAAAGAAGTGATAAAACGAAAGGCTCAGT



CGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCT



GAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGC



CCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATT



AAGCAGAAGGCCATCCTGACGGATGGCCTTTT (SEQ ID NO: 106)






Anaero-

ATGCCTACAGTAACACCAAATCCTACATCAACGCCTAGCATATTAGATGA
MPTVTPNPTSTPSILDDTNDDWL



cellum

CACAAACGACGATTGGTTGTATGTCAGCGGAAATAAAATTGTGGACAAGG
YVSGNKIVDKDGKPVWLTGIN



thermo-

ACGGTAAACCTGTATGGTTGACTGGCATAAATTGGTTTGGATATAATACTG
WFGYNTGTNVFDGVWSCNLKD



philum

GTACTAATGTATTTGACGGCGTCTGGTCTTGCAATTTAAAGGACACTCTTG
TLAEIANRGFNLLRIPISAEIILNW


Predicted
CAGAGATTGCTAACAGAGGCTTTAATTTGCTTAGGATTCCTATATCAGCAG
SQGIYPKPNINYYVNPELEGKNS


based on
AGATAATTTTGAACTGGAGTCAGGGAATTTATCCAAAACCTAATATAAAC
LEVFDIVVQICKEVGLKIMLDIH


amino acid
TACTACGTGAACCCTGAGCTTGAGGGTAAAAATAGCTTGGAGGTGTTTGA
SIKTDAMGHIYPVWYDDKFTPE


sequence -
CATTGTCGTTCAAATATGCAAAGAGGTTGGATTAAAGATTATGTTGGATAT
DFYKACEWITNRYKNDDTIIAFD


Contig 00029
TCATAGCATTAAGACAGACGCTATGGGTCATATTTATCCGGTGTGGTATGA
LKNEPHGKPWQDTTFAKWDNS


or0692
CGATAAATTTACTCCTGAGGATTTTTATAAAGCATGCGAATGGATAACAA
TDINNWKYAAETCAKRILNINPN



ACAGGTACAAGAATGATGACACTATTATAGCTTTTGATTTGAAGAATGAA
LLIVIEGIEAYPKDDVTWTSKSY



CCACACGGCAAACCTTGGCAGGACACGACATTTGCAAAATGGGATAATAG
SDYYSTWWGGNLRGVKKYPIN



CACTGATATTAACAACTGGAAGTACGCAGCTGAAACGTGCGCAAAGAGGA
LGKYQNKVVYSPHDYGPSVYQ



TATTGAACATTAACCCGAACTTGCTTATAGTGATAGAGGGTATTGAGGCAT
QPWFYPGFTKESLLQDCWRPN



ACCCGAAAGACGACGTAACATGGACGTCAAAATCTTACAGCGATTATTAC
WAYIMEENIAPLLIGEWGGYLD



AGTACGTGGTGGGGTGGCAATTTAAGAGGAGTTAAAAAATACCCAATTAA
GADNEKWMRYLRDYIIENHIHH



CTTGGGAAAGTACCAGAACAAGGTGGTATACAGCCCTCATGATTATGGCC
TFWCFNANSGDTGGMVGYDFT



CATCTGTTTATCAACAGCCTTGGTTTTATCCTGGATTTACGAAGGAAAGTT
TWDEKKYSFLKPALWQDSQGR



TGTTGCAGGATTGCTGGAGGCCTAACTGGGCTTATATTATGGAAGAGAAT
FVGLDHKRPLGTNGKNINITIYY



ATTGCTCCATTGCTTATTGGTGAGTGGGGCGGATATTTAGACGGTGCTGAC
NNNEPAPVPAAK (SEQ ID



AATGAAAAATGGATGAGATATCTTAGGGATTATATAATTGAGAACCACAT
NO: 138)



ACACCACACGTTTTGGTGCTTTAACGCAAACAGCGGAGATACTGGCGGTA



TGGTAGGATATGATTTTACGACATGGGACGAGAAGAAATACAGTTTTTTA



AAACCAGCTTTGTGGCAAGATTCTCAGGGTAGGTTTGTTGGTTTAGACCAT



AAAAGGCCATTAGGAACAAATGGAAAAAACATTAATATTACAATATACTA



CAACAACAATGAGCCTGCTCCAGTTCCTGCTGCAAAA (SEQ ID NO: 107)






Trichoderma

ATGTACAGAAAGTTAGCAGTCATAAGCGCTTTTCTTGCAACAGCTAGGGC
P62694



reesei Exo-

ACAATCTGCTTGTACTTTGCAGAGCGAAACACATCCTCCATTAACTTGGCA
MYRKLAVISAFLATARAQSACT


glucanase 1
AAAATGCAGTTCAGGCGGTACATGTACTCAGCAAACAGGCAGCGTAGTTA
LQSETHPPLTWQKCSSGGTCTQ


(gene: cbh1)
TAGATGCAAATTGGAGGTGGACGCACGCTACTAATAGCAGTACAAATTGC
QTGSVVIDANWRWTHATNSSTN



TACGACGGAAATACTTGGTCAAGCACTCTTTGTCCTGATAACGAAACATGT
CYDGNTWSSTLCPDNETCAKNC



GCAAAGAATTGTTGCTTAGATGGTGCTGCATATGCTAGTACGTATGGCGTA
CLDGAAYASTYGVTTSGNSLSIG



ACTACGAGCGGCAATTCATTATCTATAGGTTTTGTTACACAGAGCGCACAA
FVTQSAQKNVGARLYLMASDTT



AAGAACGTGGGCGCTAGGTTATATCTTATGGCATCAGACACTACATACCA
YQEFTLLGNEFSFDVDVSQLPCG



GGAGTTTACATTACTTGGAAACGAATTTAGCTTTGATGTAGACGTCAGTCA
LNGALYFVSMDADGGVSKYPT



ATTGCCATGTGGCCTTAACGGCGCTTTGTATTTTGTATCAATGGACGCAGA
NTAGAKYGTGYCDSQCPRDLKF



TGGAGGCGTTTCTAAATACCCGACAAACACTGCTGGTGCAAAATACGGAA
INGQANVEGWEPSSNNANTGIG



CTGGTTATTGCGATAGTCAATGTCCAAGGGATTTAAAGTTTATTAATGGCC
GHGSCCSEMDIWEANSISEALTP



AGGCAAATGTTGAAGGATGGGAACCTAGTTCTAACAATGCAAATACTGGC
HPCTTVGQEICEGDGCGGTYSD



ATTGGAGGACATGGTTCATGCTGTAGTGAAATGGATATATGGGAAGCAAA
NRYGGTCDPDGCDWNPYRLGN



CTCTATAAGCGAGGCTTTGACTCCGCATCCTTGCACGACAGTGGGCCAAG
TSFYGPGSSFTLDTTKKLTVVTQ



AGATTTGTGAAGGCGATGGTTGCGGAGGCACTTACTCAGACAATAGGTAC
FETSGAINRYYVQNGVTFQQPN



GGCGGTACGTGTGATCCAGATGGCTGCGACTGGAATCCTTACAGACTTGG
AELGSYSGNELNDDYCTAEEAE



TAACACTTCTTTTTATGGACCGGGTTCTTCTTTTACGCTTGACACTACAAAA
FGGSSFSDKGGLTQFKKATSGG



AAATTGACAGTTGTGACTCAGTTTGAAACGTCTGGCGCAATAAATAGATA
MVLVMSLWDDYYANMLWLDS



CTATGTTCAAAACGGTGTAACGTTTCAGCAACCGAATGCTGAGCTTGGCTC
TYPTNETSSTPGAVRGSCSTSSG



TTATTCAGGTAACGAATTAAATGACGATTATTGTACAGCAGAAGAGGCTG
VPAQVESQSPNAKVTFSNIKFGP



AATTTGGAGGCTCTAGTTTTTCAGATAAGGGAGGTTTAACACAGTTTAAGA
IGSTGNPSGGNPPGGNRGTTTTR



AAGCTACGAGTGGTGGCATGGTACTTGTAATGAGCTTATGGGATGATTACT
RPATTTGSSPGPTQSHYGQCGGI



ACGCTAATATGTTGTGGCTTGATTCAACTTACCCAACTAACGAAACAAGCA
GYSGPTVCASGTTCQVLNPYYS



GTACTCCTGGCGCAGTAAGGGGTTCATGCAGCACGTCATCTGGTGTACCG
QCL (SEQ ID NO: 139)



GCTCAGGTCGAGAGTCAAAGTCCTAACGCTAAGGTTACTTTTTCAAACATA



AAATTTGGACCTATAGGATCTACAGGAAACCCTAGCGGAGGCAACCCACC



TGGAGGTAACAGAGGCACGACGACAACAAGAAGGCCAGCTACAACAACT



GGCTCTAGCCCAGGCCCGACTCAGTCACATTACGGTCAGTGCGGAGGTAT



AGGTTACAGTGGCCCTACTGTCTGCGCAAGCGGAACTACATGTCAGGTCTT



GAACCCTTATTACTCTCAATGCTTGCTCGAGTGATAAAACGAAAGGCTCAG



TCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCC



TGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGG



CCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAAT



TAAGCAGAAGGCCATCCTGACGGATGGCCTTTT (SEQ ID NO: 169)






Trichoderma

ATGATAGTAGGAATTTTAACTACGTTAGCAACATTGGCAACTTTGGCTGCA
AAA34210



reesei CBH2

AGCGTACCTTTAGAAGAGAGACAAGCATGTTCTAGCGTGTGGGGCCAGTG
MIVGILTTLATLATLAASVPLEE


(gene: cbh2)
CGGTGGACAAAATTGGAGTGGACCTACATGTTGCGCTAGCGGTAGTACTT
RQACSSVWGQCGGQNWSGPTC



GCGTATACAGCAACGATTACTATTCTCAATGCCTTCCTGGCGCAGCTAGCT
CASGSTCVYSNDYYSQCLPGAA



CTTCTTCAAGTACAAGGGCTGCTAGCACGACTTCAAGAGTTTCACCGACTA
SSSSSTRAASTTSRVSPTTSRSSS



CGTCTAGGTCTAGCTCAGCTACTCCTCCACCTGGTAGTACAACAACTAGAG
ATPPPGSTTTRVPPVGSGTATYS



TGCCTCCGGTGGGTTCTGGCACAGCTACTTACAGCGGTAATCCATTTGTTG
GNPFVGVTPWANAYYASEVSSL



GCGTAACTCCTTGGGCAAACGCTTATTACGCATCAGAAGTGAGTTCTTTAG
AIPSLTGAMATAAAAVAKVPSF



CAATTCCATCTTTGACAGGCGCTATGGCTACAGCAGCAGCTGCTGTTGCTA
MWLDTLDKTPLMEQTLADIRTA



AAGTACCTTCATTTATGTGGTTGGACACTTTAGATAAAACTCCTCTTATGG
NKNGGNYAGQFVVYDLPDRDC



AGCAGACGTTAGCAGATATTAGGACAGCTAACAAAAATGGTGGCAATTAT
AALASNGEYSIADGGVAKYKNY



GCTGGACAGTTTGTAGTCTACGACCTTCCTGACAGGGATTGTGCTGCACTT
IDTIRQIVVEYSDIRTLLVIEPDSL



GCTTCTAACGGTGAATACTCAATAGCAGACGGCGGCGTCGCTAAGTATAA
ANLVTNLGTPKCANAQSAYLEC



AAATTACATTGATACGATTAGACAGATAGTTGTAGAGTACTCAGATATAA
INYAVTQLNLPNVAMYLDAGH



GGACATTGTTGGTGATTGAGCCGGACAGCCTTGCAAATTTAGTTACTAATT
AGWLGWPANQDPAAQLFANVY



TGGGTACACCTAAATGCGCTAACGCACAGTCAGCATATTTAGAATGCATA
KNASSPRALRGLATNVANYNG



AACTACGCAGTCACACAATTAAACTTGCCAAATGTGGCTATGTACCTTGAC
WNITSPPSYTQGNAVYNEKLYIH



GCTGGACATGCTGGCTGGTTAGGTTGGCCTGCAAATCAAGATCCGGCTGC
AIGPLLANHGWSNAFFITDQGRS



ACAATTGTTTGCAAACGTTTACAAGAATGCTTCAAGTCCTAGAGCACTTAG
GKQPTGQQQWGDWCNVIGTGF



GGGACTTGCAACTAATGTGGCTAACTATAATGGCTGGAACATAACAAGCC
GIRPSANTGDSLLDSFVWVKPG



CACCTTCTTACACTCAGGGAAATGCTGTTTATAACGAAAAGTTGTATATTC
GECDGTSDSSAPRFDSHCALPDA



ACGCAATAGGTCCTTTGTTGGCAAACCACGGTTGGTCTAATGCATTTTTTA
LQPAPQAGAWFQAYFVQLLTN



TTACAGACCAGGGTAGAAGTGGAAAACAACCTACAGGACAGCAACAGTG
ANPSFL (SEQ ID NO: 140)



GGGTGATTGGTGTAACGTAATTGGCACTGGATTTGGCATAAGGCCATCAG



CAAATACGGGTGACTCTTTGTTGGACAGTTTTGTGTGGGTCAAGCCAGGCG



GTGAGTGTGATGGAACGTCTGACTCAAGCGCTCCAAGATTTGACTCACACT



GCGCATTACCGGATGCTTTACAACCAGCTCCTCAAGCAGGCGCATGGTTTC



AGGCTTATTTTGTCCAGTTGCTTACAAACGCTAACCCTAGCTTTTTA (SEQ



ID NO: 170)






Trichoderma

ATGGCACCTTCAGTAACGCTTCCGCTTACGACAGCTATATTAGCAATAGCT
AAA34212



reesei

AGGCTTGTTGCAGCTCAACAGCCTGGAACGTCTACACCAGAGGTCCACCC
MAPSVTLPLTTAILAIARLVAAQ


Endoglucanase
GAAATTAACTACATATAAGTGTACAAAAAGCGGTGGCTGCGTAGCACAAG
QPGTSTPEVHPKLTTYKCTKSGG


1 (EG1)
ATACGAGTGTTGTGTTGGACTGGAATTACAGGTGGATGCATGATGCTAACT
CVAQDTSVVLDWNYRWMHDA



ATAATAGTTGTACAGTAAACGGCGGTGTCAATACAACGTTGTGCCCAGAT
NYNSCTVNGGVNTTLCPDEATC



GAAGCAACGTGCGGCAAGAATTGCTTTATAGAAGGCGTGGACTACGCTGC
GKNCFIEGVDYAASGVTTSGSSL



TAGCGGAGTGACAACAAGCGGCAGTTCATTGACAATGAACCAGTATATGC
TMNQYMPSSSGGYSSVSPRLYL



CATCTAGCAGTGGAGGTTACAGTTCAGTCAGCCCAAGATTGTATTTACTTG
LDSDGEYVMLKLNGQELSFDVD



ATTCAGATGGCGAGTATGTGATGTTAAAATTAAACGGACAAGAACTTAGT
LSALPCGENGSLYLSQMDENGG



TTTGACGTTGATTTGTCTGCTTTACCTTGTGGTGAGAACGGCAGCCTTTACT
ANQYNTAGANYGSGYCDAQCP



TATCACAGATGGATGAGAATGGTGGCGCAAATCAATACAACACAGCTGGC
VQTWRNGTLNTSHQGFCCNEM



GCAAATTACGGAAGTGGTTATTGCGACGCTCAGTGTCCAGTGCAAACTTG
DILEGNSRANALTPHSCTATACD



GAGGAACGGCACATTGAATACATCTCATCAAGGATTTTGTTGCAACGAGA
SAGCGFNPYGSGYKSYYGPGDT



TGGATATTCTTGAAGGTAACAGCAGAGCAAACGCTTTGACTCCTCACTCAT
VDTSKTFTIITQFNTDNGSPSGNL



GCACAGCAACTGCATGTGATAGTGCTGGATGCGGCTTTAATCCATATGGAT
VSITRKYQQNGVDIPSAQPGGDT



CAGGATATAAAAGCTATTACGGCCCTGGTGACACAGTAGATACTTCAAAG
ISSCPSASAYGGLATMGKALSSG



ACATTTACAATAATTACTCAGTTTAACACTGACAATGGCTCTCCATCAGGC
MVLVFSIWNDNSQYMNWLDSG



AATTTGGTCAGCATAACTAGGAAATATCAACAGAATGGAGTGGATATTCC
NAGPCSSTEGNPSNILANNPNTH



TAGTGCACAACCGGGAGGCGATACAATATCAAGTTGTCCAAGTGCTTCTG
VVFSNIRWGDIGSTTNSTAPPPPP



CTTACGGCGGTTTGGCAACTATGGGTAAAGCACTTAGTAGCGGTATGGTGT
ASSTTFSTTRRSSTTSSSPSCTQT



TGGTTTTTTCAATTTGGAACGATAATTCTCAGTACATGAATTGGCTTGACT
HWGQCGGIGYSGCKTCTSGTTC



CTGGAAACGCTGGCCCATGCTCAAGTACAGAGGGAAATCCATCAAACATT
QYSNDYYSQCL (SEQ ID



TTAGCAAACAATCCAAATACACACGTCGTGTTTTCTAACATAAGATGGGGT
NO: 141)



GATATTGGTAGTACAACGAATAGTACTGCTCCTCCACCTCCGCCTGCAAGC



TCTACAACATTTAGTACTACTAGGAGAAGCTCAACGACTAGCAGTAGCCC



ATCATGTACTCAAACACATTGGGGCCAGTGCGGTGGAATAGGCTACTCTG



GCTGCAAGACGTGCACAAGTGGAACGACTTGTCAATACTCTAATGATTAC



TATTCTCAATGCTTG (SEQ ID NO: 171)






Coptotermes

ATGAGGGTCTTTGTGTGCTTGCTTAGTGCATTGGCTCTTTGCCAAGCAGCT
BAB40697



formosanus

TACGACTATAAAACGGTATTAAAGAACTCTCTTTTGTTTTACGAAGCACAG
MRVFVCLLSALALCQAAYDYK


endo-b-1,4-
AGGAGCGGAAAGTTACCAGCTGATCAAAAGGTCACTTGGAGAAAAGATTC
TVLKNSLLFYEAQRSGKLPADQ


glucanase(gene:
AGCATTAAACGACAAAGGTCAGAAGGGCGAGGATTTAACTGGAGGTTATT
KVTWRKDSALNDKGQKGEDLT


CfEG4)
ACGACGCTGGTGATTTTGTGAAGTTTGGCTTTCCGATGGCATATACTGTGA
GGYYDAGDFVKFGFPMAYTVT



CGGTTCTTGCTTGGGGTTTGGTAGATTATGAAAGCGCATATTCTACAGCAG
VLAWGLVDYESAYSTAGALDD



GAGCTCTTGACGATGGAAGAAAGGCACTTAAGTGGGGTACAGACTATTTT
GRKALKWGTDYFLKAHTAANE



TTGAAAGCACATACAGCTGCAAACGAGTTTTATGGCCAAGTTGGACAGGG
FYGQVGQGDVDHAYWGRPED



TGATGTAGATCACGCTTACTGGGGCAGACCTGAGGACATGACTATGTCTA
MTMSRPAYKIDTSKPGSDLAAE



GGCCAGCATATAAGATAGATACATCTAAACCGGGAAGCGACTTGGCTGCT
TAAALAATAIAYKSADSTYSNN



GAAACAGCTGCAGCTCTTGCAGCTACTGCTATTGCATATAAGAGTGCAGA
LITHAKQLFDFANNYRGKYSDSI



TTCTACTTATAGTAATAACTTAATAACACATGCAAAGCAATTGTTTGATTT
TDAKNFYASGDYKDELVWAAA



TGCTAATAATTATAGAGGCAAGTATAGCGATTCTATTACAGACGCAAAAA
WLYRATNDNTYLTKAESLYNEF



ACTTTTATGCTAGCGGTGATTACAAGGATGAGCTTGTTTGGGCAGCTGCAT
GLGSWNGAFNWDNKISGVQVL



GGTTATATAGAGCTACTAATGACAATACATACTTGACTAAAGCAGAATCA
LALTSKQAYKDKVQGYVDYLV



CTTTATAACGAGTTTGGACTTGGTAGTTGGAATGGCGCTTTTAATTGGGAT
SSQKKTPKGLVYIDQWGTLRHA



AACAAAATAAGCGGAGTGCAAGTGTTATTGGCTAAGTTAACAAGCAAGCA
ANSALIALQAADLGINAASYRQ



GGCTTACAAAGACAAGGTGCAAGGTTACGTTGATTATTTAGTATCTTCACA
YAKKQIDYALGDGGRSYVVGF



AAAAAAGACGCCAAAAGGCCTTGTGTACATTGACCAGTGGGGCACTTTAA
GTNPPVRPHHRSSSCPDAPAACD



GGCATGCTGCTAATAGTGCATTGATAGCATTGCAAGCTGCAGATTTAGGC
WNTYNSAGPNAHVLTGALVGG



ATAAATGCTGCATCTTATAGACAATATGCTAAAAAACAGATAGACTACGC
PDSNDSYTDSRSDYISNEVATDY



TTTAGGTGATGGCGGTAGGTCTTATGTTGTAGGATTTGGCACAAACCCTCC
NAGFQSAVAGLLKAGV (SEQ ID



AGTTAGACCTCATCATAGATCAAGTTCTTGTCCAGATGCACCAGCTGCATG
NO: 142)



CGATTGGAATACTTATAACAGTGCTGGTCCAAACGCTCACGTATTGACAG



GCGCTCTTGTTGGCGGTCCTGATTCTAATGATTCATATACTGACAGTAGGT



CAGATTATATATCTAATGAGGTAGCAACAGATTACAACGCTGGCTTTCAA



AGCGCTGTTGCAGGCTTACTTAAGGCTGGAGTACTCGAGTGATAAAACGA



AAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTG



AACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGC



GAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCC



AGGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTT (SEQ ID



NO: 172)






Nasutitermes

ATGAGAGTATTTTTGTGCTTGCTTAGTGCATTGGCTCTTTGCCAAGCAGCTT
BAA33708



takasagoensis

ATGATTACAAACAGGTGTTGAGAGACTCTTTGCTTTTTTACGAAGCACAAA
MRVFLCLLSALALCQAAYDYK


endo-b-1,4-
GGTCTGGAAGATTACCAGCTGACCAGAAGGTCACTTGGAGAAAAGATAGT
QVLRDSLLFYEAQRSGRLPADQ


glucanase
GCATTAAATGACCAAGGTGATCAAGGACAGGATTTAACTGGCGGTTATTT
KVTWRKDSALNDQGDQGQDLT


(gene: NtEG)
TGACGCTGGCGATTTTGTGAAATTTGGATTTCCAATGGCTTATACAGCTAC
GGYFDAGDFVKFGFPMAYTAT



TGTTTTGGCATGGGGCTTGATAGATTTTGAGGCTGGCTACTCATCTGCAGG
VLAWGLIDFEAGYSSAGALDDG



AGCTCTTGACGATGGTAGGAAAGCAGTGAAGTGGGCTACGGATTATTTTA
RKAVKWATDYFIKAHTSQNEFY



TAAAGGCACACACGAGCCAGAATGAATTTTACGGTCAGGTGGGCCAGGGT
GQVGQGDADHAFWGRPEDMT



GATGCTGACCATGCATTTTGGGGCAGACCTGAGGATATGACGATGGCTAG
MARPAYKIDTSRPGSDLAGETA



ACCAGCATATAAGATAGACACGAGTAGGCCTGGTTCAGACTTGGCTGGTG
AALAAASIVFRNVDGTYSNNLL



AAACTGCTGCAGCTTTAGCAGCTGCATCTATTGTTTTTAGAAATGTAGATG
THARQLFDFANNYRGKYSDSIT



GTACGTACAGTAATAACTTGCTTACTCATGCTAGGCAGTTGTTTGACTTTG
DARNFYASADYRDELVWAAAW



CAAATAATTATAGGGGTAAATATAGTGATTCAATAACAGATGCTAGAAAC
LYRATNDNTYLNTAESLYDEFG



TTTTACGCAAGTGCTGATTACAGAGATGAATTGGTGTGGGCAGCTGCATG
LQNWGGGLNWDSKVSGVQVLL



GCTTTACAGGGCAACTAACGATAATACGTACTTGAACACAGCAGAGAGCC
AKLTNKQAYKDTVQSYVNYLIN



TTTATGACGAATTTGGCCTTCAAAACTGGGGCGGAGGTTTGAATTGGGATT
NQQKTPKGLLYIDMWGTLRHA



CAAAGGTCAGTGGAGTCCAGGTACTTTTGGCAAAGTTGACAAACAAGCAG
ANAAFIMLEAAELGLSASSYRQF



GCATACAAAGACACAGTGCAGTCTTATGTAAATTACCTTATTAATAACCAA
AQTQIDYALGDGGRSFVCGFGS



CAGAAAACTCCAAAGGGCTTATTATACATAGACATGTGGGGTACACTTAG
NPPTRPHHRSSSCPPAPATCDWN



GCACGCAGCTAATGCTGCATTTATTATGTTAGAAGCAGCTGAGTTAGGATT
TFNSPDPNYHVLSGALVGGPDQ



GAGCGCAAGTTCATATAGGCAATTTGCTCAAACACAGATAGATTACGCAC
NDNYVDDRSDYVHNEVATDYN



TTGGCGATGGTGGAAGGTCATTTGTTTGTGGCTTTGGTTCTAATCCTCCAA
AGFQSALAALVALGY (SEQ ID



CTAGGCCTCATCATAGGTCAAGCTCTTGCCCGCCTGCTCCAGCAACATGTG
NO: 143)



ACTGGAACACTTTTAACAGTCCGGACCCTAACTATCACGTGTTGAGTGGCG



CTCTTGTGGGCGGACCTGACCAGAATGACAACTACGTTGATGATAGGAGT



GATTATGTGCATAATGAAGTGGCAACTGACTACAACGCAGGCTTTCAGAG



CGCATTAGCTGCACTTGTAGCATTAGGCTATTGATAAAACGAAAGGCTCA



GTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTC



CTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACG



GCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAA



ATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTT (SEQ ID NO: 173)






Talaromyces

AGAAGGGCACTTTTGCTTTCATCTAGCGCTATACTTGCTGTGAAGGCACAG
AAL89553



emersonii

CAGGCTGGAACAGCTACTGCAGAAAATCATCCTCCGTTAACTTGGCAAGA
MLRRALLLSSSAILAVKAQQAG


CBH1
GTGTACGGCTCCTGGTAGTTGCACAACTCAGAACGGCGCAGTGGTCCTTG
TATAENHPPLTWQECTAPGSCT



ATGCTAACTGGAGGTGGGTACACGACGTGAACGGATACACAAATTGTTAC
TQNGAVVLDANWRWVHDVNG



ACGGGTAATACTTGGGATCCGACATATTGTCCGGACGATGAAACTTGTGCT
YTNCYTGNTWDPTYCPDDETCA



CAGAACTGCGCTCTTGATGGCGCAGATTACGAGGGAACATATGGTGTGAC
QNCALDGADYEGTYGVTSSGSS



TTCATCTGGCAGCTCTCTTAAGTTAAATTTTGTCACTGGTTCAAACGTAGG
LKLNFVTGSNVGSRLYLLQDDS



CTCTAGGCTTTACTTGTTACAGGACGATAGCACTTACCAGATATTTAAACT
TYQIFKLLNREFSFDVDVSNLPC



TTTAAATAGAGAATTTAGTTTTGATGTAGACGTGTCAAACTTACCATGTGG
GLNGALYFVAMDADGGVSKYP



CTTAAACGGAGCTTTGTACTTTGTTGCAATGGATGCAGATGGAGGCGTTTC
NNKAGAKYGTGYCDSQCPRDL



TAAATACCCAAACAATAAGGCAGGAGCTAAATACGGCACTGGATATTGTG
KFIDGEANVEGWQPSSNNANTG



ACAGTCAGTGTCCAAGGGATTTAAAATTTATAGATGGTGAGGCAAACGTG
IGDHGSCCAEMDVWEANSISNA



GAAGGCTGGCAACCTTCAAGTAATAACGCAAATACTGGAATTGGTGACCA
VTPHPCDTPGQTMCSGDDCGGT



TGGTTCTTGCTGTGCTGAAATGGATGTGTGGGAGGCTAATTCTATTAGCAA
YSNDRYAGTCDPDGCDFNPYR



CGCTGTAACTCCACACCCTTGCGACACACCTGGACAAACAATGTGTAGTG
MGNTSFYGPGKIIDTTKPFTVVT



GCGACGATTGCGGTGGAACTTATTCTAATGACAGGTATGCTGGCACATGT
QFLTDDGTDTGTLSEIKRFYIQN



GATCCTGACGGATGTGATTTTAATCCATATAGAATGGGAAATACATCTTTT
SNVIPQPNSDISGVTGNSITTEFC



TATGGCCCTGGTAAAATTATAGACACAACTAAACCATTTACAGTGGTAAC
TAQKQAFGDTDDFSQHGGLAK



GCAGTTTCTTACTGACGACGGAACTGACACGGGAACATTATCAGAGATTA
MGAAMQQGMVLVMSLWDDYA



AGAGGTTTTACATACAAAACAGTAACGTGATACCTCAGCCGAACTCAGAT
AQMLWLDSDYPTDADPTTPGIA



ATTAGCGGTGTTACTGGAAACTCAATTACAACTGAGTTTTGCACTGCACAG
RGTCPTDSGVPSDVESQSPNSYV



AAACAAGCATTTGGAGATACTGACGATTTTTCTCAGCACGGCGGATTGGCT
TYSNIKFGPINSTFTAS (SEQ ID



AAGATGGGCGCAGCAATGCAACAGGGTATGGTTTTAGTGATGTCATTATG
NO: 144)



GGATGATTACGCTGCACAAATGTTGTGGCTTGATAGTGATTACCCTACTGA



CGCTGACCCTACGACACCTGGTATTGCTAGAGGAACTTGCCCAACAGATA



GCGGCGTTCCTTCTGACGTAGAATCACAGAGTCCAAACTCATACGTTACTT



ACAGCAACATAAAATTTGGTCCTATTAACTCAACATTTACGGCTAGTTGAT



AAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTT



GTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGA



ACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATA



AACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTT



T (SEQ ID NO: 174)






Neosartorya

ATGCTTGCAAGTACATTTTCATATAGAATGTACAAAACTGCTCTTATATTG
XP 00125827



fischeri

GCAGCTCTTTTGGGAAGCGGTCAGGCTCAGCAAGTTGGCACATCACAAGC
MLASTFSYRMYKTALILAALLG


putative
TGAAGTTCATCCTTCAATGACTTGGCAATCTTGTACTGCTGGTGGCAGTTG
SGQAQQVGTSQAEVHPSMTWQ


endo-
CACAACAAATAACGGCAAGGTGGTAATTGATGCTAACTGGAGGTGGGTTC
SCTAGGSCTTNNGKVVIDANWR


glucanase
ACAAAGTGGGAGACTATACAAATTGTTACACTGGTAACACATGGGATAAG
WVHKVGDYTNCYTGNTWDKT



ACTTTGTGTCCGGACGATGCAACATGTGCTAGTAATTGCGCATTAGAGGGC
LCPDDATCASNCALEGANYQST



GCTAATTATCAGTCAACTTACGGAGCAACAACATCTGGTGATAGCCTTAG
YGATTSGDSLRLNFVTTSQQKNI



ATTGAATTTTGTCACGACGAGTCAACAGAAAAATATTGGAAGTAGGTTGT
GSRLYMMKDDTTYEMFKLLNQ



ATATGATGAAAGATGACACTACATACGAAATGTTTAAGTTGTTAAACCAA
EFTFDVDVSNLPCGLNGALYFV



GAATTTACATTTGACGTGGATGTTTCTAACCTTCCGTGTGGACTTAATGGT
AMDADGGMSKYPTNKAGAKY



GCTTTGTACTTTGTGGCAATGGATGCTGATGGCGGAATGAGCAAATATCCA
GTGYCDSQCPRDLKFINGQANV



ACTAATAAAGCTGGTGCTAAGTACGGCACAGGATATTGTGATTCACAATG
EGWQPSSNDANAGTGNHGSCC



TCCTAGAGACTTAAAATTTATTAACGGTCAGGCTAACGTAGAGGGCTGGC
AEMDIWEANSISTAFTPHPCDTP



AACCAAGTTCTAATGATGCAAACGCTGGAACTGGTAATCATGGATCATGT
GQVMCTGDACGGTYSSDRYGG



TGCGCTGAAATGGATATTTGGGAAGCAAATTCAATTTCAACAGCTTTTACT
TCDPDGCDFNSFRQGNKTFYGP



CCTCACCCATGCGACACACCTGGCCAGGTAATGTGTACAGGTGATGCATG
GMTVDTKSKFTVVTQFITDDGT



CGGTGGAACTTACTCTAGCGATAGGTATGGCGGAACATGTGACCCAGATG
ASGTLKEIKRFYVQNGKVIPNSE



GCTGCGATTTTAACTCATTTAGACAGGGAAACAAAACATTTTATGGACCTG
STWSGVGGNSITNDYCTAQKSL



GCATGACAGTAGATACTAAGAGTAAATTTACAGTGGTAACACAGTTTATA
FKDQNVFAKHGGMEGMGAALA



ACTGATGATGGAACGGCTTCAGGAACTCTTAAGGAAATTAAAAGATTTTA
QGMVLVMSLWDDHAANMLWL



CGTGCAAAACGGAAAAGTAATACCAAATAGCGAATCTACGTGGAGTGGA
DSNYPTTASSSTPGVARGTCDIS



GTGGGAGGCAATTCTATAACAAATGACTATTGTACTGCTCAGAAGAGCTT
SGVPADVEANHPDASVVYSNIK



ATTTAAAGATCAGAATGTTTTTGCAAAACATGGTGGAATGGAGGGAATGG
VGPIGSTFNSGGSNPGGGTTTTA



GCGCTGCTTTGGCACAAGGTATGGTTCTTGTGATGAGCTTATGGGATGACC
KPTTTTTTAGSPGGTGVAQHYG



ATGCTGCTAATATGTTGTGGCTTGACTCTAATTATCCGACTACGGCAAGTA
QCGGNGWQGPTTCASPYTCQK



GCTCTACTCCTGGCGTTGCTAGGGGCACTTGCGATATTTCTAGCGGAGTCC
LNDFYSQCL (SEQ ID NO: 145)



CTGCAGACGTTGAAGCTAATCACCCAGATGCAAGTGTTGTGTACAGCAAC



ATAAAGGTTGGACCTATAGGTAGCACATTTAACAGTGGAGGTTCTAATCC



AGGCGGTGGCACGACAACTACGGCAAAACCGACGACAACTACAACGACT



GCAGGCAGCCCTGGCGGTACGGGCGTCGCTCAGCACTATGGTCAATGTGG



AGGTAATGGCTGGCAGGGACCGACTACGTGCGCTTCTCCATATACTTGTCA



AAAGTTAAATGATTTTTATTCACAGTGCTTG (SEQ ID NO: 175)






Coptotermes

ATGAGATTTCCTTCAATATTTACAGCAGTACTTTTTGCAGCATCATCAGCA
MRFPSIFTAVLFAASSALAAYDY



formosanus

CTTGCAGCATATGATTATAAAACAGTACTTAAAAATTCACTTCTTTTTTAT
KTVLKNSLLFYEAQRSGKLPAD


EG
GAAGCACAAAGATCAGGAAAACTTCCTGCAGATCAAAAAGTAACATGGA
QKVTWRKDSALNDKGQKGEDL



GAAAAGATTCAGCACTTAATGATAAAGGACAAAAAGGAGAAGATCTTAC
TGGYYDAGDFVKFGFPMAYTV



AGGAGGATATTATGATGCAGGAGATTTTGTAAAATTTGGATTTCCTATGGC
TVLAWGLVDYESAYSTAGALD



ATATACAGTAACAGTACTTGCATGGGGACTTGTAGATTATGAATCAGCAT
DGRKALKWGTDYFLKAHTAAN



ATTCAACAGCAGGAGCACTTGATGATGGAAGAAAAGCACTTAAATGGGGA
EFYGQVGQGDVDHAYWGRPED



ACAGATTATTTTCTTAAAGCACATACAGCAGCAAATGAATTTTATGGACAA
MTMSRPAYKIDTSKPGSDLAAE



GTAGGACAAGGAGATGTAGATCATGCATATTGGGGAAGACCTGAAGATAT
TAAALAATAIAYKSADSTYSNN



GACAATGTCAAGACCTGCATATAAAATAGATACATCAAAACCTGGATCAG
LITHAKQLFDFANNYRGKYSDSI



ATCTTGCAGCAGAAACAGCAGCAGCACTTGCAGCAACAGCAATAGCATAT
TDAKNFYASGDYKDELVWAAA



AAATCAGCAGATTCAACATATTCAAATAATCTTATAACACATGCAAAACA
WLYRATNDNTYLTKAESLYNEF



ACTTTTTGATTTTGCAAATAATTATAGAGGAAAATATTCAGATTCAATAAC
GLGSWNGAFNWDNKISGVQVL



AGATGCAAAAAATTTTTATGCATCAGGAGATTATAAAGATGAACTTGTAT
LAKLTSKQAYKDKVQGYVDYL



GGGCAGCAGCATGGCTTTATAGAGCAACAAATGATAATACATATCTTACA
VSSQKKTPKGLVYIDQWGTLRH



AAAGCAGAATCACTTTATAATGAATTTGGACTTGGATCATGGAATGGAGC
AANSALIALQAADLGINAASYR



ATTTAATTGGGATAATAAAATATCAGGAGTACAAGTACTTCTTGCAAAACT
QYAKKQIDYALGDGGRSYVVG



TACATCAAAACAAGCATATAAAGATAAAGTACAAGGATATGTAGATTATC
FGTNPPVRPHHRSSSCPDAPAAC



TTGTATCATCACAAAAAAAAACACCTAAAGGACTTGTATATATAGATCAA
DWNTYNSAGPNAHVLTGALVG



TGGGGAACACTTAGACATGCAGCAAATTCAGCACTTATAGCACTTCAAGC
GPDSNDSYTDSRSDYISNEVATD



AGCAGATCTTGGAATAAATGCAGCATCATATAGACAATATGCAAAAAAAC
YNAGFQSAVAGLLKAGV (SEQ



AAATAGATTATGCACTTGGAGATGGAGGAAGATCATATGTAGTAGGATTT
ID NO: 146)



GGAACAAATCCTCCTGTAAGACCTCATCATAGATCATCATCATGCCCTGAT



GCACCTGCAGCATGCGATTGGAATACATATAATTCAGCAGGACCTAATGC



ACATGTACTTACAGGAGCACTTGTAGGAGGACCTGATTCAAATGATTCAT



ATACAGATTCAAGATCAGATTATATATCAAATGAAGTAGCAACAGATTAT



AATGCAGGATTTCAATCAGCAGTAGCAGGACTTCTTAAAGCAGGAGTA



(SEQ ID NO: 176)






Chryso-

ATGGCAAAAAAACTTTTTATAACAGCAGCACTTGCAGCAGCAGTACTTGC
MAKKLFITAALAAAVLAAPVIE



sporium

AGCACCTGTAATAGAAGAAAGACAAAATTGCGGAGCAGTATGGACACAA
ERQNCGAVWTQCGGNGWQGPT



lucknowense

TGCGGAGGAAATGGATGGCAAGGACCTACATGCTGCGCATCAGGATCAAC
CCASGSTCVAQNEWYSQCLPNS


CBH2b
ATGCGTAGCACAAAATGAATGGTATTCACAATGCCTTCCTAATTCACAAGT
QVTSSTTPSSTSTSQRSTSTSSST



AACATCATCAACAACACCTTCATCAACATCAACATCACAAAGATCAACAT
TRSGSSSSSSTTPPPVSSPVTSIPG



CAACATCATCATCAACAACAAGATCAGGATCATCATCATCATCATCAACA
GATSTASYSGNPFSGVRLFAND



ACACCTCCTCCTGTATCATCACCTGTAACATCAATACCTGGAGGAGCAACA
YYRSEVHNLAIPSMTGTLAAKA



TCAACAGCATCATATTCAGGAAATCCTTTTTCAGGAGTAAGACTTTTTGCA
SAVAEVPSFQWLDRNVTIDTLM



AATGATTATTATAGATCAGAAGTACATAATCTTGCAATACCTTCAATGACA
VQTLSQVRALNKAGANPPYAA



GGAACACTTGCAGCAAAAGCATCAGCAGTAGCAGAAGTACCTTCATTTCA
QLVVYDLPDRDCAAAASNGEFS



ATGGCTTGATAGAAATGTAACAATAGATACACTTATGGTACAAACACTTTC
IANGGAANYRSYIDAIRKHIIEYS



ACAAGTAAGAGCACTTAATAAAGCAGGAGCAAATCCTCCTTATGCAGCAC
DIRIILVIEPDSMANMVTNMNVA



AACTTGTAGTATATGATCTTCCTGATAGAGATTGCGCAGCAGCAGCATCAA
KCSNAASTYHELTVYALKQLNL



ATGGAGAATTTTCAATAGCAAATGGAGGAGCAGCAAATTATAGATCATAT
PNVAMYLDAGHAGWLGWPANI



ATAGATGCAATAAGAAAACATATAATAGAATATTCAGATATAAGAATAAT
QPAAELFAGIYNDAGKPAAVRG



ACTTGTAATAGAACCTGATTCAATGGCAAATATGGTAACAAATATGAATG
LATNVANYNAWSIASAPSYTSP



TAGCAAAATGCTCAAATGCAGCATCAACATATCATGAACTTACAGTATAT
NPNYDEKHYIEAFSPLLNSAGFP



GCACTTAAACAACTTAATCTTCCTAATGTAGCAATGTATCTTGATGCAGGA
ARFIVDTGRNGKQPTGQQQWG



CATGCAGGATGGCTTGGATGGCCTGCAAATATACAACCTGCAGCAGAACT
DWCNVKGTGFGVRPTANTGHE



TTTTGCAGGAATATATAATGATGCAGGAAAACCTGCAGCAGTAAGAGGAC
LVDAFVWVKPGGESDGTSDTSA



TTGCAACAAATGTAGCAAATTATAATGCATGGTCAATAGCATCAGCACCTT
ARYDYHCGLSDALQPAPEAGQ



CATATACATCACCTAATCCTAATTATGATGAAAAACATTATATAGAAGCAT
WFQAYFEQLLTNANPPF (SEQ



TTTCACCTCTTCTTAATTCAGCAGGATTTCCTGCAAGATTTATAGTAGATAC
ID NO: 147)



AGGAAGAAATGGAAAACAACCTACAGGACAACAACAATGGGGAGATTGG



TGCAATGTAAAAGGAACAGGATTTGGAGTAAGACCTACAGCAAATACAGG



ACATGAACTTGTAGATGCATTTGTATGGGTAAAACCTGGAGGAGAATCAG



ATGGAACATCAGATACATCAGCAGCAAGATATGATTATCATTGCGGACTT



TCAGATGCACTTCAACCTGCACCTGAAGCAGGACAATGGTTTCAAGCATA



TTTTGAACAACTTCTTACAAATGCAAATCCTCCTTTT (SEQ ID NO: 177)






S. f. BGLI

ATGGTATCATTTACATCACTTCTTGCAGGAGTAGCAGCAATATCAGGAGTA
MVSFTSLLAGVAAISGVLAAPA



CTTGCAGCACCTGCAGCAGAAGTAGAATCAGTAGCAGTAGAAAAAAGATC
AEVESVAVEKRSDSRVPIQNYT



AGATTCAAGAGTACCTATACAAAATTATACACAATCACCTTCACAAAGAG
QSPSQRDESSQWVSPHYYPTPQ



ATGAATCATCACAATGGGTATCACCTCATTATTATCCTACACCTCAAGGAG
GGRLQDVWQEAYARAKAIVGQ



GAAGACTTCAAGATGTATGGCAAGAAGCATATGCAAGAGCAAAAGCAAT
MTIVEKVNLTTGTGWQLDPCVG



AGTAGGACAAATGACAATAGTAGAAAAAGTAAATCTTACAACAGGAACA
NTGSVPRFGIPNLCLQDGPLGVR



GGATGGCAACTTGATCCTTGCGTAGGAAATACAGGATCAGTACCTAGATT
FADFVTGYPSGLATGATFNKDL



TGGAATACCTAATCTTTGCCTTCAAGATGGACCTCTTGGAGTAAGATTTGC
FLQRGQALGHEFNSKGVHIALG



AGATTTTGTAACAGGATATCCTTCAGGACTTGCAACAGGAGCAACATTTA
PAVGPLGVKARGGRNFEAFGSD



ATAAAGATCTTTTTCTTCAAAGAGGACAAGCACTTGGACATGAATTTAATT
PYLQGTAAAATIKGLQENNVMA



CAAAAGGAGTACATATAGCACTTGGACCTGCAGTAGGACCTCTTGGAGTA
CVKHFIGNEQEKYRQPDDINPAT



AAAGCAAGAGGAGGAAGAAATTTTGAAGCATTTGGATCAGATCCTTATCT
NQTTKEAISANIPDRAMHELYL



TCAAGGAACAGCAGCAGCAGCAACAATAAAAGGACTTCAAGAAAATAAT
WPFADSVRAGVGSVMCSYNRV



GTAATGGCATGCGTAAAACATTTTATAGGAAATGAACAAGAAAAATATAG
NNTYACENSYMMNHLLKEELG



ACAACCTGATGATATAAATCCTGCAACAAATCAAACAACAAAAGAAGCAA
FQGFVVSDWGAQLSGVYSAISG



TATCAGCAAATATACCTGATAGAGCAATGCATGAACTTTATCTTTGGCCTT
LDMSMPGEVYGGWNTGTSFWG



TTGCAGATTCAGTAAGAGCAGGAGTAGGATCAGTAATGTGCTCATATAAT
QNLTKAIYNETVPIERLDDMATR



AGAGTAAATAATACATATGCATGCGAAAATTCATATATGATGAATCATCTT
ILAALYATNSFPTEDHLPNFSSW



CTTAAAGAAGAACTTGGATTTCAAGGATTTGTAGTATCAGATTGGGGAGC
TTKEYGNKYYADNTTEIVKVNY



ACAACTTTCAGGAGTATATTCAGCAATATCAGGACTTGATATGTCAATGCC
HVDPSNDFTEDTALKVAEESIVL



TGGAGAAGTATATGGAGGATGGAATACAGGAACATCATTTTGGGGACAAA
LKNENNTLPISPEKAKRLLLSGIA



ATCTTACAAAAGCAATATATAATGAAACAGTACCTATAGAAAGACTTGAT
AGPDPIGYQCEDQSCTNGALFQ



GATATGGCAACAAGAATACTTGCAGCACTTTATGCAACAAATTCATTTCCT
GWGSGSVGSPKYQVTPFEEISYL



ACAGAAGATCATCTTCCTAATTTTTCATCATGGACAACAAAAGAATATGG
ARKNKMQFDYIRESYDLAQVTK



AAATAAATATTATGCAGATAATACAACAGAAATAGTAAAAGTAAATTATC
VASDAHLSIVVVSAASGEGYITV



ATGTAGATCCTTCAAATGATTTTACAGAAGATACAGCACTTAAAGTAGCA
DGNQGDRRNLTLWNNGDKLIET



GAAGAATCAATAGTACTTCTTAAAAATGAAAATAATACACTTCCTATATCA
VAENCANTVVVVTSTGQINFEG



CCTGAAAAAGCAAAAAGACTTCTTCTTTCAGGAATAGCAGCAGGACCTGA
FADHPNVTAIVWAGPLGDRSGT



TCCTATAGGATATCAATGCGAAGATCAATCATGCACAAATGGAGCACTTTT
AIANILFGKANPSGHLPFTIAKTD



TCAAGGATGGGGATCAGGATCAGTAGGATCACCTAAATATCAAGTAACAC
DDYIPIETYSPSSGEPEDNHLVEN



CTTTTGAAGAAATATCATATCTTGCAAGAAAAAATAAAATGCAATTTGATT
DLLVDYRYFEEKNIEPRYAFGY



ATATAAGAGAATCATATGATCTTGCACAAGTAACAAAAGTAGCATCAGAT
GLSYNEYEVSNAKVSAAKKVDE



GCACATCTTTCAATAGTAGTAGTATCAGCAGCATCAGGAGAAGGATATAT
ELPEPATYLSEFSYQNAKDSKNP



AACAGTAGATGGAAATCAAGGAGATAGAAGAAATCTTACACTTTGGAATA
SDAFAPTDLNRVNEYLYPYLDS



ATGGAGATAAACTTATAGAAACAGTAGCAGAAAATTGCGCAAATACAGTA
NVTLKDGNYEYPDGYSTEQRTT



GTAGTAGTAACATCAACAGGACAAATAAATTTTGAAGGATTTGCAGATCA
PIQPGGGLGGNDALWEVAYKVE



TCCTAATGTAACAGCAATAGTATGGGCAGGACCTCTTGGAGATAGATCAG
VDVQNLGNSTDKFVPQLYLKHP



GAACAGCAATAGCAAATATACTTTTTGGAAAAGCAAATCCTTCAGGACAT
EDGKFETPIQLRGFEKVELSPGE



CTTCCTTTTACAATAGCAAAAACAGATGATGATTATATACCTATAGAAACA
KKTVEFELLRRDLSVWDTTRQS



TATTCACCTTCATCAGGAGAACCTGAAGATAATCATCTTGTAGAAAATGAT
WIVESGTYEALIGVAVNDIKTSV



CTTCTTGTAGATTATAGATATTTTGAAGAAAAAAATATAGAACCTAGATAT
LFTI (SEQ ID NO: 148)



GCATTTGGATATGGACTTTCATATAATGAATATGAAGTATCAAATGCAAA



AGTATCAGCAGCAAAAAAAGTAGATGAAGAACTTCCTGAACCTGCAACAT



ATCTTTCAGAATTTTCATATCAAAATGCAAAAGATTCAAAAAATCCTTCAG



ATGCATTTGCACCTACAGATCTTAATAGAGTAAATGAATATCTTTATCCTT



ATCTTGATTCAAATGTAACACTTAAAGATGGAAATTATGAATATCCTGATG



GATATTCAACAGAACAAAGAACAACACCTATACAACCTGGAGGAGGACTT



GGAGGAAATGATGCACTTTGGGAAGTAGCATATAAAGTAGAAGTAGATGT



ACAAAATCTTGGAAATTCAACAGATAAATTTGTACCTCAACTTTATCTTAA



ACATCCTGAAGATGGAAAATTTGAAACACCTATACAACTTAGAGGATTTG



AAAAAGTAGAACTTTCACCTGGAGAAAAAAAAACAGTAGAATTTGAACTT



CTTAGAAGAGATCTTTCAGTATGGGATACAACAAGACAATCATGGATAGT



AGAATCAGGAACATATGAAGCACTTATAGGAGTAGCAGTAAATGATATAA



AAACATCAGTACTTTTTACAATA (SEQ ID NO: 178)









In certain aspects of the invention, the polypeptides and polynucleotides of the present invention are provided in an isolated form, e.g., purified to homogeneity.


The present invention also encompasses polypeptides which comprise, or alternatively consist of, an amino acid sequence which is at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% similar to the polypeptide of any of SEQ ID NOs:108-148, and to portions of such polypeptide with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.


As known in the art “similarity” between two polypeptides is determined by comparing the amino acid sequence and conserved amino acid substitutes thereto of the polypeptide to the sequence of a second polypeptide.


The present invention further relates to a domain, fragment, variant, derivative, or analog of the polypeptide of any of SEQ ID NOs:108-148.


Fragments or portions of the polypeptides of the present invention can be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, the fragments can be employed as intermediates for producing the full-length polypeptides.


Fragments of biomass degrading enzymes, for example cellulases including cellobiohydrolase, endoglucanase or beta-glucosidase polypeptides, or mannanases of the present invention encompass domains, proteolytic fragments, deletion fragments and in particular, fragments of Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii cellobiohydrolase, endoglucanase or beta-glucosidase polypeptides which retain any specific biological activity of biomass degrading enzyme such as the cellobiohydrolase, endoglucanase, mannanase or beta-glucosidase proteins. Polypeptide fragments further include any portion of the polypeptide which comprises a catalytic activity of biomass degrading enzyme such as the cellobiohydrolase, endoglucanase, mannanase or beta-glucosidase proteins.


The variant, derivative or analog of the polypeptide of any of SEQ ID NOs:108-148, can be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue can or can not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide for purification of the polypeptide or (v) one in which a fragment of the polypeptide is soluble, i.e., not membrane bound, yet still binds ligands to the membrane bound receptor. Such variants, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.


The polypeptides of the present invention further include variants of the polypeptides. A “variant” of the polypeptide can be a conservative variant, or an allelic variant. As used herein, a conservative variant refers to alterations in the amino acid sequence that do not adversely affect the biological functions of the protein. A substitution, insertion or deletion is said to adversely affect the protein when the altered sequence prevents or disrupts a biological function associated with the protein. For example, the overall charge, structure or hydrophobic-hydrophilic properties of the protein can be altered without adversely affecting a biological activity. Accordingly, the amino acid sequence can be altered, for example to render the peptide more hydrophobic or hydrophilic, without adversely affecting the biological activities of the protein.


By an “allelic variant” is intended alternate forms of a gene occupying a given locus on a chromosome of an organism. Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985). Non-naturally occurring variants can be produced using art-known mutagenesis techniques. Allelic variants, though possessing a slightly different amino acid sequence than those recited above, will still have the same or similar biological functions associated with the Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme.


The allelic variants, the conservative substitution variants, and members of the biomass degrading enzyme families, will have an amino acid sequence having at least 75%, at least 80%, at least 90%, at least 95% amino acid sequence identity with a Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme sequence set forth in any one of SEQ ID NOs:108-148. Identity or homology with respect to such sequences is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the known peptides, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology, and not considering any conservative substitutions as part of the sequence identity. N-terminal, C-terminal or internal extensions, deletions, or insertions into the peptide sequence shall not be construed as affecting homology.


Thus, the proteins and peptides of the present invention include molecules comprising the amino acid sequence of SEQ ID NOs:108-148 or fragments thereof having a consecutive sequence of at least about 3, 4, 5, 6, 10, 15, 20, 25, 30, 35 or more amino acid residues of the Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme sequences; amino acid sequence variants of such sequences wherein at least one amino acid residue has been inserted N- or C-terminal to, or within, the disclosed sequence; amino acid sequence variants of the disclosed sequences, or their fragments as defined above, that have been substituted by another residue. Contemplated variants further include those containing predetermined mutations by, e.g., homologous recombination, site-directed or PCR mutagenesis, and the corresponding proteins of other animal species, including but not limited to bacterial, fungal, insect, rabbit, rat, porcine, bovine, ovine, equine and non-human primate species, the alleles or other naturally occurring variants of the family of proteins; and derivatives wherein the protein has been covalently modified by substitution, chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example, a detectable moiety such as an enzyme or radioisotope).


Using known methods of protein engineering and recombinant DNA technology, variants can be generated to improve or alter the characteristics of the cellulase polypeptides. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function.


Thus, the invention further includes Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity.


The skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.


For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie et al., “Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions,” Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.


The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.


The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.


As the authors state, these two strategies have revealed that proteins are often surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.


The terms “derivative” and “analog” refer to a polypeptide differing from the Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme polypeptide, but retaining essential properties thereof. Generally, derivatives and analogs are overall closely similar, and, in many regions, identical to the Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme polypeptides. The term “derivative” and “analog” when referring to Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme polypeptides of the present invention include any polypeptides which retain at least some of the activity of the corresponding native polypeptide, e.g., the exoglucanase activity, or the activity of the its catalytic domain.


Derivatives of Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme polypeptides of the present invention, are polypeptides which have been altered so as to exhibit additional features not found on the native polypeptide. Derivatives can be covalently modified by substitution, chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example, a detectable moiety such as an enzyme or radioisotope). Examples of derivatives include fusion proteins.


An analog is another form of a Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme polypeptide of the present invention. An “analog” also retains substantially the same biological function or activity as the polypeptide of interest, e.g., functions as a cellobiohydrolase. An analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.


The polypeptide of the present invention can be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.


Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes encoding any of SEQ ID NOs: 108-148, using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs can be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.


Tethered and Secreted Biomass Degrading Enzymes


According to the present invention, the biomass degrading enzymes, for example cellulases, can be either tethered or secreted. As used herein, a protein is “tethered” to an organism's cell surface if at least one terminus of the protein is bound, covalently and/or electrostatically for example, to the cell membrane or cell wall. It will be appreciated that a tethered protein can include one or more enzymatic regions that can be joined to one or more other types of regions at the nucleic acid and/or protein levels (e.g., a promoter, a terminator, an anchoring domain, a linker, a signaling region, etc.). While the one or more enzymatic regions may not be directly bound to the cell membrane or cell wall (e.g., such as when binding occurs via an anchoring domain), the protein is nonetheless considered a “tethered enzyme” according to the present specification.


Tethering can, for example, be accomplished by incorporation of an anchoring domain into a recombinant protein that is heterologously expressed by a cell, or by prenylation, fatty acyl linkage, glycosyl phosphatidyl inositol anchors or other suitable molecular anchors which can anchor the tethered protein to the cell membrane or cell wall of the host cell. A tethered protein can be tethered at its amino terminal end or optionally at its carboxy terminal end.


As used herein, “secreted” means released into the extracellular milieu, for example into the media. Although tethered proteins can have secretion signals as part of their immature amino acid sequence, they are maintained as attached to the cell surface, and do not fall within the scope of secreted proteins as used herein.


As used herein, “flexible linker sequence” refers to an amino acid sequence which links two amino acid sequences, for example, a cell wall anchoring amino acid sequence with an amino acid sequence that contains the desired enzymatic activity. The flexible linker sequence allows for necessary freedom for the amino acid sequence that contains the desired enzymatic activity to have reduced steric hindrance with respect to proximity to the cell and can also facilitate proper folding of the amino acid sequence that contains the desired enzymatic activity.


In some embodiments of the present invention, the tethered biomass degrading enzymes are tethered by a flexible linker sequence linked to an anchoring domain. In some embodiments, the anchoring domain is of CWP2 (for carboxy terminal anchoring) or FLO1 (for amino terminal anchoring) from S. cerevisiae.


In some embodiments, heterologous secretion signals can be added to the expression vectors of the present invention to facilitate the extra-cellular expression of biomass degrading enzyme proteins. In some embodiments, the heterologous secretion signal is the secretion signal from T. reesei Xyn2.


Fusion Proteins Comprising Biomass Degrading Enzymes


The present invention also encompasses fusion proteins. For example, the fusion proteins can be a fusion of a heterologous biomass degrading enzyme and a second peptide. The heterologous biomass degrading enzyme and the second peptide can be fused directly or indirectly, for example, through a linker sequence. The fusion protein can comprise for example, a second peptide that is N-terminal to the heterologous biomass degrading enzyme and/or a second peptide that is C-terminal to the heterologous biomass degrading enzyme. Thus, in certain embodiments, the polypeptide of the present invention comprises a first polypeptide and a second polypeptide, wherein the first polypeptide comprises a heterologous biomass degrading enzyme. In some specific embodiments, the polypeptide of the present invention comprises a first polypeptide and a second polypeptide, wherein the first polypeptide comprises a heterologous cellulase.


According to one embodiment of the present invention, the fusion protein can comprise a first and second polypeptide wherein the first polypeptide comprises a heterologous biomass degrading enzyme and the second polypeptide comprises a signal peptide. The signal peptide can be the signal sequence that is natively associated with the heterologous biomass degrading enzyme, a T. sacch signal sequence, or a signal sequence from another gram positive organism. Exemplary signal sequences from T. sacch and other gram-positive organisms are listed below in Tables 2 and 3. The signal sequences can be encoded by their native genes or can be codon-optimized for expression, e.g. for expression in T. sacch. (Codon-optimization is described in more detail below.) In some embodiments, the signal peptide is N-terminal to the biomass degrading enzyme. In some embodiments, the fusion protein comprises a signal peptide, a linker sequence and a biomass degrading enzyme.









TABLE 3







Signal Sequences from T. sacch and other Gram Positive Organisms.











SEQ
Organism

Signal Peptide Amino Acid



ID NO
Derived
Gene Derived
Sequence














1

T. saccharolyticum

extracellular solute-
MKLFKKIMLIMLSIMLIVSASACG





binding protein family 1
TGSSGSSNSNASKS





2

T. saccharolyticum

Ig domain protein
MNKILKIFSVFLGAFLIFVNMSIN





EAKADP





3

T. saccharolyticum

Arabinogalactan endo-
MNNKKGIVAFIIILTMIFSNLTFVD




1,4-beta-galactosidase
ANI





4

T. saccharolyticum

Mannan endo-1,4-beta-
VKKFCILLMCIIILISGCKFNSVTS




mannosidase
SGK





5

T. saccharolyticum

alpha amylase catalytic
MKKTFKLILVLMLSLTLVFGLTA




region
PIQAAS





6

Lactococcus

secreted,
MKKKIISAILMSTVILSAAAPLSG




lactis

uncharacterized protein
VYA





7

Lactococcus

secreted,
MKFNKKRVAIATFIALIFVSFFTIS




lactis

uncharacterized protein
SIQDNQTNAA





8
Typical Gram
identity to Tsacch
MKSIVNRVVSIVTALIMIFGTSLFS



positive
cellulose 1,4-beta-
QHIRAFA




cellobiosidase





9

Staphylococcus

thermonuclease
MKSNKSLAMIVVAIIIVGVLAFQF




aureus


MNH





10

Staphylococcus

thermonuclease
MTEYLLSAGICMAIVSILLIGMAIS




aureus






11

Bacillus

Alpha-amylase
MKQQKRLYARLLTLLFALIFLLP




licheniformis


HSAAAAAN





12

Bacillus

Alpha-amylase
MKQHKRLYARLLPLLFALIFLLS




licheniformis


HSAAAAAS





13

T. saccharolyticum

glucan 1,4-alpha-
LNRKLIKYLPVLFLASSVLSGCGN




glucosidase
NNISSMK





14

T. saccharolyticum

extracellular solute-
MGKKFISIFVVTILLIAALLSGCST




binding protein family 1
KQNTAS





15

T. saccharolyticum

glycoside hydrolase
MRIKKAFFMLIAAFIVLSLFLFNF




family 18
AKTSASA





16

T. saccharolyticum

Predicted Cellulase
MSKIARQIITVFVTLVLAVYSIPII





GATS





17

T. saccharolyticum

extracellular solute-
MFKKIIVTVLAVILTIGALTGCSSS




binding protein family 1
TNSSGS





18

T. saccharolyticum

extracellular solute-
MKSKKLLSVLIVSVMIFSVFLSGC




binding protein family 1
GSAKNSKSA





19

T. saccharolyticum

glycoside hydrolase
MKKYKRYIAMMLIFVMVLATVS




family 18
LAGCKSSVKKPVTSKR





20

T. saccharolyticum

Predicted Cellulase
LNKLHINKWYFFVGMLAMFAVI





MSLILKDTSLTF





21

T. saccharolyticum

Secretion protein HlyD
MNKKVIIITSIILVVAAGATYYFT





KSKATP





22

T. saccharolyticum

Endo-1,4-beta-xylanase
MLNFKRIFTLICTFLVSLSLLTVT





AFADT





23

T. saccharolyticum

hypothetical protein
MKKLMLILLSLILVVSVTACGKI





24

T. saccharolyticum

conserved hypothetical
MLSKNLPIKILSVVIAFILWLYVM




protein
GEK





25

T. saccharolyticum

extracellular solute-
MKRLKKLMLVLLSMILIISASAC




binding protein family 1
GTNSNNSSSSNASN





26

T. saccharolyticum

Amylase
MKKTFKLILVLMLSLTLVFGLTA





PIQAAS





27

T. saccharolyticum

XynA precursor
MKSIVNRVVSIVTALIMIFGTSLFS





QHIRAFADD





28

T. saccharolyticum

conserved hypothetical
VKKFVSIFLAVMLIAAIPVFGLAAQ




protein (Spot #4,




Experiment HH23)





29

T. saccharolyticum

N-acetylmuramoyl-L-
MLKKIIATMLILSLVVIPFMAFADD




alanine amidase (Spot




#11, Experiment HH9)





30

T. saccharolyticum

hypothetical protein
VKKIYGLILVFVVMLAVIGIVYA




(Spot #18, Experiment
DS




HH32)





31

T. saccharolyticum

extracellular solute-
MIRSKMLKTVSMLLVLVMIITAF




binding protein family
TAC




1 (Spot #19,




Experiment HH32)





32

Caldocellum

Cellulase - ManA
MRLKTKIRKKWLSVLCTVVFLLN




saccharolyticum


ILFIANVTILPKVGAAT





33

Caldocellum

Cellulase - celA
MKTARLLVCFVLVCFILTTTILLD




saccharolyticum


NNKGEAAM





34

Clostridium

Cellulase - celZ
MRKFWSFAIIISLLVTGLFIHTPKA




Stercorarium


EAAG





35

Thermobifida

Cel9A (beta-1,4-
MSVTEPPPRRRGRHSRARRFLTS




fusca

endoglucanase
LGA




precursor)
TAALTAGMLGVPLATGTAHAEP





36

Caldocellum

celA;
MVVTFLFILGVVYGVKPWQEAR




saccharolyticum


AGS





37

Caldocellum

celB (Cleavage 28/29)
MKRNLFRIVSRVVLIAFIASISLVG




saccharolyticum


AMSY





38

Caldocellum

celB (Cleavage 36-37)
MKRNLFRIVSRVVLIAFIASISLVG




saccharolyticum


AM SYFPVETQAA









The signal sequence can be encoded by a native nucleotide sequence or can be encoded by a codon-optimized sequence. (Codon-optimized sequences are described in more detail below.) Sequences encoding the signal peptides in Table 3 that have been codon-optimized for expression in T. sacch are shown below in Table 4.










TABLE 4







Codon-Optimized Signal Sequences from T. sacch and other



Gram Positive Organisms.











SEQ






ID
Organism


NO
Derived
Gene Derived
Codon-Optimized Nucleotide Sequence





39

T. saccharolyticum

extracellular
ATGAAACTGTTTAAAAAAATTATGCT





solute-binding
GATTATGCTGAGCATTATGCTGATTGT




protein family 1
GAGCGCGAGCGCGTGCGGCACCGGC





AGCAGCGGCAGCAGCAACAGCAACG





CGAGCAAAAGC





40

T. saccharolyticum

Ig domain protein
ATGAACAAAATTCTGAAAATTTTTAG





GCTGTTTCTGGGCGCGTTTCTGATTTT





TGTGAACATGAGCATTAACGAAGCGA





AAGCGGATCCG





41

T. saccharolyticum

Arabinogalactan
ATGAACAACAAAAAAGGCATTGTGGC




endo-1,4-beta-
GTTTATTATTATTCTGACCATGATTTT




galactosidase
TAGCAACCTGACCTTTGTGGATGCGA





ACATT





42

T. saccharolyticum

Mannan endo-
GTGAAAAAATTTTGCATTCTGCTGAT




1,4-beta-
GTGCATTATTATTCTGATTAGCGGCTG




mannosidase
CAAATTTAACAGCGTGACCAGCAGCG





GCAAA





43

T. saccharolyticum

alpha amylase
ATGAAAAAAACCTTTAAACTGATTCT




catalytic region
GGTGCTGATGCTGAGCCTGACCCTGG





TGTTTGGCCTGACCGCGCCGATTCAG





GCGGCGAGC





44

Lactococcus

secreted,
ATGAAGAAAAAGATAATAAGCGCTAT




lactis

uncharacterized
TCTTATGAGCACAGTGATACTTTCTGC




protein
GGCCGCACCTTTAAGTGGTGTTTATG





CT





45

Lactococcus

secreted,
ATGAAATTTAATAAAAAGAGAGTTGC




lactis

uncharacterized
CATAGCAACATTTATTGCCTTAATATT




protein
TGTGTCATTTTTCACAATTTCTTCTAT





ACAGGATAATCAAACCAATGCGGCA





46
Typical Gram
identity to Tsacch
ATGAAATCAATTGTCAATAGAGTGGT



positive
cellulose 1,4-
AAGCATTGTTACTGCTCTTATAATGAT




beta-
TTTTGGTACTTCATTATTTTCTCAGCA




cellobiosidase
CATTAGAGCGTTTGCA





47

Staphylococcus

thermonuclease
ATGAAAAGTAATAAATCGTTAGCTAT




aureus


GATAGTCGTTGCAATAATAATAGTCG





GGGTATTAGCTTTTCAGTTTATGAACC





AC





48

Staphylococcus

thermonuclease
ATGACAGAATATTTGTTATCAGCAGG




aureus


TATTTGCATGGCAATAGTATCAATATT





ATTAATAGGAATGGCAATTTCA





49

Bacillus

Alpha-amylase
ATGAAACAACAAAAAAGGCTTTATGC




licheniformis


AAGACTTTTAACATTATTGTTTGCATT





GATATTCTTGCTTCCACATTCTGCAGC





AGCAGCAGCTAAC





50

Bacillus

Alpha-amylase
ATGAAACAGCACAAAAGACTGTATGC




licheniformis


AAGATTGCTACCTTTGTTGTTTGCTCT





GATATTTTTATTGAGCCACTCGGCGG





CTGCTGCAGCCTCA





51

T. saccharolyticum

glucan 1,4-alpha-
TTGAATAGAAAACTTATAAAATACCT




glucosidase
ACCTGTATTATTTCTTGCATCCAGTGT





GCTAAGCGGATGTGGAAACAATAATA





TATCAAGTATGAAA





52

T. saccharolyticum

extracellular
ATGGGTAAAAAATTTATAAGCATTTT




solute-binding
TGTTTGTCACAATACTTTTGATAGCTGC




protein family 1
TTTGCTTTCTGGATGTTCAACAAAACA





AAACACTGCTTCC





53

T. saccharolyticum

glycoside
ATGCGTATAAAAAAAGCTTTTTTTAT




hydrolase family
GCTGATAGCAGCTTTTATAGTTCTATC




18
TTTGTTTTTGTTTAATTTCGCTAAAAC





CAGTGCATCGGCG





54

T. saccharolyticum

Predicted
ATGAGCAAGATAGCGAGACAGATAA




Cellulase
TAACTGTTTTCGTGACCCTTGTACTGG





CAGTATATTCTATCCCTATTATTGGGG





CAACCAGT





55

T. saccharolyticum

extracellular
ATGTTTAAAAAAATTATTGTCACAGT




solute-binding
GCTTGCAGTAATTTTGACAATTGGAG




protein family 1
CATTAACAGGATGTTCATCTTCTACTA





ATAGTAGTGGTAGT





56

T. saccharolyticum

extracellular
ATGAAAAGTAAAAAGTTGTTGTCAGT




solute-binding
TTTAATTGTATCAGTAATGATATTTTC




protein family 1
TGTATTTTTATCTGGGTGTGGCAGTGC





TAAAAACTCTAAATCAGCA





57

T. saccharolyticum

glycoside
ATGAAAAAATATAAAAGATATATTGC




hydrolase family
GATGATGTTGATTTTTGTCATGGTACT




18
TGCAACTGTATCATTAGCCGGATGCA





AAAGCTCAGTTAAAAAGCCAGTTACT





TCTAAAAGA





58

T. saccharolyticum

Predicted
TTGAATAAATTGCATATTAATAAATG




Cellulase
GTACTTTTTTGTAGGTATGCTTGCTAT





GTTTGCTGTAATTATGAGTCTAATCTT





AAAAGATACATCTTTAACCTTT





59

T. saccharolyticum

Secretion protein
ATGAATAAAAAGGTAATAATTATAAC




HlyD
CAGCATTATTTTGGTAGTTGCAGCAG





GCGCTACTTACTACTTTACAAAAAGC





AAAGCCACGCCT





60

T. saccharolyticum

Endo-1,4-beta-
ATGTTAAACTTTAAGAGAATTTTTAC




xylanase
GTTAATTTGCACTTTTTTGGTTAGTTT





AAGTTTGCTTACGGTTACTGCATTTGC





AGATACA





61

T. saccharolyticum

hypothetical
ATGAAAAAATTAATGTTGATTTTACTT




protein
TCTTTAATATTGGTAGTTAGTGTAACT





GCCTGCGGGAAAATA





62

T. saccharolyticum

conserved
ATGCTGAGTAAAAATCTACCTATAAA




hypothetical
GATACTTTCGGTTGTAATAGCATTTAT




protein
ATTATGGCTTTATGTGATGGGTGAGA





AG





63

T. saccharolyticum

extracellular
ATGAAAAGATTAAAAAAACTCATGTT




solute-binding
AGTTTTGCTATCGATGATTCTGATTAT




protein family 1
TTCGGCATCAGCTTGTGGAACTAACT





CAAACAATTCAAGTAGTTCCAATGCC





TCTAAT





64

T. saccharolyticum

Amylase
ATGAAAAAAACGTTTAAATTGATATT





GGTGCTGATGCTTTCACTTACACTTGT





TTTTGGATTGACAGCACCAATACAGG





CAGCTTCT





65

T. saccharolyticum

XynA precursor
ATGAAGAGTATTGTAAACAGAGTTGT





ATCTATCGTTACAGCTTTAATAATGAT





TTTTGGGACATCACTGTTTTCACAACA





CATAAGGGCATTTGCTGATGAC





66

T. saccharolyticum

conserved
GTGAAAAAGTTTGTTTCTATCTTTTTG




hypothetical
GCAGTTATGCTGATTGCAGCTATTCC




protein (Spot #4,
AGTGTTTGGTTTAGCGGCTCAG




Experiment




HH23)





67

T. saccharolyticum

N-
ATGTTAAAAAAAATAATTGCAACAAT




acetylmuramoyl-
GTTAATTTTATCATTAGTTGTCATTCC




L-alanine
ATTCATGGCTTTTGCAGATGAT




amidase (Spot




#11, Experiment




HH9)





68

T. saccharolyticum

hypothetical
GTGAAGAAGATTTATGGATTGATATT




protein (Spot #18,
GGTATTTGTTGTGATGTTAGCTGTAAT




Experiment
TGGAATTGTGTACGCTGATTCG




HH32)





69

T. saccharolyticum

extracellular
ATGATTAGAAGTAAGATGTTGAAAAC




solute-binding
AGTAAGTATGTTGCTGGTGCTAGTGA




protein family 1
TGATTATAACAGCATTTACTGCATGT




(Spot #19,




Experiment




HH32)





70

Caldocellum

Cellulase - ManA
ATGAGACTAAAAACAAAAATAAGAA




saccharolyticum


AGAAATGGTTAAGTGTTTTATGCACA





GTAGTGTTTTTGTTGAATATTCTTTTT





ATAGCTAATGTCACAATTTTACCTAA





AGTTGGAGCAGCTACA





71

Caldocellum

Cellulase - celA
ATGAAAACAGCAAGGCTTTTGGTGTG




saccharolyticum


TTTTGTTTTGGTGTGCTTTATACTTAC





TACAACGATTTTGCTTGATAATAACA





AGGGAGAGGCAGCAATG





72

Clostridium

Cellulase - celZ
ATGAGAAAATTTTGGTCTTTTGCAAT




Stercorarium


AATTATATCTTTACTTGTAACAGGATT





GTTTATTCATACTCCTAAAGCTGAGG





CAGCTGGT





73

Thermobifida

Cel9A (beta-1,4-
ATGTCAGTAACAGAACCTCCTCCTAG




fusca

endoglucanase
AAGAAGAGGAAGACATTCAAGAGCA




precursor)
AGAAGATTT





CTTACATCACTTGGAGCAACAGCAGC





ACTTACAGCAGGAATGCTTGGAGTAC





CTCTTGCA





ACAGGAACAGCACATGCAGAACCT





74

Caldocellum

celA;
ATGGTAGTAACATTTCTTTTTATACTT




saccharolyticum


GGAGTAGTATATGGAGTAAAACCTTG





GCAAGAA





GCAAGAGCAGGATCA





75

Caldocellum

celB (Cleavage
ATGAAAAGAAATCTTTTTAGAATAGT




saccharolyticum

28/29)
ATCAAGAGTAGTACTTATAGCATTTA





TAGCATCA





ATATCACTTGTAGGAGCAATGTCATAT





76

Caldocellum

celB (Cleavage
ATGAAAAGAAATCTTTTTAGAATAGT




saccharolyticum

36-37)
ATCAAGAGTAGTACTTATAGCATTTA





TAGCATCA





ATATCACTTGTAGGAGCAATGTCATA





TTTTCCTGTAGAAACACAAGCAGCA









According to another embodiment, the fusion protein can comprise a first and second polypeptide, wherein the first polypeptide comprises a heterologous biomass degrading enzyme and the second polypeptide comprises a polypeptide used to facilitate purification or identification or a reporter peptide. The reporter polypeptide or the polypeptide used to facilitate purification or identification can be, for example, a HIS-tag, a GST-tag, a FLAG-tag, an HA-tag, a MYC-tag or a fluorescent protein (e.g. GFP). In some embodiments, a tag (e.g. a polypeptide used to facilitate purification or identification or a reporter peptide) is fused to the N-terminus of the heterologous biomass degrading enzyme. In some embodiments, the tag is fused to the C-terminus of the heterologous biomass degrading enzyme. In some embodiments, the tag is not at either the N- or C-terminus of the heterologous biomass degrading enzyme, but is instead inserted into the heterologous biomass degrading enzyme sequence.


According to yet another embodiment, the fusion protein can comprise a first and second polypeptide, wherein the first polypeptide comprises a heterologous biomass degrading enzyme and the second polypeptide comprises an anchoring peptide. In some embodiments, the anchoring domain is of CWP2 (for carboxy terminal anchoring) or FLO1 (for amino terminal anchoring) from S. cerevisiae.


According to yet another embodiment, the fusion protein can comprise a first and second polypeptide, wherein the first polypeptide comprises a heterologous biomass degrading enzyme, such as a cellulase and the second polypeptide comprises a cellulose binding module (CBM). In some embodiments, the CBM is from for example, T. reesei Cbh1 or Cbh2 or from C. lucknowense Cbh2b. In some particular embodiments, the CBM is fused to a cellobiohydrolase.


In certain other embodiments, the first polypeptide and the second polypeptide are fused via a linker sequence. The linker sequence can, in some embodiments, be encoded by a codon-optimized polynucleotide. (Codon-optimized polynucleotides are described in more detail below.) An amino acid sequence corresponding to a codon-optimized linker 1 according to the invention is a flexible linker-strep tag-TEV site-FLAG-flexible linker fusion and corresponds to GGGGSGGGGS AWHPQFGG ENLYFQG DYKDDDK GGGGSGGGGS (SEQ ID NO: 149).


The DNA sequence is as follows:









(SEQ ID NO: 150)







GGAGGAGGTGGTTCAGGAGGTGGTGGGTCTGCTTGGCATCCACAATTTGG





AGGAGGCGGTGGTGAAAATCTGTATTTCCAGGGAGGCGGAGGTGATTACA





AGGATGACGACAAAGGAGGTGGTGGATCAGGAGGTGGTGGCTCC






An amino acid sequence corresponding to another optimized linker is a flexible linker-strep tag-linker-TEV site-flexible linker and corresponds to GGGGSGGGGS WSHPQFEK GG ENLYFQG GGGGSGGGGS (SEQ ID NO:151). The DNA sequence is as follows:









(SEQ ID NO: 152)







ggtggcggtggatctggaggaggcggttcttggtctcacccacaatttga





aaagggtggagaaaacttgtactttcaaggcggtggtggaggttctggcg





gaggtggctccggctca.






Polynucleotides Encoding Heterologous Biomass Degrading Enzymes


The present invention also includes isolated polynucleotides encoding biomass degrading enzymes of the present invention. Thus, the polynucleotides of the invention can encode for example, mannanases or cellulases, such as endoglucanases, β-glucosidases or cellobiohydrolases.


In some particular embodiments of the invention, the polynucleotide encodes an endoglucanase which is a endo-1,4-β-glucanase or isoform, paralogue, or orthologue thereof. In certain embodiments, the polynucleotide encodes a β-glucosidase I or a β-glucosidase II or an isoform, paralogue, or orthologue thereof. In certain embodiments of the invention, the polynucleotide encodes a cellobiohydrolase I and/or an cellobiohydrolase II or an isoform, paralogue, or orthologue thereof.


In particular embodiments of the present invention, the polynucleotide encodes a biomass degrading enzyme described in Table 2. In some embodiments, the polynucleotide encodes a polypeptide comprising a sequence at least about 70, about 80, about 90, about 95, about 96, about 97, about 98, about 99, or 100% identical to the sequence of a biomass degrading enzyme described in Table 2.


In certain aspects the polynucleotide can encode an endoglucanase, cellobiohydrolase or β-glucosidase derived from, for example, a fungal, bacterial, protozoan or termite source.


The present invention also encompasses variants of the biomass degrading enzyme genes, as described above. Variants can contain alterations in the coding regions, non-coding regions, or both. Examples are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. In certain embodiments, nucleotide variants are produced by silent substitutions due to the degeneracy of the genetic code. In further embodiments, Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host. Codon optimized polynucleotides of the present invention are discussed further below.


The present invention also encompasses an isolated polynucleotide encoding a fusion protein. In certain embodiments, the nucleic acid encoding a fusion protein comprises a first polynucleotide encoding a biomass degrading enzyme, e.g. a cellobiohydrolase, and a second polynucleotide encoding for a CBM. The CBM can be, for example, a CBM from T. reesei Cbh1 or Cbh2.


The present invention also encompasses an isolated polynucleotide encoding a fusion protein that comprises a first polynucleotide encoding a biomass degrading enzyme and a second polynucleotide encoding a signal sequence.


In further embodiments of the fusion polynucleotide, the first and second polynucleotides are in the same orientation, or the second polynucleotide is in the reverse orientation of the first polynucleotide. In additional embodiments, the first polynucleotide is either 5′ or 3′ to the second polynucleotide. In certain other embodiments, the first polynucleotide and/or the second polynucleotide are codon-optimized polynucleotides, for example, polynucleotides codon-optimized for expression in T. sacch. In particular embodiments of the nucleic acid encoding a fusion protein, the first polynucleotide is a codon-optimized signal peptide and the second polynucleotide encodes for a codon-optimized biomass degrading enzyme, for example a cellulase.


Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to any of SEQ ID NOs: 77-107, using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs can be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.


By a nucleic acid having a nucleotide sequence at least, for example, 95% “identical” to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the nucleic acid is identical to the reference sequence except that the nucleotide sequence can include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the particular polypeptide. In other words, to obtain a nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence can be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence can be inserted into the reference sequence. The query sequence can be an entire sequence shown of any of SEQ ID NOs:77-107, or any fragment or domain specified as described herein.


As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence or polypeptide of the present invention can be determined conventionally using known computer programs. A method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245.) In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.


If the subject sequence is shorter than the query sequence because of 5′ or 3′ deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5′ and 3′ truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5′ or 3′ ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5′ and 3′ of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5′ and 3′ bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.


For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5′ end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5′ end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5′ and 3′ ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5′ or 3′ of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5′ and 3′ of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.


Some embodiments of the invention encompass a nucleic acid molecule comprising at least 10, 20, 30, 35, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, or 800 consecutive nucleotides or more of any of SEQ ID NOs: 77-107, or domains, fragments, variants, or derivatives thereof.


The polynucleotide of the present invention can be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA can be double stranded or single-stranded, and if single stranded can be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the mature polypeptide can be identical to the coding sequence encoding SEQ ID NO: 108-148, or can be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptide as the DNA of any one of SEQ ID NOs: 77-107.


In certain embodiments, the present invention provides an isolated polynucleotide comprising a nucleic acid fragment which encodes at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 95, or at least 100 or more contiguous amino acids of SEQ ID NOs: 108-148.


The polynucleotide encoding for the mature polypeptide of SEQ ID NOs: 108-148 or can include: only the coding sequence for the mature polypeptide; the coding sequence of any domain of the mature polypeptide; and the coding sequence for the mature polypeptide (or domain-encoding sequence) together with non coding sequence, such as introns or non-coding sequence 5′ and/or 3′ of the coding sequence for the mature polypeptide.


Thus, the term “polynucleotide encoding a polypeptide” encompasses a polynucleotide which includes only sequences encoding for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequences.


In further aspects of the invention, nucleic acid molecules having sequences at least about 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequences disclosed herein, encode a polypeptide having mannanase, cellobiohydrolase (Cbh), endoglucanase (Eg) or β-glucosidase (Bgl) functional activity. By “a polypeptide having mannanase, Cbh, Eg or Bgl functional activity” is intended polypeptides exhibiting activity similar, but not necessarily identical, to a functional activity of the mannanase, Cbh, Eg or Bgl polypeptides of the present invention, as measured, for example, in a particular biological assay. For example, a Cbh, Eg or Bgl functional activity can routinely be measured by determining the ability of Cbh, Eg or Bgl polypeptide to hydrolyze cellulose, or by measuring the level of Cbh, Eg or Bgl activity.


Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large portion of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequence of any of SEQ ID NOs: 77-107, or fragments thereof, will encode polypeptides having mannanase, Cbh, Eg or Bgl functional activity. In fact, since degenerate variants of any of these nucleotide sequences all encode the same polypeptide, in many instances, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having mannanase, Cbh, Eg or Bgl functional activity.


The polynucleotides of the present invention also comprise nucleic acids encoding a Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzyme, or domain, fragment, variant, or derivative thereof, fused to a polynucleotide encoding a marker sequence which allows for detection of the polynucleotide of the present invention. In one embodiment of the invention, expression of the marker is independent from expression of the biomass degrading enzyme. The marker sequence can be, for example, the kanamycin (KanR) or ampicillin (ampR) resistance marker.


Codon Optimized Polynucleotides


According to one embodiment of the invention, the polynucleotides encoding heterologous biomass degrading enzymes can be codon optimized. As used herein the term “codon optimized coding region” means a nucleic acid coding region that has been adapted for expression in the cells of a given organism by replacing at least one, or more than one, or a significant number, of codons with one or more codons that are more frequently used in the genes of that organism.


In general, highly expressed genes in an organism are biased towards codons that are recognized by the most abundant tRNA species in that organism. One measure of this bias is the “codon adaptation index” or “CAI,” which measures the extent to which the codons used to encode each amino acid in a particular gene are those which occur most frequently in a reference set of highly expressed genes from an organism.


The CAI of codon optimized sequences of the present invention corresponds to between about 0.8 and 1.0, between about 0.8 and 0.9, or about 1.0. A codon optimized sequence can be further modified for expression in a particular organism, depending on that organism's biological constraints. For example, large runs of “As” or “Ts” (e.g., runs greater than 4, 4, 5, 6, 7, 8, 9, or 10 consecutive bases) can be removed from the sequences if these are known to effect transcription negatively. Furthermore, specific restriction enzyme sites can be removed for molecular cloning purposes. Examples of such restriction enzyme sites include PacI, AscI, BamHI, BglII, EcoRI and XhoI. Additionally, the DNA sequence can be checked for direct repeats, inverted repeats and mirror repeats with lengths of ten bases or longer, which can be modified manually by replacing codons with “second best” codons, i.e., codons that occur at the second highest frequency within the particular organism for which the sequence is being optimized.


Deviations in the nucleotide sequence that comprise the codons encoding the amino acids of any polypeptide chain allow for variations in the sequence coding for the gene. Since each codon consists of three nucleotides, and the nucleotides comprising DNA are restricted to four specific bases, there are 64 possible combinations of nucleotides, 61 of which encode amino acids (the remaining three codons encode signals ending translation). The “genetic code” which shows which codons encode which amino acids is reproduced herein as Table 5. As a result, many amino acids are designated by more than one codon. For example, the amino acids alanine and proline are coded for by four triplets, serine and arginine by six, whereas tryptophan and methionine are coded by just one triplet. This degeneracy allows for DNA base composition to vary over a wide range without altering the amino acid sequence of the proteins encoded by the DNA.









TABLE 5







The Standard Genetic Code












T
C
A
G















T
TTT Phe (F)
TCT Ser (S)
TAT Tyr (Y)
TGT Cys (C)



TTC Phe (F)
TCC Ser (S)
TAC Tyr (Y)
TGC



TTA Leu (L)
TCA Ser (S)
TAA Ter
TGA Ter



TTG Leu (L)
TCG Ser (S)
TAG Ter
TGG Trp (W)





C
CTT Leu (L)
CCT Pro (P)
CAT His (H)
CGT Arg (R)



CTC Leu (L)
CCC Pro (P)
CAC His (H)
CGC Arg (R)



CTA Leu (L)
CCA Pro (P)
CAA Gln (Q)
CGA Arg (R)



CTG Leu (L)
CCG Pro (P)
CAG Gln (Q)
CGG Arg (R)





A
ATT Ile (I)
ACT Thr (T)
AAT Asn (N)
AGT Ser (S)



ATC Ile (I)
ACC Thr (T)
AAC Asn (N)
AGC Ser (S)



ATA Ile (I)
ACA Thr (T)
AAA Lys (K)
AGA Arg (R)




ATG Met

ACG Thr (T)
AAG Lys (K)
AGG Arg (R)



(M)





G
GTT Val (V)
GCT Ala (A)
GAT Asp (D)
GGT Gly (G)



GTC Val (V)
GCC Ala (A)
GAC Asp (D)
GGC Gly (G)



GTA Val (V)
GCA Ala (A)
GAA Glu (E)
GGA Gly (G)



GTG Val (V)
GCG Ala (A)
GAG Glu (E)
GGG Gly (G)









Many organisms display a bias for use of particular codons to code for insertion of a particular amino acid in a growing peptide chain. Codon preference or codon bias, differences in codon usage between organisms, is afforded by degeneracy of the genetic code, and is well documented among many organisms. Codon bias often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, inter alia, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization.


Given the large number of gene sequences available for a wide variety of animal, plant and microbial species, it is possible to calculate the relative frequencies of codon usage. Codon usage tables are readily available, for example, at http://phenotype.biosci.umbc.edu/codon/sgd/index.php (visited May 7, 2008) or at http://www.kazusa.or.jp/codon/ (visited Mar. 20, 2008), and these tables can be adapted in a number of ways. See Nakamura, Y., et al. “Codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000). Codon usage tables for T. sacch are reproduced below as Table 6. This table uses mRNA nomenclature, and so instead of thymine (T) which is found in DNA, the tables use uracil (U) which is found in RNA. The Table has been adapted so that frequencies are calculated for each amino acid, rather than for all 64 codons.









TABLE 6







Codon Usage Table for T. sacch Genes











percent of total for that


Codon amino acid
number
amino acid












gca Ala(A)
22296
42.7%





gcc Ala(A)
6263
12.0%





gcg Ala(A)
6264
12.0%





gcu Ala(A)
17444
33.4%





--- Ala(A)
52267





aga Arg(R)
16756
54.4%





agg Arg(R)
8884
28.8%





cga Arg(R)
1434
4.7%





cgc Arg(R)
1359
4.4%





cgg Arg(R)
766
2.5%





cgu Arg(R)
1606
5.2%





--- Arg(R)
30805





aac Asn(N)
12538
25.4%





aau Asn(N)
36747
74.6%





--- Asn(N)
49285





gac Asp(D)
14268
26.8%





gau Asp(D)
38893
73.2%





--- Asp(D)
53161





ugc Cys(C)
3793
49.0%





ugu Cys(C)
3951
51.0%





--- Cys(C)
7744





caa Gln(Q)
12380
60.8%





cag Gln(Q)
7995
39.2%





--- Gln(Q)
20375





gaa Glu(E)
40410
71.6%





gag Glu(E)
16008
28.4%





--- Glu(E)
56418





gga Gly(G)
19768
34.9%





ggc Gly(G)
14373
25.3%





ggg Gly(G)
6265
11.0%





ggu Gly(G)
16293
28.7%





--- Gly(G)
56699





cac His(H)
3690
30.8%





cau His(H)
8280
69.2%





--- His(H)
11970





aua Ile(I)
44748
53.8%





auc Ile(I)
10130
12.2%





auu Ile(I)
28235
34.0%





--- Ile(I)
83113





cua Leu(L)
5252
6.7%





cuc Leu(L)
2663
3.4%





cug Leu(L)
5688
7.3%





cuu Leu(L)
20734
26.6%





uua Leu(L)
25840
33.2%





uug Leu(L)
17680
22.7%





--- Leu(L)
77857





aaa Lys(K)
51040
69.6%





aag Lys(K)
22335
30.4%





--- Lys(K)
73375





aug Met(M)
22651
100.0%





--- Met(M)
22651





uuc Phe(F)
6336
17.2%





uuu Phe(F)
30486
82.8%





--- Phe(F)
36822





cca Pro(P)
10445
37.8%





ccc Pro(P)
1400
5.1%





ccg Pro(P)
4309
15.6%





ccu Pro(P)
11477
41.5%





--- Pro(P)
27631





agc Ser(S)
10467
19.8%





agu Ser(S)
8520
16.1%





uca Ser(S)
14241
26.9%





ucc Ser(S)
3064
5.8%





ucg Ser(S)
4567
8.6%





ucu Ser(S)
12124
22.9%





--- Ser(S)
52983





uaa Ter(.)
1633
56.0%





uag Ter(.)
515
17.7%





uga Ter(.)
767
26.3%





--- Ter(.)
2915





aca Thr(T)
19780
47.7%





acc Thr(T)
3191
7.7%





acg Thr(T)
7026
16.9%





acu Thr(T)
11458
27.6%





--- Thr(T)
41455





ugg Trp(W)
6653
100.0%





--- Trp(W)
6653





uac Tyr(Y)
13547
36.8%





uau Tyr(Y)
23304
63.2%





--- Tyr(Y)
36851





gua Val(V)
21945
36.6%





guc Val(V)
8166
13.6%





gug Val(V)
10754
17.9%





guu Val(V)
19077
31.8%





--- Val(V)
59942





TOTAL
860972









By utilizing this or similar tables, one of ordinary skill in the art can apply the frequencies to any given polypeptide sequence, and produce a nucleic acid fragment of a codon-optimized coding region which encodes the polypeptide, but which uses codons optimal for a given species. Codon-optimized coding regions can be designed by various different methods.


In one method, a codon usage table is used to find the single most frequent codon used for any given amino acid, and that codon is used each time that particular amino acid appears in the polypeptide sequence. For example, referring to Table 6 above, for leucine, the most frequent codon is UUA, which is used 33.2% of the time. Thus all the leucine residues in a given amino acid sequence would be assigned the codon UUA.


In another method, the actual frequencies of the codons are distributed randomly throughout the coding sequence. Thus, using this method for optimization, if a hypothetical polypeptide sequence had 100 leucine residues, referring to Table 6 for frequency of usage in the T. sacch, about 7, or 7% of the leucine codons would be CUA, about 3, or 3% of the leucine codons would be CUC, about 7, or 7% of the leucine codons would be CUG, about 27, or 27% of the leucine codons would be CUU, about 33, or 33% of the leucine codons would be UUA, and about 23, or 23% of the leucine codons would be UUG.


These frequencies would be distributed randomly throughout the leucine codons in the coding region encoding the hypothetical polypeptide. As will be understood by those of ordinary skill in the art, the distribution of codons in the sequence can vary significantly using this method; however, the sequence always encodes the same polypeptide.


When using the methods above, the term “about” is used precisely to account for fractional percentages of codon frequencies for a given amino acid. As used herein, “about” is defined as one amino acid more or one amino acid less than the value given. The whole number value of amino acids is rounded up if the fractional frequency of usage is 0.50 or greater, and is rounded down if the fractional frequency of use is 0.49 or less. Using again the example of the frequency of usage of leucine in human genes for a hypothetical polypeptide having 62 leucine residues, the fractional frequency of codon usage would be calculated by multiplying 62 by the frequencies for the various codons. Thus, 6.7 percent of 62 equals 4.15 CUA codons, or “about 4,” i.e., 3, 4, or 5 CUA codons, 3.4 percent of 62 equals 2.10. CUC codons or “about 2,” i.e., 1, 2, or 3 CUC codons, 7.3 percent of 62 equals 4.52 CUG codons, or “about 5,” i.e., 4, 5, or 6 CUG codons, 26.6 percent of 62 equals 16.49 CUU codons or “about 16,” i.e., 15, 16, or 17 CUU codons, 33.2 percent of 62 equals 20.59 UUA codons or “about 21,” i.e., 20, 21, or 22 CUA codons, and 22.7 percent of 62 equals 14.07 UUG codons, or “about 14,” i.e., 13, 14, or 15 UUG codons.


Randomly assigning codons at an optimized frequency to encode a given polypeptide sequence, can be done manually by calculating codon frequencies for each amino acid, and then assigning the codons to the polypeptide sequence randomly. Additionally, various algorithms and computer software programs are readily available to those of ordinary skill in the art. For example, the “EditSeq” function in the Lasergene Package, available from DNAstar, Inc., Madison, Wis., the backtranslation function in the Vector NTI Suite, available from InforMax, Inc., Bethesda, Md., and the “backtranslate” function in the GCG—Wisconsin Package, available from Accelrys, Inc., San Diego, Calif. In addition, various resources are publicly available to codon-optimize coding region sequences, e.g., the “backtranslation” function at http://www.entelechon.com/bioinformatics/backtranslation.php?lang=eng (visited Apr. 15, 2008). Constructing a rudimentary algorithm to assign codons based on a given frequency can also easily be accomplished with basic mathematical functions by one of ordinary skill in the art.


A number of options are available for synthesizing codon optimized coding regions designed by any of the methods described above, using standard and routine molecular biological manipulations well known to those of ordinary skill in the art. In one approach, a series of complementary oligonucleotide pairs of 80-90 nucleotides each in length and spanning the length of the desired sequence are synthesized by standard methods. These oligonucleotide pairs are synthesized such that upon annealing, they form double stranded fragments of 80-90 base pairs, containing cohesive ends, e.g., each oligonucleotide in the pair is synthesized to extend 3, 4, 5, 6, 7, 8, 9, 10, or more bases beyond the region that is complementary to the other oligonucleotide in the pair. The single-stranded ends of each pair of oligonucleotides is designed to anneal with the single-stranded end of another pair of oligonucleotides. The oligonucleotide pairs are allowed to anneal, and approximately five to six of these double-stranded fragments are then allowed to anneal together via the cohesive single stranded ends, and then they ligated together and cloned into a standard bacterial cloning vector, for example, a TOPO® vector available from Invitrogen Corporation, Carlsbad, Calif. The construct is then sequenced by standard methods. Several of these constructs consisting of 5 to 6 fragments of 80 to 90 base pair fragments ligated together, i.e., fragments of about 500 base pairs, are prepared, such that the entire desired sequence is represented in a series of plasmid constructs. The inserts of these plasmids are then cut with appropriate restriction enzymes and ligated together to form the final construct. The final construct is then cloned into a standard bacterial cloning vector, and sequenced. Additional methods would be immediately apparent to the skilled artisan. In addition, gene synthesis is readily available commercially.


In certain embodiments, an entire polypeptide sequence, or fragment, variant, or derivative thereof is codon-optimized by any of the methods described herein. Various desired fragments, variants or derivatives are designed, and each is then codon-optimized individually. In addition, partially codon-optimized coding regions of the present invention can be designed and constructed. For example, the invention includes a nucleic acid fragment of a codon-optimized coding region encoding a polypeptide in which at least about 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the codon positions have been codon-optimized for a given species. That is, they contain a codon that is preferentially used in the genes of a desired species, e.g., T. sacch, in place of a codon that is normally used in the native nucleic acid sequence.


In certain embodiments a codon-optimized sequence is fused to non-codon-optimized sequence. For example, in the case of a fusion protein, for example, a signal peptide fused to a cellulase, the sequence encoding the signal peptide and the sequence encoding the cellulase can both be codon-optimized. Alternatively, only the sequence encoding the signal peptide can be codon-optimized or only the sequence encoding the cellulase can be codon-optimized.


In additional embodiments, a full-length polypeptide sequence is codon-optimized for a given species resulting in a codon-optimized coding region encoding the entire polypeptide, and then nucleic acid fragments of the codon-optimized coding region, which encode fragments, variants, and derivatives of the polypeptide are made from the original codon-optimized coding region. As would be well understood by those of ordinary skill in the art, if codons have been randomly assigned to the full-length coding region based on their frequency of use in a given species, nucleic acid fragments encoding fragments, variants, and derivatives would not necessarily be fully codon optimized for the given species. However, such sequences are still much closer to the codon usage of the desired species than the native codon usage. The advantage of this approach is that synthesizing codon-optimized nucleic acid fragments encoding each fragment, variant, and derivative of a given polypeptide, although routine, would be time consuming and would result in significant expense.


The codon-optimized coding regions can be, for example, versions encoding a biomass degrading enzyme from Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii or domains, fragments, variants, or derivatives thereof.


Codon optimization is carried out for a particular species by methods described herein, for example, in certain embodiments codon-optimized coding regions encoding polypeptides of Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii, or domains, fragments, variants, or derivatives thereof are optimized according to T. sacch usage. Also provided are polynucleotides, vectors, and other expression constructs comprising codon optimized coding regions encoding polypeptides of Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii biomass degrading enzymes or domains, fragments, variants, or derivatives thereof, and various methods of using such polynucleotides, vectors and other expression constructs.


In certain embodiments described herein, a codon-optimized coding region encoding any of SEQ ID NOs: 108-148 or domain, fragment, variant, or derivative thereof, is optimized according to codon usage in a gram positive anaerobic bacteria. In some embodiments, the sequences are codon-optimized specifically for expression in T. sacch. In some embodiments, a sequence is simultaneously codon-optimized for optimal expression in both T. sacch and another organism such as another gram positive anaerobic bacteria. Alternatively, a codon-optimized coding region encoding any of SEQ ID NOs: 108-148 can be optimized according to codon usage in any plant, animal, or microbial species.


Vectors and Methods of Using Vectors in Host Cells


The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.


Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which can be, for example, a cloning vector or an expression vector. The vector can be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the present invention. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.


The polynucleotides and vectors can be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotide can be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; and yeast plasmids. Such vectors also include “suicide vectors” which cannot are not self-replicating but can be replicated after insertion into the host chromosome. Other vectors can also be used.


The appropriate DNA sequence can be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.


The DNA sequence in the expression vector is operatively associated with an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. Any suitable promoter to drive gene expression in the host cells of the invention can be used. The promoter can be, for example, a high expression promoter. Additionally the E. coli, lac or trp, and other promoters known to control expression of genes in prokaryotic or lower eukaryotic cells can be used. In some embodiments, the promoter is a native T. sacch promoter. In other embodiments, a Clostridium thermocellum promoter can be used. In other embodiments, a cellobiose phosphotransferase (CBP) promoter is used. In one specific embodiment, a Clostridium thermocellum CBP promoter is used. For example, the Clostridium thermocellum CBP promoter can have the following sequence (SEQ ID NO:153):









gagtcgtgactaagaacgtcaaagtaattaacaatacagctatttttctc





atgcttttacccctttcataaaatttaattttatcgttatcataaaaaat





tatagacgttatattgcttgccgggatatagtgctgggcattcgttggtg





caaaatgttcggagtaaggtggatattgatttgcatgttgatctattgca





ttgaaatgattagttatccgtaaatattaattaatcatatcataaattaa





ttatatcataattgttttgacgaatgaaggtttttggataaattatcaag





taaaggaacgctaaaaattttggcgtaaaatatcaaaatgaccacttgaa





ttaatatggtaaagtagatataatattttggtaaacatgccttcagcaag





gttagattagctgtttccgtataaattaaccgtatggtaaaacggcagtc





agaaaaataagtcataagattccgttatgaaaatatacttcggtagttaa





taataagagatatgaggtaagagatacaagataagagatataaggtacga





atgtataagatggtgcttttaggcacactaaataaaaaacaaataaacga





aaattttaaggaggacgaaag






In addition, the expression vectors can contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as chloramphenicol, thiamphenicol, streptomycin, tetracycline, ampicillin or kanamycin resistance genes. The expression vectors can also contain other selectable markers such as URA3, HIS3, LEU2, TRP1, LYS2, ADE2, dihydrofolate reductase, neomycin (G418) resistance or zeocin resistance.


The expression vector can also contain a ribosome binding site for translation initiation. The expression vector can also contain a transcription terminator. The transcription terminator can be, for example, E. coli T1 and T2 terminator. Thus, the sequence of the terminator can be:


aacgaaaggctcagtcgaaagactgggcctttcgttttatctgagtttgtcggtgaacgctacctgagtaggacaaatccgccgggagcgg atttgaacgttgcgaagcaacggcccggagggtggcgggcaggacgcccgccataaactgccaggcatcaaattaagcagaaggccatc ctgacggatggcctttt (SEQ ID NO: 163). The vector can also include appropriate sequences for amplifying expression, or can include additional regulatory regions. The vector can also include an origin of replication, for example a yeast origin of replication, such as a cen6/Arsh origin of replication, and/or a pUC origin of replication. The vector can also include an origin of replication for replication in T. sacch., for example, the B6A T. sacch origin of replication.


The expression vector can be a vector that is thermostable and can autonomously replicate in thermophilic hosts. The vector can comprise a sequence or sequences derived from the pB6A plasmid. Examples of vectors that can be used are described in more detail in International Patent Application PCT/US2008/010545, filed on Sep. 10, 2008, which is herein incorporated by reference in its entirety.


Expression in a host cell can also be accomplished by integrating the heterologous nucleotide sequence into the host chromosome. For example, a gene encoding a biomass degrading enzyme could be inserted into a host chromosome by building a construct comprising DNA sequences upstream and downstream from the desired point of insertion. For strain M0355, a useful insertion point is the site of the ldh deletion. The following ldh upstream DNA sequence can be used:









(SEQ ID NO: 154)







Ctcatcgaggtatccaagcgattcaatagtaacagtccttgtatgccctc





tttctttatcacgatatccatctgcaatagataggtatattcttccggaa





ctgcgtctacttttctttaaatacacattaaactcccccaataaaattca





atataactatattataccacaatccataataatccgcaaccaaaatatga





caaaaatttaaaaaaattttacccaaaatcgttagtaaaattgctggttc





cgggttacgctacataaaattttgctgcaaaactagggtaaaaaaaatac





aaaccatgcgtcaatagaaattgacggcagtatattaaagcagtataatg





aatatatggaaaaacaaaagggcaatataatattaaaagggaaatataaa





cctgaatataaggaaaagttgcttaatttagccaaattttttactgataa





tggctttgttcctactgaacatgcattgaatgaaatacttgggaaaacag





cttctggaagattgccagatgacaaacagatgttattggatgtattacaa





aatggtgaaaattatattgaacctaatggcaatatagtcaggtataaaaa





tggcatatcaatacatatcgataaagaacatggctggataattactataa





ctccaaggaaacgaatagtaaaggaatggaggcgaattaatgagtaatgt





cgcaatgcaattaatagaaatttgtcggaaatatgtaaataataatttaa





acataaatgaatttatcgaagactttcaagtgctttatgaacaaaagcaa





gatttattgacagatgaagaaatgagcttgtttgatgatatttatatggc





ttgtgaatactatgaacaggatgaaaatataagaaatgaatatcacttgt





atattggagaaaatgaattaagacaaaaagtgcaaaaacttgtaaaaaag





ttagcagcataataaaccgctaaggcatgatagctaaag






The following ldh downstream DNA sequence can be used:









(SEQ ID NO: 155)







Ccgcaagagattatatcgagtgcctttaagaaggctaaaaattacgaaga





tgtgatacacaaaaaggcaaaagattacggcaaaaacataccggatagtc





aagttaaaggagtattgaaacagatagagattactgccttaaaccatgta





gacaagattgtcgctgctgaaaagacgatgcagatagattccctcgtgaa





gaaaaatatgtcttatgatatgatggatgcattgcaggatatagagaagg





atttgataaatcagcagatgttctacaacgaaaatctaataaacataacc





aatccgtatgtgaggcagatattcactcagatgagggatgatgagatgcg





atttatcactatcatacagcagaacatagaatcgttaaagtcaaagccga





ctgagcccaacagcatagtatatacgacgccgagggaaaataaatgaaag





tagctattataggagcaggctcggcaggcttaactgcagctataaggctt





gaatcttatgggataaagcctgatatatttgagagaaaatcgaaagtcgg





cgatgcttttaaccatgtaggaggacttttaaatgtcataaataggccaa





taaatgatcctttagagtatctaaaaaataactttgatgtagctattgca





ccgcttaacaacatagacaagattgtgatgcatgggccaacagtcactcg





cacaattaaaggcagaaggcttggatactttatgctgaaagggcaaggag





aattgtcagtagaaagccaactatacaagaaattaaagacaaatgtcaat





tttgatgtccacgcagactacaagaacctaaaggaaatttatgattatgt





cattgtagcaactggaaatcatcagataccaaatgagttaggatgttggc





agacgcttgttgatacgaggcttaaaattgctgaggtaatcggtaaattc





gacccg






Using methods commonly known to those in the art, the following DNA fragments can be added to the construct in between the ldh upstream and downstream regions in this order: a strong promoter active in T. sacch, a ribosome binding site, a gene encoding a biomass degrading enzyme, an intrinsic terminator, a counter-selectable marker and an antibiotic resistance gene. The construct can then be cloned into a plasmid replicon that replicates in E. coli but not in T. sacch. After verification of the sequence, the plasmid DNA can be transformed into T. sacch. Cells in which the DNA has undergone recombination to integrate into the chromosome can be isolated using selection for the encoded antibiotic resistance gene. These cells are then subjected to counterselection to remove the antibiotic resistance gene.


Thus, vectors containing the appropriate DNA sequence as described herein, as well as an appropriate promoter or control sequence, can be employed to transform an appropriate host to permit the host to express the protein. Such vectors can include, for example, self-replicating vectors or vectors for use in chromosomal integration.


Thus, in certain aspects, the present invention relates to host cells containing the above-described constructs. The host cell can be a host cell as described elsewhere in the application. The host cell can be, for example, a bacterial cell, such as a gram-positive anaerobic bacteria e.g., T. sacch. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.


Methods of Using Host Cells


The present invention is also directed to use of host cells to produce ethanol or other fermentation products from cellulosic substrates. Such methods can be accomplished, for example, by contacting a cellulosic substrate with a host cell of the present invention.


Numerous cellulosic substrates can be used in accordance with the present invention. Substrates for cellulose activity assays can be divided into two categories, soluble and insoluble, based on their solubility in water. Soluble substrates include xylans, cellodextrins or derivatives, carboxymethyl cellulose (CMC), or hydroxyethyl cellulose (HEC). Insoluble substrates include crystalline cellulose, microcrystalline cellulose (Avicel), amorphous cellulose, such as phosphoric acid swollen cellulose (PASC), dyed or fluorescent cellulose, and pretreated lignocellulosic biomass. These substrates are generally highly ordered cellulosic material and thus only sparingly soluble.


It will be appreciated that suitable lignocellulosic material can be any feedstock that contains soluble and/or insoluble cellulose, where the insoluble cellulose can be in a crystalline or non-crystalline form. In various embodiments, the lignocellulosic biomass comprises, for example, wood, corn, corn stover, sawdust, bark, leaves, agricultural and forestry residues, grasses such as switchgrass, ruminant digestion products, municipal wastes, paper mill effluent, newspaper, cardboard or combinations thereof.


In some embodiments, the invention is directed to a method for hydrolyzing a cellulosic substrate, for example a cellulosic substrate as described above, by contacting the cellulosic substrate with a host cell of the invention. In some embodiments, the invention is directed to a method for fermenting cellulose. Such methods can be accomplished, for example, by culturing a host cell in a medium that contains insoluble cellulose to allow saccharification and fermentation of the cellulose.


In some embodiments, the host cells expressing heterologous biomass degrading enzymes show increased efficiency of ethanol production. For example, in some embodiments, the host cell expressing the heterologous biomass degrading enzyme produces at least about 1.5 times, about 2 times, about 3 times, about 5 times, about 10 times, about 20 times, about 50 times, about 100 times or about 1000 times as much ethanol as an untransformed host cell grown in the same conditions. In some embodiments, the host cell expressing the heterologous biomass degrading enzyme produces at least about 1.5 times, about 2 times, about 3 times, about 5 times, about 10 times, about 20 times, about 50 times, about 100 times or about 1000 times as much ethanol as wild-type T. sacch grown in the same conditions.


In some embodiments, the host cells expressing heterologous biomass degrading enzymes show increased efficiency of acetic acid, lactic acid or CO2 production. For example, in some embodiments, the host cell expressing the heterologous biomass degrading enzyme produces at least about 1.5 times, about 2 times, about 3 times, about 5 times, about 10 times, about 20 times, about 50 times, about 100 times or about 1000 times as much acetic acid, lactic acid or CO2 as an untransformed host cell grown in the same conditions. In some embodiments, the host cell expressing the heterologous biomass degrading enzyme produces at least about 1.5 times, about 2 times, about 3 times, about 5 times, about 10 times, about 20 times, about 50 times, about 100 times or about 1000 times as much acetic acid, lactic acid or CO2 as wild-type T. sacch grown in the same conditions.


In some embodiments, the host cells comprising heterologous biomass degrading enzymes show increased ability to hydrolyze a cellulosic substrate. For example, in some embodiments, the host cell expressing the biomass degrading enzyme hydrolyzes a cellulosic substrate at a rate that is at least about 1.5 times, about 2 times, about 3 times, about 5 times, about 10 times, about 20 times, about 50 times, about 100 times or about 1000 times the rate of hydrolysis by an untransformed host cell grown in the same conditions. In some embodiments, the host cell expressing the biomass degrading enzyme hydrolyzes a cellulosic substrate at a rate that is at least about 1.5 times, about 2 times, about 3 times, about 5 times, about 10 times, about 20 times, about 50 times, about 100 times or about 1000 times the rate of hydrolysis by wildtype T. sacch grown in the same conditions.


In some embodiments, the host cells comprising heterologous biomass degrading enzymes show increased ability to ferment cellulose. For example, in some embodiments, the host cell expressing the biomass degrading enzyme ferment cellulose at a rate that is at least about 1.5 times, about 2 times, about 3 times, about 5 times, about 10 times, about 20 times, about 50 times, about 100 times or about 1000 times the rate of fermentation by an untransformed host cell grown in the same conditions. In some embodiments, the host cell expressing the biomass degrading enzyme ferment cellulose at a rate that is at least about 1.5 times, about 2 times, about 3 times, about 5 times, about 10 times, about 20 times, about 50 times, about 100 times or about 1000 times the rate of fermentation by wildtype T. sacch grown in the same conditions.


The production of ethanol, or other fermentation product can, according to the present invention, be performed at temperatures of at least about above about 40° C., about 55° C., about 50° C., about 55° C., about 60° C., about 65° C., about 70° C., about 75° C., or about 80° C. In some embodiments of the present invention, the host cell can produce the fermentation product, such as ethanol, from cellulose at temperatures from about 40° C. to 90° C., about 40° C. to 80° C., about 40° C. to 75° C., about 40° C. to 70° C., about 40° C. to 65° C., about 40° C. to 60° C., or about 40° C. to 55° C. In some embodiments of the present invention, the host cell can produce the fermentation product such as ethanol from cellulose at temperatures from about 45° C. to 90° C., about 45° C. to 45° C., about 45° C. to 75° C., about 45° C. to 70° C., about 45° C. to 65° C., about 45° C. to 60° C., or about 45° C. to 55° C. In some embodiments of the present invention, the host cell can produce the fermentation product such as ethanol from cellulose at temperatures from about 50° C. to 50° C., about 50° C. to 80° C., about 50° C. to 75° C., about 50° C. to 70° C., about 50° C. to 65° C., about 50° C. to 60° C., or about 50° C. to 55° C. In some embodiments of the present invention, the host cell can produce the fermentation product such as ethanol from cellulose at temperatures from about 55° C. to 90° C., about 55° C. to 80° C., about 55° C. to 75° C., about 55° C. to 70° C., about 55° C. to 65° C., or about 55° C. to 60° C.


Culture conditions can also be changed by varying the pH. For example, the pH can be from about 4.0 to 7.5, from about 4.5 to 7.0, from about 5.0 to 6.5 or from about 5.5 to 6.5. The pH can also be from about 4.0 to 5.0, from about 5.0 to 6.0, from about 6.0 to 7.0, or from about 6.0 to 7.5. The pH can also be from about 4.0 to 4.5, from about 4.5 to 5.0, from about 5.0 to 5.5, from about 5.5 to 6.0, from about 6.0 to about 6.5, or from about 6.5 to 7.0.


In some embodiments, the host cells comprising heterologous biomass degrading enzymes, such as cellulases, are grown in anaerobic conditions. In some embodiments, the host cells comprising heterologous biomass degrading enzymes, such as cellulases, grown in anaerobic conditions can produce ethanol, or another product of fermentation, from cellulose in the absence of externally added enzymes. In some embodiments, the host cells comprising heterologous cellulases grown in anaerobic conditions can decrease the amount of externally added enzymes required to produce a given amount of ethanol, or another fermentation product, from a given amount of cellulose in a given time period.


In some embodiments, methods of producing ethanol, acetic acid, lactic acid, CO2, or another useful fermentation product can comprise contacting a cellulosic substrate with a host cell of the invention and additionally contacting the cellulosic substrate with externally produced biomass degrading enzymes. Exemplary externally produced biomass degrading enzymes, such as cellulases, are commercially available and are known to those of skill in the art.


Therefore, the invention is also directed to methods of reducing the amount of externally produced biomass degrading enzymes required to produce a given amount of ethanol from cellulose comprising contacting the cellulose with externally produced biomass degrading enzymes and with a host cell. In some embodiments, the same amount of ethanol production can be achieved using at least about 5%, 10%, 15%, 20%, 25%, 30%, or 50% less externally produced biomass degrading enzymes.


In some embodiments, the methods comprise producing ethanol, or another fermentation product at a particular rate. For example, in some embodiments, ethanol, or another fermentation product, is produced at a rate of at least about 0.1 mg per hour per liter, at least about 0.25 mg per hour per liter, at least about 0.5 mg per hour per liter, at least about 0.75 mg per hour per liter, at least about 1.0 mg per hour per liter, at least about 2.0 mg per hour per liter, at least about 5.0 mg per hour per liter, at least about 10 mg per hour per liter, at least about 15 mg per hour per liter, at least about 20.0 mg per hour per liter, at least about 25 mg per hour per liter, at least about 30 mg per hour per liter, at least about 50 mg per hour per liter, at least about 100 mg per hour per liter, at least about 200 mg per hour per liter, or at least about 500 mg per hour per liter.


In some embodiments, the host cells of the present invention can produce ethanol, or another fermentation product, at a rate of at least about 0.1 mg per hour per liter, at least about 0.25 mg per hour per liter, at least about 0.5 mg per hour per liter, at least about 0.75 mg per hour per liter, at least about 1.0 mg per hour per liter, at least about 2.0 mg per hour per liter, at least about 5.0 mg per hour per liter, at least about 10 mg per hour per liter, at least about 15 mg per hour per liter, at least about 20.0 mg per hour per liter, at least about 25 mg per hour per liter, at least about 30 mg per hour per liter, at least about 50 mg per hour per liter, at least about 100 mg per hour per liter, at least about 200 mg per hour per liter, or at least about 500 mg per hour per liter more than a control strain (lacking heterologous biomass degrading enzymes) and grown under the same conditions. In some embodiments, the ethanol or other fermentation product can be produced in the absence of any externally added biomass degrading enzymes.


Ethanol production can be measured using any method known in the art. For example, the quantity of ethanol in fermentation samples can be assessed using HPLC analysis. Many ethanol assay kits are commercially available that use, for example, alcohol oxidase enzyme based assays. Methods of determining ethanol production are within the scope of those skilled in the art from the teachings herein.


In some embodiments, the host cells expressing biomass degrading enzymes can be used to produce and purify the biomass degrading enzymes. Methods of purifying the expressed proteins have been described elsewhere in the application and are known to those of skill in the art. For example, antibody purification, protein A, trichloroacetic acid, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, gel filtration, and lectin chromatography methods can be used to purify the heterologous biomass degrading enzymes. The proteins can be purified and stored in any convenient form including frozen or lyophilized forms and liquid, solid or powder forms.


In some embodiments, transformed T. sacch host cells can be used to produce an enzyme useful in separate applications. This can be accomplished by transforming a T. sacch host cell with a sequence encoding a heterologous enzyme, culturing the transformed host cell under conditions suitable for protein expression and purifying the enzyme.


The following embodiments of the invention will now be described in more detail by way of these non-limiting examples.


EXAMPLES
Example 1
Creation of M0355 Strain

A strain of T. sacch that was engineered to remove genes necessary for acetate and lactate production has previously been described. Shaw A J et al. Proc Natl Acad Sci. 105: 13769-74 (2008). However, selection for plasmids based on kanamycin resistance cannot be performed using this strain because the kanamycin resistance gene is already present in it. Thus, the strain M0355 was engineered to remove genes necessary for acetate and lactate production, but does not contain any antibiotic resistance genes. Strain M0355 was made using the widely-implemented strategy of counterselection to remove unwanted DNA sequences from the bacterial genome of a Thermoanaerobacterium saccharolyticum strain. (See Reyrat et al. Infection and Immunity 66:4011-4017 (1998)).


The following DNA sequence was removed from the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum JW/SL-YS485 (DSM #8691). This is a non-hazardous, non-pathogenic bacterium that is unlikely to grow if released into the environment since will not grow in the presence of atmospheric levels of oxygen. This deleted sequence encodes the proteins acetate kinase and phosphotransacetylase.









(SEQ ID NO: 156)







TTATTCAAAACATCATTGAAAAAGCTAAAAGCGATAAAAAGAAAATTGTT





CTGCCAGAAGGTGCAGAACCCAGGACATTAAAAGCTGCTGAAATAGTTTT





AAAAGAAGGGATTGCAGATTTAGTGCTTCTTGGAAATGAAGATGAGATAA





GAAATGCTGCAAAAGACTTGGACATATCCAAAGCTGAAATCATTGACCCT





GTAAAGTCTGAAATGTTTGATAGGTATGCTAATGATTTCTATGAGTTAAG





GAAGAACAAAGGAATCACGTTGGAAAAAGCCAGAGAAACAATCAAGGATA





ATATCTATTTTGGATGTATGATGGTTAAAGAAGGTTATGCTGATGGATTG





GTATCTGGCGCTATTCATGCTACTGCAGATTTATTAAGACCTGCATTTCA





GATAATTAAAACGGCTCCAGGAGCAAAGATAGTATCAAGCTTTTTTATAA





TGGAAGTGCCTAATTGTGAATATGGTGAAAATGGTGTATTCTTGTTTGCT





GATTGTGCGGTCAACCCATCGCCTAATGCAGAAGAACTTGCTTCTATTGC





CGTACAATCTGCTAATACTGCAAAGAATTTGTTGGGCTTTGAACCAAAAG





TTGCCATGCTATCATTTTCTACAAAAGGTAGTGCATCACATGAATTAGTA





GATAAAGTAAGAAAAGCGACAGAGATAGCAAAAGAATTGATGCCAGATGT





TGCTATCGACGGTGAATTGCAATTGGATGCTGCTCTTGTTAAAGAAGTTG





CAGAGCTAAAAGCGCCGGGAAGCAAAGTTGCGGGATGTGCAAATGTGCTT





ATATTCCCTGATTTACAAGCTGGTAATATAGGATATAAGCTTGTACAGAG





GTTAGCTAAGGCAAATGCAATTGGACCTATAACACAAGGAATGGGTGCAC





CGGTTAATGATTTATCAAGAGGATGCAGCTATAGAGATATTGTTGACGTA





ATAGCAACAACAGCTGTGCAGGCTCAATAAAATGTAAAGTATGGAGGATG





AAAATTATGAAAATACTGGTTATTAATTGCGGAAGTTCTTCGCTAAAATA





TCAACTGATTGAATCAACTGATGGAAATGTGTTGGCAAAAGGCCTTGCTG





AAAGAATCGGCATAAATGATTCCATGTTGACACATAATGCTAACGGAGAA





AAAATCAAGATAAAAAAAGACATGAAAGATCACAAAGACGCAATAAAATT





GGTTTTAGATGCTTTGGTAAACAGTGACTACGGCGTTATAAAAGATATGT





CTGAGATAGATGCTGTAGGACATAGAGTTGTTCACGGAGGAGAATCTTTT





ACATCATCAGTTCTCATAAATGATGAAGTGTTAAAAGCGATAACAGATTG





CATAGAATTAGCTCCACTGCACAATCCTGCTAATATAGAAGGAATTAAAG





CTTGCCAGCAAATCATGCCAAACGTTCCAATGGTGGCGGTATTTGATACA





GCCTTTCATCAGACAATGCCTGATTATGCATATCTTTATCCAATACCTTA





TGAATACTACACAAAGTACAGGATTAGAAGATATGGATTTCATGGCACAT





CGCATAAATATGTTTCAAATAGGGCTGCAGAGATTTTGAATAAACCTATT





GAAGATTTGAAAATCATAACTTGTCATCTTGGAAATGGCTCCAGCATTGC





TGCTGTCAAATATGGTAAATCAATTGACACAAGCATGGGATTTACACCAT





TAGAAGGTTTGGCTATGGGTACACGATCTGGAAGCATAGACCCATCCATC





ATTTCGTATCTTATGGAAAAAGAAAATATAAGCGCTGAAGAAGTAGTAAA





TATATTAAATAAAAAATCTGGTGTTTACGGTATTTCAGGAATAAGCAGCG





ATTTTAGAGACTTAGAAGATGCCGCCTTTAAAAATGGAGATGAAAGAGCT





CAGTTGGCTTTAAATGTGTTTGCATATCGAGTAAAGAAGACGATTGGCGC





TTATGCAGCAGCTATGGGAGGCGTCGATGTCATTGTATTTACAGCAGGTG





TTGGTGAAAATGGTCCTGAGATACGAGAATTTATACTTGATGGATTAGAG





TTTTTAGGGTTCAGCTTGGATAAAGAAAAAAATAAAGTCAGAGGAAAAGA





AACTATTATATCTACGCCGAATTCAAAA






The DNA sequence of the region from which the above sequence was removed is as follows (the underlined nucleotides are the site of the deletion):









(SEQ ID NO: 157)







CGTGCCCATTGTGAAGTGGATTGTATTCTACAATTAAACCTAATACGCTC





ATAATATGCGCCTTTCTAAAAAATTATTAATTGTACTTATTATTTTATAA





AAAATATGTTAAAATGTAAAATGTGTATACAATATATTTCTTCTTAGTAA





GAGGAATGTATAAAAATAAATATTTTAAAGGAAGGGACGATCTTATGAGC






AGTTAGCGTGATGGTTGTGCCTACTAATGAAGAATACATGATTGCTAAAG






ATACTGAAAAGATTGTAAAGAGTATAAAATAGCATTCTTGACAAATGTTT





ACCCCATTAGTATAATTAATTTTGGCAATTATATTGGGGTGAGAAAATGA





AAATTGATTTATCAAAAATTAAAGGACATAGGGGCCGCAGCATCGAAGTC





AACTACGTA






The following sequence was also removed. This sequence encodes the protein lactate dehydrogenase:









(SEQ ID NO: 158)







CGGTATTTTTATGCAATTAAAAGGATGAAATGATATCTGATAAACTGCGA





AAAAGTATTTTAGAAAATAACTATAAAGATAATATTTCAAATCAATAAGG





ACAAAATAAGATTAAAATTTAGACAATTTCATCAAAACTATGTTATAATA





TTATTAAAGGAAAATACATATTATTTAGGAGGCGATGTAATGAGCAAGGT





AGCAATAATAGGATCTGGTTTTGTAGGTGCAACATCGGCATTTACGCTGG





CATTAAGTGGGACTGTGACAGATATCGTGCTGGTGGATTTAAACAAGGAC





AAGGCTATAGGCGATGCACTGGACATAAGCCATGGCATACCGCTAATACA





GCCTGTAAATGTGTATGCAGGTGACTACAAAGATGTGAAAGGCGCAGATG





TAATAGTTGTGACAGCAGGTGCTGCTCAAAAGCCGGGAGAGACACGGCTT





GACCTTGTAAAGAAAAATACAGCCATATTTAAGTCCATGATACCTGAGCT





TTTAAAGTACAATGACAAGGCCATATATTTGATTGTGACAAATCCCGTAG





ATATACTGACGTACGTTACATACAAGATTTCTGGACTTCCATGGGGCAGA





GTTTTTGGTTCTGGCACCGTTCTTGACAGCTCAAGGTTTAGATACCTTTT





AAGCAAGCACTGCAATATAGATCCGAGAAATGTCCACGGAAGGATAATCG





GCGAGCATGGTGACACAGAGTTTGCAGCATGGAGCATAACAAACATATCG





GGTATATCATTTAATGAGTACTGCAGCATATGCGGACGCGTCTGCAACAC





AAATTTCAGAAAGGAAGTAGAAGAAGAAGTCGTAAATGCTGCTTACAAGA





TAATAGACAAAAAAGGTGCTACATACTATGCTGTGGCAGTTGCAGTAAGA





AGGATTGTGGAGTGCATCTTAAGAGATGAAAATTCCATCCTCACAGTATC





ATCTCCATTAAATGGACAGTACGGCGTGAAAGATGTTTCATTAAGCTTGC





CATCTATCGTAGGCAGGAATGGCGTTGCCAGGATTTTGGACTTGCCTTTA





TCTGACGAAGAAGTGGAGAAGTTTAGGCATTCAGCAAGTGTCATGGCAGA





TGTCATAAAACAATTAGATATATAATCAAATTATGTTGGGAGGCTTCACA





TATGTGTGGTGAGGCCTCTTTTTATGTATATAAGGGATGCAATGTGGAAA





ATCTAATAACGGTGATGCAAAATGCAGAATATGAGC






The DNA sequence of the region from which the above sequence was removed is as follows (the underlined nucleotides are the site of the deletion):









(SEQ ID NO: 159)







GTAAATAATAATTTAAACATAAATGAATTTATCGAAGACTTTCAAGTGCT





TTATGAACAAAAGCAAGATTTATTGACAGATGAAGAAATGAGCTTGTTTG





ATGATATTTATATGGCTTGTGAATACTATGAACAGGATGAAAATATAAGA





AATGAATATCACTTGTATATTGGAGAAAATGAATTAAGACAAAAAGTGCA





AAAACTTGTAAAAAAGTTAGCAGCATAATAAACCGCTNAGGCATGATAGC





TAAAGCCCGCAAGAGATTATATCGAGTGCCTTTAAGAAGGCTAAAAATTA





CGAAGATGTGATACACAAAAAGGCAAAAGATTACGGCAAAAACATACCGG





ATAGTCAAGTTAAAGGAGTATTGAAACAG






The counterselection strategy that was used resulted in a strain that was completely free of transgenic or heterologous sequences or plasmid. No “scars” were introduced into the genome other than a single unexpected “C” cytosine base at the site of one of the deletions. No antibiotic markers or other foreign DNA is present in the M0355 strain. The major change made was to remove DNA from the original strain (JW/SL-YS485 (DSM #8691)).


Example 2
Expression of CelZ in T. sacch

The gene CelZ was PCR-amplified from genomic DNA from C. stercorarium and then cloned into a plasmid vector as shown in FIG. 1. After verification of plasmid construction, the plasmid DNA was transformed into T. sacch strain M0355 and selected by plating on agar plates containing kanamycin. T. sacch M0355 strains expressing CelZ (native C. stercorarium sequence) alone or CelZ fused to C-terminal tags 6×His (HHHHHH) (SEQ ID NO:160), Flag (DYKDDDDK) (SEQ ID NO:161), or Hemagglutinin (HA) (YPYDVPDYA) (SEQ ID NO:162) were grown overnight to an OD600>2.0 in M122 media, pH 6.1 supplemented with 5 g/L cellobiose. Cells were separated from supernatants by centrifugation, and supernatant proteins were precipitated using a DOC/TCA method. Proteins were separated by SDS-PAGE gel electrophoresis on Novex® 4-20% Tris-Glycine Gels and transferred to polyvinylidene fluoride (PVDF) membranes. Proteins were detected using either anti-6×His (Qiagen 34660), anti-Flag (Abram 18230) or anti-HA (Abram 18181) primary antibodies and Alkaline phosphatases-conjugated secondary goat anti-mouse IgG (Santa Cruz sc-2008). As shown in FIG. 2, western blots revealed that CelZ fusion proteins were expressed by T. sacch.


Example 3
Expression of E5 and CBH1 in T. sacch

Vectors encoding T. fusca E5, Talaromyces emersonii CBH1, Cellulomonas fimi cex and Nasutitermes takasagoensiswere NtEG were also transformed in the M0355 strain. In these experiments, the transformed cells were grown in M122C, pH 6.1 with 5 ug/mL thiamphenicol at 47° C. Overnight cultures and cultures in stationary phase (OD600=1.9-2.1) for 2 hours were assayed for protein expression. Cells were separated from supernatant by centrifugation, and 5 mL culture supernatant was precipitated overnight using DOC/TCA. Protein pellets were resuspended in SDS-PAGE gel loading buffer and analyzed by gel electrophoresis prior to Western blotting with anti His antibodies. Both E5 and CBH1 were detected from culture supernatants from both overnight and stationary cultures as shown in FIG. 3.


Example 4
Growth of Transformed T. Sacch on Avicel

Plasmids containing PCR-cloned cellulase genes celB (Caldicellulosiruptor kristjanssonii), celA (Anaerocellum thermophilum), and celZ (Clostridium stercorarium) were used to transform T. sacch M0355. Plasmids containing codon-optimized cellulase genes cel5A (Acidothermus cellulolyticus 11B), celD (Anaerocellum thermophilum), cbh1 (T. reesei), cbh2 (T. reesei), celZ (Clostridium stercorarium), manA (Caldocellum saccharolyticum), celD (Thermobifida fusca) and end1 (Butyrivibrio fibrisolvens) were used to transform T. sacch M0699, a derivative of M0355 adapted for fast growth in a chemostat. The resulting strains were grown on rich medium containing 2% Avicel. Plates were incubated for 96 hours at 55° C. followed by a washing with 1M Tris and staining with a 0.5% solution of Pontamine Orange 6RN and Direct Blue I dyes (Pylam Products). The stained plate revealed clearing zones for celZ and celA transformants as compared to the M0355 parent (negative control) and cel5A, celD (A. thermophilum), cbh1, cbh2, celZ, manA, celD (T. fusca) and end1 as compared to the M0699 parent (negative control). C. thermocellum was used as a positive control. T. sacch containing a plasmid encoding for T. fusca cel9A with its native promoter also showed a clearing zone in this type of assay.


Example 5
Biomass Degrading Enzyme Activity in the MuLac Assay

In order to perform MuLac assays, supernatants from transformed cultures are mixed with MuLac, a fluorescent substrate for beta-lactosidase or galactosidase and glucosidase activities, and Relative Fluorescent Light Units are detected over time. Cleavage of MuLac releases 4-methylumbelliferone that is detected by fluorescence (ex. 355 nm and em. 460 nm).


MO699 was transformed with vectors containing sequences encoding the following proteins as described in Table 2 above: C. fimi Cex (827), A. celluloyticus 11B Cel5A (828), A. thermophilum celD (829), C. formosanus CfEG4 (830), T. reesei CBH1 (831), T. reesei CBH2 (833), T. fusca Cel5A, CelE (834), C. saccharolyticum CelB (contig 00091 geneor1761) (835), C. saccharolyticum ManA (836), T. reesei EG1 (837), T. fusca CelC (838), A. cellulolyticus 11B Biomass degrading enzyme (839), C. saccharolyticum CelB (contig 00009 geneor0219) (841), C. saccharolyticum CelB (contig 00029; geneor 0692) (842), N. fischeri putative biomass degrading enzyme (843), C. stercorarium Avicellase I (846), C. saccharolyticum CelB (contig 00135 geneor2202) (847), C. stercorarium Avicellase II (849), T. fusca CelD (850), A. celluloyticus 11B secreted biomass degrading enzyme (852), A. thermophilum Cel A (853) and T. fusca Cel5A, CelE (855). The resulting transformed strains were cultured in TS5-rich media with 100 ug/mL kanamycin, 55° C. to an OD600 greater than 2.0. Supernatants were separated from cells after spinning at 19K, 4° C. Supernatants were poured into a new, clean tube, and cells were discarded. 50 μl of 4 mM 4-Methylumbelliferyl β-D-lactoside (MuCell), MGT #M0554 was made in 50 mM Citrate Buffer pH 6.1 and pipetted into analytical 96-well plate. 50 ul culture supernatants was added. Plates were incubated at 55° C. for timecourse. Fluorescence was read in microtiter plate reader (ex. 355 nm and em. 460 nm). The results are shown in FIG. 4 and demonstrate that T. sacch expressing C. stercorarium CelZ, C. fimi Cex, A. thermophilum celD, T. reesei CBH1, C. saccharolyticum CelB (contig 00091 geneor1761), C. saccharolyticum ManA, A. cellulolyticus 11B Biomass degrading enzyme, C. saccharolyticum CelB (contig 00135 geneor2202), C. stercorarium Avicellase II, T. fusca CelD, and A. celluloyticus 11B secreted biomass degrading enzyme show activity in the MuLac assay that is greater than the MO699 strain from which they were derived. In addition, T. sacch containing plasmids encoding for T. fusca cel9A or B. fibrisolvens end1 with their native promoters showed activity in a MuLac assay.


Example 6
Ethanol Production by T. Sacch Expressing Heterologous Biomass Degrading Enzymes

Plasmids containing PCR-cloned cellulase genes celB from Caldicellulosiruptor kristjanssonii (“T. sacch 555”), celA from Anaerocellum thermophilum (“T. sacch 559”), and celZ from Clostridium stercorarium (“T. sacch 567”) were used to transform T. sacch. Cultures of the transformed strain, and the control parent strain, M0355, were grown in bottles at 25 ml volumes containing M122 media supplemented with 2% Avicel with 1 g/L yeast extract and 1 g/L xylose as a starting sugar. Cultures were grown at 47° C. with 2.5 μg/ml thiamphenicol at either pH 5.5, 6.1, or 6.7, with samples collected at 0 and 96 hours for HPLC analysis. As shown in FIG. 5, there was an increase in ethanol production (0.3-0.6 g/L) at all three pH levels for the cellulase transformants when compared to the parent T. sacch M0355 strain indicating some cellulolytic activity.


Example 7
Ethanol Production by T. Sacch Expressing Heterologous Biomass Degrading Enzymes

Plasmids containing PCR-cloned or codon-optimized cellulase genes celD (Anaerocellum thermophilum, pMU829), cbh1 (T. reesei, pMU831), cbh2 (T. reesei, pMU833), celZ (Clostridium stercorarium, pMU876), Contig00135 geneor2202 (Caldicellulosiruptor kristjanssonii pMU847), celD (Thermobifida fusca pMU850), and end1 (Butyrivibrio fibrisolvens pMU854) were used to transform T. sacch M0699. Cultures of the transformed strain, and the control parent strain, M0699, were grown in bottles at 25 ml volumes containing TS5 media supplemented with 2% Avicel and exogenous enzymes. Cultures were grown at 55° C. at pH 6.1 with samples collected at 24 and 72 hours for HPLC analysis. As shown in FIG. 6, there was an increase in ethanol production (0.5 g/L) for the cellulase transformants pMU876 (celZ) when compared to the parent T. sacch M0699 strain indicating some cellulolytic activity.


Example 8
Expression of Identified Heterologous Cellulases in T. sacch

In order to identify cellulases that increase cellulose digestion and ethanol production in T. sacch, codon-optimized sequences encoding the biomass degrading enzymes of Table 2 (SEQ ID NO:108-148) are cloned into a T. sacch expression vector. The T. sacch expression vector comprises a C. therm promoter, a signal peptide, the codon-optimized cellulase-encoding sequence and the E. coli T1 and T2 terminator. The signal peptide is a signal peptide selected from the signal peptides of Tables 2 and 3. The vectors are transformed into MO355. The presence of the heterologous cellulase in the transformed host cells is confirmed by genetic assay (e.g. PCR assay) enzyme assay (e.g. assay for cellulase activity) or by analytical methodology. Transformed host cells are grown on cellulosic substrates (e.g. Avicel) and ethanol production is monitored. Transformed host cells that produce large quantities of ethanol are used in a consolidated bioprocessing system, optionally in combination with externally added enzymes to produce ethanol


Example 9
Identification and Expression of Cellulases from T. sacch-Related Organisms

In order to identify cellulases from organisms related to T. sacch that increase cellulose digestion and ethanol production when expressed in T. sacch, DNA is prepared from an organism or group of organisms likely to contain biomass degrading enzymes. This can be done by obtaining organisms that contain similar 16S rRNA sequences, evaluated using BLAST search. These organisms may be obtained from repositories of microorganisms or by isolating them from natural environments. DNA can also be prepared directly from mixed cultures of microorganisms or from microorganisms residing in the natural environment. A library of different DNA fragments is then generated. This library can consist of T. sacch replication-ready plasmids into which fragments of the DNA have been inserted. The library can also consist of plasmids or linear DNA constructs designed to integrate into the T. sacch chromosome. A strong promoter active in T. sacch may be positioned up and downstream of cloning sites to drive gene expression in both directions. This may be useful if no promoter was included in the DNA fragment that was cloned, or if the promoter present in that DNA is not active in T. sacch under the conditions used. The DNA constructs are transformed into T. sacch and transformed host cells are either selected or assayed for protein expression and/or increased biomass degradation. Organisms that are mildly cellulolytic are passaged serially and selected for increased cellulase activity. Transformed host cells that produce large quantities of ethanol are used in a consolidated bioprocessing system, optionally in combination with externally added enzymes to produce ethanol.


In another variation, the DNA is not cloned but instead directly transformed into T. sacch. By mechanisms either native to or introduced into T. sacch, some portion of the DNA is then integrated into the chromosome. Cells that integrated DNA sequences encoding biomass degrading enzymes can then be isolated by selection or screening.


Example 10
Screening of Signal Peptides

A comprehensive signal peptide library was tested in combination with three different cellulases in order to identify signal peptides that commonly promote secretion in T. sacch. Signal peptides were cloned upstream of histidine-tagged CBH1 (Talaromyces emersonii), E5 (Thermobifida fusca), and CelZ (Clostridium stercorarium) and over-expressed in T. sacch strain M0699. The predicted protein sizes for CBH1, E5, and CelZ are 48 kDa, 48 kDa, and 105 kDa, respectively. T. sacch culture supernatants were harvested during logarithmic growth phase, and protease inhibitors were added. Proteins were precipitated with sodium deoxycholate (DOC) and trichloroacetic acid (TCA) overnight. Protein pellets were resuspended in SDS-PAGE gel loading buffer that contained DTT and analyzed by gel electrophoresis on Novex® 4-20% Tris-glycine gels prior to Western blotting. Anti-6×His antibodies were used to detect CBH1:6×His (Talaromyces emersonii) (FIG. 7A), E5:6×His (Thermobifida fusca) (FIG. 7B), and CelZ:6×His (Clostridium stercorarium) (FIG. 7C) fusion proteins. CBH1 and E5 could be detected by Western analysis when expressed as fusion with a T. sacch signal peptide of SEQ ID NO:15. Additionally, CBH1 could be detected when fused to T. sacch signal peptides SEQ ID NO:19 and 20, and E5 was detected when fused to T. sacch signal peptides of SEQ ID NO: 5, 7, 11, 13, 14, 17, 19, 20, 24 and 31. However, fusion to these signal peptides resulted in detection of bands smaller or larger that the predicted protein size. These bands may be the result of truncated proteins due to proteolysis, conformational changes or incomplete translation from a pre-mature stop codon, for example. Larger bands may have resulted from protein aggregation or post-translational modifications. A CelZ band of predicted size was detected by Western blot only when fused to the native Clostridium stercorarium CelZ signal peptide sequence. Fusions with a T. sacch signal peptide SEQ ID NO: 15, 16, 17, 33, and 34 resulted in bands that were smaller than the predicted size.


Example 11
Evidence of Proteolysis of Heterologous Cellulases in T. sacch

Multiple bands, in addition to a band at the expected size of CelZ were visible by Western blot when CelZ was heterologously expressed in T. sacch. See FIG. 2. The multiplicity of bands was observed in samples collected from T. sacch heterologously expressing CelZ:HA, CelZ:His and CelZ:Flag fusions. Therefore, the multiplicity of bands was not the result of a particular protein tag. In order to determine if the extraneous bands were due to culture growing conditions, T. sacch cultures expressing CelZ were grown at multiple pHs (5.5, 6.1, and 6.7). In order to determine if the extraneous bands were due to methods of sample preparation, T. sacch cultures expressing CelZ were processed in three different ways: 1) no treatment; 2) sodium deoxycholate (DOC) and trichloroacetic acid (TCA) precipitation; and 3) filtration through 10 kDa MWCO filter. A similar banding pattern was observed in anti-His Western blots regardless of culture growing conditions or sample preparation techniques. These results indicated that the extra bands were not due to growth pH or sample processing.


In order to determine if the banding pattern was the result of proteolysis, N-terminal sequencing of the bands was performed. Histidine-tagged CBH1 (Talaromyces emersonii) and E5 (Thermobifida fusca) were cloned downstream of a T. sacch signal peptide of SEQ ID NO:15, and CelZ (Clostridium stercorarium) was cloned with the native C. stercorarium CelZ signal peptide (SEQ ID NO:34). The heterologous cellulases were over-expressed in T. sacch strain M0699. The T. sacch culture supernatants were harvested during logarithmic growth phase, and protease inhibitors were added. Proteins were precipitated with DOC/TCA overnight. Protein pellets were resuspended in SDS-PAGE gel loading buffer that contained DTT and analyzed by gel electrophoresis on Novex® 4-20% Tris-glycine gels prior to Western blotting. Anti-6×His antibodies were used to detect CBH1:6×His, E5:6×His, and CelZ:6×His fusion proteins. FIG. 8. In addition, the fusion proteins were purified from T saccharolyticum supernatants by fast performance liquid chromatography (FPLC) using a cobalt resin. Eluant was separated by electrophoresis on Novex® 4-20% Tris-glycine gels. Samples were transferred to a PVDF membrane and stained with Coomassie. After destaining, bands were cut out and identified by N-terminal sequencing. The resulting sequences, shown in FIG. 8, correspond to sequences of the heterologous cellulase being expressed. This data indicates that there is T. sacch-mediated proteolysis of secreted cellulases. Cleavage sites that were consistent with serine-protease cleavage were identified. Cleavage sites consistent with trypsin-like cleavage were also identified.


Example 12

T. emersonii CBH1:His shows Hydrolytic Activity in T. Saccharolyticum

In order to determine if T. emersonii CBH1 was enzymatically active when expressed in T. sacch, an in-gel MuLac assay was performed. In this experiment, approximately 30 L of T. saccharolyticum was grown in TSC1 medium with 30 g/L maltodextrin. The TSC1 media recipe is shown below:












TSC1 Media recipe (made up for 1 liter inoculum for the 40 liters)











1 liter fermentation
40 liter medium
Comments













NH4SO4
1.85
74



KH2PO4
1
40



MgSO4
1
40



CaCl2*2H2O
0.1
4



FeSO4*7H2O
0.05
2



NaCitrate
2
80



yeast extract
8.5
340



maltodextrin
30
1200
separately sterilized


resazurin
1
40



water
Bring up to 1 L
Bring up to 40 L
Use distilled water



autoclave 40 min
autoclave 2 hours









Supernatant was separated from cells by spinning and clarified of residual cells using a 500 kDa MWCO filter. The permeate was retained and concentrated in a 10 kDa MWCO filter. Retentate was diafiltered into 50 mM Na phosphate, 300 mM NaCl, pH 7.4 and purified by FPLC using a Pierce cobalt column. Samples of the material loaded onto the column (FIG. 9A “load”) and a sample of the fraction that was retained on the column and eluted with an imidazole gradient (FIG. 9A “peak”) were obtained and applied to a 4-20% SDS-PAGE gel and separated electrophoretically. The gel was then incubated in 100 mM succinate, pH 5.8 to remove the SDS and equilibrate the gel to the optimal pH. The gel was then incubated in 100 mM succinate, pH 5.8 with 0.5 mM 4-methylumbelliferyl cellobioside (MuCell), a fluorescent substrate for CBH1. After incubating for an additional 2 hours at 45° C., the gel was visualized on a Syngene G:Box with a CCD camera after exciting the MuCell with UV light. Bands containing enzymes that can digest the MuCell fluoresce. FIG. 9A, left panel. The gel was also stained with Simply Blue safe stain to visualize all of the proteins present in each sample and to estimate the amount of protein in each sample. FIG. 9A, right panel. Based on this staining, there is significantly less protein present in the peak sample compared to the load sample (approximately 10%). FIG. 9A, right panel. Both the load and the peak appeared to be positive for MuCel. FIG. 9A, left panel.


The activity of T. emersonii CBH1 in T. sacch was also assessed by measuring the percent of Avicel conversion using the reducing sugar (DNS) method. Commercially available exogenous endoglucanase (EG) (2 mg/g) from AB Enzymes batch number EL2007025L and T. saccharolyticum supernatants from empty vector controls or CBH1-expressing strains were added to 2% Avicel. A water control was performed in which 2 mg/g total of EG and commercially available exogenous CBH1 (AB Enzymes thermostable, mono-component) was added. Measurements were taken at 24 hours and 48 hours, and at both time points a greater percentage of Avicel was converted by the CBH1-expressing T. sacch strain than either of the controls. FIG. 9B.


The activity of T. emersonii CBH1 in T. sacch was also assessed using fermentation bottle experiments. These experiments were performed with 2% Avicel in TSC1 medium and T. saccharolyticum transformed with an empty vector control or a CBH1-containing plasmid. Commercially available exogenous EG (2 mg/g) or EG and CBH1 in a ratio of 1:3.5 (2 mg/g) was added to each bottle. Cellobiose, glucose, xylose, and ethanol concentrations were measured by HPLC using a 300×7.8 mm BioRad Aminex HPX 87H column, an ion-moderated partition chromatography technique, at 72 hours. CBH1-expressing T. sacch increased the concentration of ethanol produced under all of the conditions tested. FIG. 9C.


Example 13
Increased Heterologous Cellulase Activity in T. sacch in Protease Knock-Outs

In order to decrease the proteolysis of heterologous cellulases in T. sacch, T. sacch strains lacking a gene encoding a protease are created. For example, knock-outs are created using phosphotransacetylase (pta) and acetate kinase (ack) genes for genetic marker removal via selection with halogen-acetate compounds (e.g. fluoroacetate) as described in U.S. Provisional Application No. 61/113,978, which is herein incorporated by reference in its entirety. A recombinant T. sacch strain expressing the heterologous cellulase in a wild-type background and a recombinant T. sacch strain expressing the heterologous cellulase in the protease knock-out background are cultured under the same conditions, and the concentration of cellulases is measured by Western Blot. An increase in the intensity of the band corresponding to the size of the heterologous cellulase and a decrease in the intensity of the multiplicity of smaller bands indicates a decrease in the proteolysis of the heterologous cellulase. In addition, ethanol production by both strains is measured as described in the Examples above. An increase in ethanol production in the protease knock-out indicates an increase in the enzymatic activity of heterologously expressed cellulase in T. sacch.


These examples illustrate possible embodiments of the present invention. While the invention has been particularly shown and described with reference to some embodiments thereof, it will be understood by those skilled in the art that they have been presented by way of example only, and not limitation, and various changes in form and details can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.


All documents cited herein, including journal articles or abstracts, published or corresponding U.S. or foreign patent applications, issued or foreign patents, or any other documents, are each entirely incorporated by reference herein, including all data, tables, figures, and text presented in the cited documents.

Claims
  • 1. An isolated nucleic acid comprising a polynucleotide which encodes a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-38 and an amino acid sequence selected from the group consisting of SEQ ID NOs: 108-148.
  • 2-5. (canceled)
  • 6. The nucleic acid of claim 1, wherein the polynucleotide is codon-optimized for expression in Thermoanaerobacterium saccharolyticum.
  • 7. A vector comprising the nucleic acid of claim 1.
  • 8. A polypeptide encoded by the nucleic acid of claim 1.
  • 9. A host cell comprising the nucleic acid of claim 1.
  • 10. The host cell of claim 9, wherein the host cell is a member of the genus Thermoanaerobacterium.
  • 11-12. (canceled)
  • 13. A transformed Thermoanaerobacterium saccharolyticum host cell comprising at least one heterologous polynucleotide comprising a nucleic acid encoding a biomass degrading enzyme, wherein the host cell lacks a gene that is necessary for producing lactic acid as a fermentation product or lacks a gene that is necessary for producing acetic acid as a fermentation product or lacks both.
  • 14-15. (canceled)
  • 16. A transformed thermophilic anaerobic bacterial host cell comprising a heterologous polynucleotide comprising a nucleic acid encoding a biomass degrading enzyme operably linked to a cellobiose phosphotransferase (CBP) promoter or E. coli T1 and T2 terminator sequences.
  • 17-24. (canceled)
  • 25. The host cell of claim 13, wherein the biomass degrading enzyme is a fungal biomass degrading enzyme or a biomass degrading enzyme from a microorganism residing in the termite gut.
  • 26. A host cell comprising a nucleic acid encoding a heterologous biomass degrading enzyme, wherein the host cell is a Thermoanaerobacterium cell and wherein the host cell has decreased protease activity compared to wild-type Thermoanaerobacterium or increased chaperone activity, compared to wild-type Thermoanaerobacterium.
  • 27. (canceled)
  • 28. The host cell of claim 26, wherein said host cell comprises a heterologous nucleic acid encoding a protein selected from the group consisting of: E. coli DsbA, E. coli B, E. coli C, E. coli D, E. coli G, Bacillus subtilis BdbA, Bacillus subtilis BdbB, Bacillus subtilis BdbC, Bacillus subtilis BdbD, Bacillus subtilis PrsA, SecA, SecY, SecE, SecG, and SecDF.
  • 29. The host cell of claim 13, wherein the biomass degrading enzyme is derived from Thermobifida fusca, Caldocellum saccharolyticum, Clostridium stercorarium, Eubacterium cellulosolvens, Cellulomonas fimi, Acidothermus cellulolyticus, Butyrivibrio fibrisolvens, Anaerocellum thermophilum, Trichoderma reesei, Coptotermes formosanus, Nasutitermes takasagoensis, Talaromyces emersonii, Neosartorya fischeri or Caldicellulosiruptor kristjanssonii.
  • 30-34. (canceled)
  • 35. The host cell of claim 13, wherein the host cell lacks genes encoding lactate dehydrogenase, phosphotransacetylase, and acetate kinase.
  • 36-37. (canceled)
  • 38. The host cell of claim 13, wherein the host cell can grow on Avicel.
  • 39. The host cell of claim 13, wherein the host cell has at least 10 U/mg activity.
  • 40. (canceled)
  • 41. The host cell of claim 16, wherein the CBP promoter is the Clostridium thermocellum CBP promoter.
  • 42-52. (canceled)
  • 53. The host cell of claim 13, wherein the biomass degrading enzyme is a cellulase.
  • 54-58. (canceled)
  • 59. The host cell of claim 26, wherein said host cell comprises a heterologous nucleic acid encoding a chaperone selected from the group consisting of E. coli HSP60/GroEL, E. coli HSP60/GroES, E. coli HSP70/DnaK, E. coli DnaJ, E. coli GrpE, E. coli HSP90/HtpG, E. coli HSP100/Clp family, E. coli peptidyl prolyl isomerase Trigger Factor, Bacillus subtilis Ffh, Bacillus subtilis HBsu, Bacillus subtilis FtsY, Bacillus subtilis CsaA and Bacillus subtilis FlhF.
  • 60-61. (canceled)
  • 62. A method for hydrolyzing a cellulosic substrate, comprising contacting said cellulosic substrate with the host cell of claim 13.
  • 63. A method for producing ethanol from a cellulosic substrate comprising contacting said cellulosic substrate with the host cell of claim 13.
  • 64. The method of claim 63, further comprising contacting the substrate with exogenous enzymes.
  • 65. The method of claim 64, wherein said contacting occurs in anaerobic conditions.
  • 66. (canceled)
  • 67. A method of producing acetic acid from a cellulosic substrate comprising contacting said cellulosic substrate with the host cell of claim 16.
  • 68. A method of producing lactic acid from a cellulosic substrate comprising contacting said cellulosic substrate with the host cell of claim 16.
  • 69. A method of producing a biomass degrading enzyme comprising culturing the host cell of claim 26 under conditions suitable for protein expression and purifying the biomass degrading enzyme.
  • 70. (canceled)
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2009/069443 12/23/2009 WO 00 10/19/2011
Provisional Applications (2)
Number Date Country
61140607 Dec 2008 US
61259791 Nov 2009 US