Heuristic aware garbage collection scheme in storage systems

Information

  • Patent Grant
  • 9639463
  • Patent Number
    9,639,463
  • Date Filed
    Tuesday, September 17, 2013
    11 years ago
  • Date Issued
    Tuesday, May 2, 2017
    7 years ago
  • CPC
  • Field of Search
    • US
    • 707 814000
    • 707 711000
    • CPC
    • G06F21/60
    • G06F11/1008
    • G06F11/1004
    • G06F3/0481
    • H04L63/20
  • International Classifications
    • G06F12/00
    • G06F17/30
    • G06F12/02
Abstract
The various implementations described herein include systems, methods and/or devices used to enable heuristic aware garbage collection in storage systems (e.g., non-volatile data storage systems using one or more flash memory devices). In one aspect, a time parameter (e.g., dwell time) and/or heuristics (e.g., error count, error rate, number of reads, number of times programmed, etc.) are used in a garbage collection scheme. For example, in some implementations, the method of garbage collection for a storage medium in a storage system includes (1) determining a time parameter for a block in the storage medium, and (2) in accordance with a determination that the time parameter for the block is greater than a first threshold time, enabling garbage collection of the block.
Description
TECHNICAL FIELD

The disclosed embodiments relate generally to memory systems, and in particular, to using heuristic aware garbage collection in storage systems.


BACKGROUND

Semiconductor memory devices, including flash memory, typically utilize memory cells to store data as an electrical value, such as an electrical charge or voltage. A flash memory cell, for example, includes a single transistor with a floating gate that is used to store a charge representative of a data value. Flash memory is a non-volatile data storage device that can be electrically erased and reprogrammed. Non-volatile memory retains stored information even when not powered, as opposed to volatile memory, which requires power to maintain the stored information. Increases in storage density have been facilitated in various ways, including increasing the density of memory cells on a chip enabled by manufacturing developments, and transitioning from single-level flash memory cells to multi-level flash memory cells, so that two or more bits can be stored by each flash memory cell.


Garbage collection is a process of memory management that reclaims portions of memory that no longer contain valid data. Using flash memory as an example, data is written to flash memory in units called pages, which are made up of multiple memory cells. However, flash memory is erased in larger units called blocks, which are made up of multiple pages. If some pages of a first block contain invalid data, those pages cannot be overwritten until the whole block containing those pages is erased. The process of garbage collection reads and re-writes the pages with valid data from the first block into a second block and then erases the first block. After garbage collection, the second block contains pages with valid data and free pages that are available for new data to be written. Since flash memory can only be programmed and erased a limited number of times, it is important to utilize a garbage collection scheme that maximizes or improves the life of a flash-based storage system.


SUMMARY

Various implementations of systems, methods and devices within the scope of the appended claims each have several aspects, no single one of which is solely responsible for the attributes described herein. Without limiting the scope of the appended claims, after considering this disclosure, and particularly after considering the section entitled “Detailed Description” one will understand how the aspects of various implementations are used to enable heuristic aware garbage collection in storage systems (e.g., non-volatile data storage systems using one or more flash memory devices). In one aspect, a time parameter (e.g., dwell time) and/or heuristics (e.g., error count, error rate, number of reads, number of times programmed, etc.) are used in a garbage collection scheme.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various implementations, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate the more pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.



FIG. 1 is a block diagram illustrating an implementation of a data storage system, in accordance with some embodiments.



FIG. 2 is a block diagram illustrating an implementation of a management module, in accordance with some embodiments.



FIG. 3A is a prophetic diagram of voltage distributions that may be found in a single-level flash memory cell (SLC) over time, in accordance with some embodiments.



FIG. 3B is a prophetic diagram of voltage distributions that may be found in a multi-level flash memory cell (MLC) over time, in accordance with some embodiments.



FIGS. 4A-4C illustrate a flowchart representation of a method of garbage collection for a storage medium in a storage system, in accordance with some embodiments.



FIG. 5 illustrates a flowchart representation of a method of garbage collection for a storage medium in a storage system, in accordance with some embodiments.





In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.


DETAILED DESCRIPTION

The various implementations described herein include systems, methods and/or devices used to enable heuristic aware garbage collection in storage systems (e.g., non-volatile data storage systems). Some implementations include systems, methods and/or devices to utilize a time parameter and/or heuristics in a garbage collection scheme.


More specifically, some implementations include a method of garbage collection for a storage medium in a storage system. In some implementations, the method includes (1) determining a time parameter for a block in the storage medium, and (2) in accordance with a determination that the time parameter for the block is greater than a first threshold time, enabling garbage collection of the block.


In some embodiments, the method includes, in accordance with a determination that the time parameter for the block is greater than the first threshold time and that the block meets predefined staleness criteria, enabling garbage collection of the block.


In some embodiments, the time parameter is a dwell time, the dwell time being a time since a last program command to modify data stored in the block.


In some embodiments, the method further includes adapting the first threshold time based on one or more parameter values of the block.


In some embodiments, determining the time parameter for the block includes determining a time when the block was last programmed.


In some embodiments, the method further includes (1) selecting a set of blocks from the storage medium, (2) determining a second threshold time for the set of blocks, and (3) for each block in the set of blocks, in accordance with a determination that the time parameter for the block is less than the determined second threshold time, disabling garbage collection of the block.


In some embodiments, the second threshold time is greater than the first threshold time


In some embodiments, the storage medium includes a plurality of sets of blocks, and the method further includes (1) suspending garbage collection of a first set of blocks for the determined second threshold time, and (2) suspending, in succession, garbage collection of all other sets of blocks of the plurality of sets of blocks for the determined second threshold time before suspending garbage collection of the first set of blocks again


In some embodiments, the aforementioned selecting of a set of blocks from the storage medium includes selecting the set of blocks in accordance with one or more parameter values, wherein the one or more parameter values include at least one parameter in the set consisting of an error count for a respective block, an error rate for the respective block, number of reads from the respective block, number of times the respective block has been programmed, number of times the respective block has been erased, a read scrub frequency for the respective block, a dynamic read frequency for the respective block, and a reading threshold voltage margin for the respective block.


In some embodiments, the method further includes adapting the second threshold time based on one or more parameter values of the set of blocks, wherein the one or more parameter values include at least one parameter in the set consisting of an error count for a respective block, an error rate for the respective block, number of reads from the respective block, number of times the respective block has been programmed, number of times the respective block has been erased, a read scrub frequency for the respective block, a dynamic read frequency for the respective block, and a reading threshold voltage margin for the respective block.


In some embodiments, the method further includes, for each block in the set of blocks, in accordance with a determination that the time parameter for the block is less than the determined second threshold time, disabling write access to the block in accordance with host write commands.


In another aspect, a method of garbage collection for a storage medium in a storage system includes identifying a set of garbage collection eligible blocks, including (1) determining a time parameter for each unerased block in a set of blocks in the storage medium, and (2) identifying, in accordance with the time parameter for each unerased block in the set of blocks, the set of garbage collection eligible blocks. The method further includes selecting a subset of the set of garbage collection eligible blocks for garbage collection in accordance with predefined staleness criteria.


In some embodiments, the set of blocks includes a first set of blocks and a second set of blocks distinct from the first set of blocks, and the identifying includes identifying garbage collection eligible blocks from among the first set of blocks in accordance with a first threshold time and identifying garbage collection eligible blocks from among the second set of blocks in accordance with a second threshold time that is greater than the first threshold time.


In some embodiments, the storage medium comprises one or more non-volatile storage devices, such as flash memory devices.


In another aspect, any of the methods described above are performed by a device operable to perform garbage collection for a storage medium, the device including (1) a storage medium interface for coupling the device to the storage medium, and (2) one or more modules, including a memory management module that includes one or more processors and memory storing one or more programs configured for execution by the one or more processors, the one or more modules coupled to the storage medium interface and configured to perform any of the methods described above.


In yet another aspect, a device is operable to perform garbage collection for a storage medium. In some embodiments, the device includes (1) a storage medium interface for coupling the device to the storage medium, (2) means for determining a time parameter for a block in the storage medium, and (3) means for enabling, in accordance with a determination that the time parameter for the block is greater than a first threshold time, garbage collection of the block.


In yet another aspect, any of the methods described above are performed by a storage system comprising (1) a storage medium (e.g., comprising one or more non-volatile storage devices, such as flash memory devices) (2) one or more processors, and (3) memory storing one or more programs, which when executed by the one or more processors cause the storage system to perform or control performance of any of the methods described above.


In yet another aspect, a non-transitory computer readable storage medium stores one or more programs configured for execution by a device coupled to a storage medium, the one or more programs comprising instructions for causing the device and/or storage medium to perform any of the methods described above.


Numerous details are described herein in order to provide a thorough understanding of the example implementations illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known methods, components, and circuits have not been described in exhaustive detail so as not to unnecessarily obscure more pertinent aspects of the implementations described herein.



FIG. 1 is a diagram of an implementation of a data storage system 100, in accordance with some embodiments. While some example features are illustrated, various other features have not been illustrated for the sake of brevity and so as not to obscure more pertinent aspects of the example implementations disclosed herein. To that end, as a non-limiting example, the data storage system 100 includes a memory controller 120, and a storage medium 130, and is used in conjunction with a computer system 110. In some implementations, storage medium 130 is a single flash memory device while in other implementations storage medium 130 includes a plurality of flash memory devices. In some implementations, storage medium 130 is NAND-type flash memory or NOR-type flash memory. Further, in some implementations memory controller 120 is a solid-state drive (SSD) controller. However, other types of storage media may be included in accordance with aspects of a wide variety of implementations.


Computer system 110 is coupled to memory controller 120 through data connections 101. However, in some implementations computer system 110 includes memory controller 120 as a component and/or a sub-system. Computer system 110 may be any suitable computer device, such as a computer, a laptop computer, a tablet device, a netbook, an internet kiosk, a personal digital assistant, a mobile phone, a smart phone, a gaming device, a computer server, or any other computing device. Computer system 110 is sometimes called a host or host system. In some implementations, computer system 110 includes one or more processors, one or more types of memory, a display and/or other user interface components such as a keyboard, a touch screen display, a mouse, a track-pad, a digital camera and/or any number of supplemental devices to add functionality.


Storage medium 130 is coupled to memory controller 120 through connections 103. Connections 103 are sometimes called data connections, but typically convey commands in addition to data, and optionally convey metadata, error correction information and/or other information in addition to data values to be stored in storage medium 130 and data values read from storage medium 130. In some implementations, however, memory controller 120 and storage medium 130 are included in the same device as components thereof. Furthermore, in some implementations memory controller 120 and storage medium 130 are embedded in a host device, such as a mobile device, tablet, other computer or computer controlled device, and the methods described herein are performed by the embedded memory controller. Storage medium 130 may include any number (i.e., one or more) of memory devices including, without limitation, non-volatile semiconductor memory devices, such as flash memory. For example, flash memory devices can be configured for enterprise storage suitable for applications such as cloud computing, or for caching data stored (or to be stored) in secondary storage, such as hard disk drives. Additionally and/or alternatively, flash memory can also be configured for relatively smaller-scale applications such as personal flash drives or hard-disk replacements for personal, laptop and tablet computers.


Storage medium 130 is divided into a number of addressable and individually selectable blocks, such as selectable portion 131. In some implementations, the individually selectable blocks are the minimum size erasable units in a flash memory device. In other words, each block contains the minimum number of memory cells that can be erased simultaneously. Each block is usually further divided into a plurality of pages and/or word lines, where each page or word line is typically an instance of the smallest individually accessible (readable) portion in a block. In some implementations (e.g., using some types of flash memory), the smallest individually accessible unit of a data set, however, is a sector, which is a subunit of a page. That is, a block includes a plurality of pages, each page contains a plurality of sectors, and each sector is the minimum unit of data for reading data from the flash memory device.


For example, one block comprises any number of pages, for example, 64 pages, 128 pages, 256 pages or another suitable number of pages. Blocks are typically grouped into a plurality of zones. Each block zone can be independently managed to some extent, which increases the degree of parallelism for parallel operations and simplifies management of storage medium 130.


In some implementations, memory controller 120 includes a management module 121, a host interface 129, a storage medium interface (I/O) 128, and additional module(s) 125. Memory controller 120 may include various additional features that have not been illustrated for the sake of brevity and so as not to obscure more pertinent features of the example implementations disclosed herein, and a different arrangement of features may be possible. Host interface 129 provides an interface to computer system 110 through data connections 101. Similarly, storage medium I/O 128 provides an interface to storage medium 130 though connections 103. In some implementations, storage medium I/O 128 includes read and write circuitry, including circuitry capable of providing reading signals to storage medium 130 (e.g., reading threshold voltages for NAND-type flash memory).


In some implementations, management module 121 includes one or more processing units (CPUs, also sometimes called processors) 122 configured to execute instructions in one or more programs (e.g., in management module 121). In some implementations, the one or more CPUs 122 are shared by one or more components within, and in some cases, beyond the function of memory controller 120. Management module 121 is coupled to host interface 129, additional module(s) 125 and storage medium I/O 128 in order to coordinate the operation of these components.


Additional module(s) 125 are coupled to storage medium I/O 128, host interface 129, and management module 121. As an example, additional module(s) 125 may include an error control module to limit the number of uncorrectable errors inadvertently introduced into data during writes to memory or reads from memory. In some embodiments, additional module(s) 125 are executed in software by the one or more CPUs 122 of management module 121, and, in other embodiments, additional module(s) 125 are implemented in whole or in part using special purpose circuitry (e.g., to perform encoding and decoding functions).


During a write operation, host interface 129 receives data to be stored in storage medium 130 from computer system 110. The data held in host interface 129 is made available to an encoder (e.g., in additional module(s) 125), which encodes the data to produce one or more codewords. The one or more codewords are made available to storage medium I/O 128, which transfers the one or more codewords to storage medium 130 in a manner dependent on the type of storage medium being utilized.


A read operation is initiated when computer system (host) 110 sends one or more host read commands on control line 111 to memory controller 120 requesting data from storage medium 130. Memory controller 120 sends one or more read access commands to storage medium 130, via storage medium I/O 128, to obtain raw read data in accordance with memory locations (addresses) specified by the one or more host read commands. Storage medium I/O 128 provides the raw read data (e.g., comprising one or more codewords) to a decoder (e.g., in additional module(s) 125). If the decoding is successful, the decoded data is provided to host interface 129, where the decoded data is made available to computer system 110. In some implementations, if the decoding is not successful, memory controller 120 may resort to a number of remedial actions or provide an indication of an irresolvable error condition.


Flash memory devices utilize memory cells to store data as electrical values, such as electrical charges or voltages. Each flash memory cell typically includes a single transistor with a floating gate that is used to store a charge, which modifies the threshold voltage of the transistor (i.e., the voltage needed to turn the transistor on). The magnitude of the charge, and the corresponding threshold voltage the charge creates, is used to represent one or more data values. In some implementations, during a read operation, a reading threshold voltage is applied to the control gate of the transistor and the resulting sensed current or voltage is mapped to a data value.


The terms “cell voltage” and “memory cell voltage,” in the context of flash memory cells, means the threshold voltage of the memory cell, which is the minimum voltage that needs to be applied to the gate of the memory cell's transistor in order for the transistor to conduct current. Similarly, reading threshold voltages (sometimes also called reading signals and reading voltages) applied to a flash memory cells are gate voltages applied to the gates of the flash memory cells to determine whether the memory cells conduct current at that gate voltage. In some implementations, when a flash memory cell's transistor conducts current at a given reading threshold voltage, indicating that the cell voltage is less than the reading threshold voltage, the raw data value for that read operation is a “1,” and otherwise the raw data value is a “0.”


As explained above, a storage medium (e.g., storage medium 130) is divided into a number of addressable and individually selectable blocks and each block is optionally (but typically) further divided into a plurality of pages and/or word lines and/or sectors. While erasure of a storage medium is performed on a block basis, in many embodiments, reading and programming of the storage medium is performed on a smaller subunit of a block (e.g., on a page basis, word line basis, or sector basis). In some embodiments, the smaller subunit of a block consists of multiple memory cells (e.g., single-level cells or multi-level cells, as described below). In some embodiments, programming is performed on an entire page.


As an example, if data is written to a storage medium in pages, but the storage medium is erased in blocks, pages in the storage medium may contain invalid (e.g., stale) data, but those pages cannot be overwritten until the whole block containing those pages is erased. In order to write to the pages with invalid data, the pages with valid data in that block are read and re-written to a new block and the old block is erased (or put on a queue for erasing). This process is called garbage collection. After garbage collection, the new block contains pages with valid data and free pages that are available for new data to be written, and the old block that was erased is also available for new data to be written. Since flash memory can only be programmed and erased a limited number of times, the efficiency of the algorithm used to pick the next block(s) to re-write and erase has a significant impact on the lifetime and reliability of flash-based storage systems.



FIG. 2 is a block diagram illustrating an exemplary management module 121, in accordance with some embodiments. Management module 121 typically includes one or more processing units (CPUs) 122 for executing modules, programs and/or instructions stored in memory 206 and thereby performing processing operations, memory 206, and one or more communication buses 208 for interconnecting these components. Communication buses 208 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Management module 121 is coupled to host interface 129, additional module(s) 125, and storage medium I/O 128 by communication buses 208. Memory 206 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 206 optionally includes one or more storage devices remotely located from the CPU(s) 122. Memory 206, or alternately the non-volatile memory device(s) within memory 206, comprises a non-transitory computer readable storage medium. In some embodiments, memory 206, or the computer readable storage medium of memory 206 stores the following programs, modules, and data structures, or a subset thereof:

    • a time parameter module 216 that is used for determining a time parameter (e.g., dwell time) for a block (e.g., selectable portion of storage medium 131, FIG. 1) in a storage medium (e.g., storage medium 130, FIG. 1);
    • a threshold time module 218 that is used to determine and/or adapt one or more threshold times for one or more blocks in a storage medium;
    • a garbage collection module 220 that is used for garbage collection for one or more blocks in a storage medium;


In some embodiments, the garbage collection module 220 optionally includes the following modules or sub-modules, or a subset thereof:

    • an identification module 222 that is used for identifying a set of garbage collection eligible blocks;
    • a selection module 224 that is used for selecting a set of blocks from a storage medium for vacation and/or for selecting a subset of the set of garbage collection eligible blocks in accordance with one or more parameters (e.g., staleness criteria);
    • an enable module 226 that is used for enabling garbage collection of one or more blocks;
    • a disable module 228 that is used for disabling garbage collection of one or more blocks and/or disabling write access to one or more blocks;
    • a vacation module 230 that is used for suspending garbage collection of one or more blocks for a determined time;
    • a data read module 232 that is used for reading data from one or more blocks in a storage medium;
    • a data write module 234 that is used for writing data to one or more blocks in a storage medium; and
    • a data erase module 236 that is used for erasing data from one or more blocks in a storage medium.


Each of the above identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 206 may store a subset of the modules and data structures identified above. Furthermore, memory 206 may store additional modules and data structures not described above. In some embodiments, the programs, modules, and data structures stored in memory 206, or the computer readable storage medium of memory 206, provide instructions for implementing any of the methods described below with reference to FIGS. 4A-4C and 5.


Although FIG. 2 shows a management module 121, FIG. 2 is intended more as functional description of the various features which may be present in a management module than as a structural schematic of the embodiments described herein. In practice, and as recognized by those of ordinary skill in the art, items shown separately could be combined and some items could be separated.


As discussed below with reference to FIG. 3A, a single-level flash memory cell (SLC) stores one bit (“0” or “1”). Thus, the storage density of a SLC memory device is one bit of information per memory cell. A multi-level flash memory cell (MLC), however, can store two or more bits of information per cell by using different ranges within the total voltage range of the memory cell to represent a multi-bit bit-tuple. In turn, the storage density of a MLC memory device is multiple-bits per cell (e.g., two bits per memory cell).



FIG. 3A is a simplified, prophetic diagram of voltage distributions 300a found in a single-level flash memory cell (SLC) over time, in accordance with some embodiments. The voltage distributions 300a shown in FIG. 3A have been simplified for illustrative purposes. In this example, the SLC's voltage range extends approximately from a voltage, VSS, at a source terminal of an NMOS transistor to a voltage, VDD, at a drain terminal of the NMOS transistor. As such, voltage distributions 300a extend between VSS and VDD.


Sequential voltage ranges 301 and 302 between source voltage VSS and drain voltage VDD are used to represent corresponding bit values “1” and “0,” respectively. Each voltage range 301, 302 has a respective center voltage V1 301b, V0 302b. As described below, in many circumstances the memory cell current sensed in response to an applied reading threshold voltages is indicative of a memory cell voltage different from the respective center voltage V1 301b or V0 302b corresponding to the respective bit value written into the memory cell. Errors in cell voltage, and/or the cell voltage sensed when reading the memory cell, can occur during write operations, read operations, or due to “drift” of the cell voltage between the time data is written to the memory cell and the time a read operation is performed to read the data stored in the memory cell. For ease of discussion, these effects are collectively described as “cell voltage drift.” Each voltage range 301, 302 also has a respective voltage distribution 301a, 302a that may occur as a result of any number of a combination of error-inducing factors, examples of which are identified above.


In some implementations, a reading threshold voltage VR is applied between adjacent center voltages (e.g., applied proximate to the halfway region between adjacent center voltages V1 301b and V0 302b). Optionally, in some implementations, the reading threshold voltage is located between voltage ranges 301 and 302. In some implementations, reading threshold voltage VR is applied in the region proximate to where the voltage distributions 301a and 302a overlap, which is not necessarily proximate to the halfway region between adjacent center voltages V1 301b and V0 302b.


In order to increase storage density in flash memory, flash memory has developed from single-level (SLC) cell flash memory to multi-level cell (MLC) flash memory so that two or more bits can be stored by each memory cell. As discussed below with reference to FIG. 3B, a MLC flash memory device is used to store multiple bits by using voltage ranges within the total voltage range of the memory cell to represent different bit-tuples. A MLC flash memory device is typically more error-prone than a SLC flash memory device created using the same manufacturing process because the effective voltage difference between the voltages used to store different data values is smaller for a MLC flash memory device. Moreover, due to any number of a combination of factors, such as electrical fluctuations, defects in the storage medium, operating conditions, device history, and/or write-read circuitry, a typical error includes a stored voltage level in a particular MLC being in a voltage range that is adjacent to the voltage range that would otherwise be representative of the correct storage of a particular bit-tuple. As discussed in greater detail below with reference to FIG. 3B, the impact of such errors can be reduced by gray-coding the data, such that adjacent voltage ranges represent single-bit changes between bit-tuples.



FIG. 3B is a simplified, prophetic diagram of voltage distributions 300b found in a multi-level flash memory cell (MLC) over time, in accordance with some embodiments. The voltage distributions 300b shown in FIG. 3B have been simplified for illustrative purposes. The cell voltage of a MLC approximately extends from a voltage, VSS, at the source terminal of a NMOS transistor to a voltage, VDD, at the drain terminal. As such, voltage distributions 300b extend between VSS and VDD.


Sequential voltage ranges 311, 312, 313, 314 between the source voltage VSS and drain voltages VDD are used to represent corresponding bit-tuples “11,” “01,” “00,” “10,” respectively. Each voltage range 311, 312, 313, 314 has a respective center voltage 311b, 312b, 313b, 314b. Each voltage range 311, 312, 313, 314 also has a respective voltage distribution 311a, 312a, 313a, 314a that may occur as a result of any number of a combination of factors, such as electrical fluctuations, defects in the storage medium, operating conditions, device history (e.g., number of program-erase (PE) cycles), and/or imperfect performance or design of write-read circuitry.


Ideally, during a write operation, the charge on the floating gate of the MLC would be set such that the resultant cell voltage is at the center of one of the ranges 311, 312, 313, 314 in order to write the corresponding bit-tuple to the MLC. Specifically, the resultant cell voltage would be set to one of V11 311b, V01 312b, V00 313b and V10 314b in order to write a corresponding one of the bit-tuples “11,” “01,” “00” and “10.” In reality, due to the factors mentioned above, the initial cell voltage may differ from the center voltage for the data written to the MLC.


Reading threshold voltages VRA, VRB and VRC are positioned between adjacent center voltages (e.g., positioned at or near the halfway point between adjacent center voltages) and, thus, define threshold voltages between the voltage ranges 311, 312, 313, 314. During a read operation, one of the reading threshold voltages VRA, VRB and VRC is applied to determine the cell voltage using a comparison process. However, due to the various factors discussed above, the actual cell voltage, and/or the cell voltage received when reading the MLC, may be different from the respective center voltage V11 311b, V01 312b, V00 313b or V10 314b corresponding to the data value written into the cell. For example, the actual cell voltage may be in an altogether different voltage range, strongly indicating that the MLC is storing a different bit-tuple than was written to the MLC. More commonly, the actual cell voltage may be close to one of the read comparison voltages, making it difficult to determine with certainty which of two adjacent bit-tuples is stored by the MLC.


Errors in cell voltage, and/or the cell voltage received when reading the MLC, can occur during write operations, read operations, or due to “drift” of the cell voltage between the time data is written to the MLC and the time a read operation is performed to read the data stored in the MLC. For ease of discussion, sometimes errors in cell voltage, and/or the cell voltage received when reading the MLC, are collectively called “cell voltage drift.”


One way to reduce the impact of a cell voltage drifting from one voltage range to an adjacent voltage range is to gray-code the bit-tuples. Gray-coding the bit-tuples includes constraining the assignment of bit-tuples such that a respective bit-tuple of a particular voltage range is different from a respective bit-tuple of an adjacent voltage range by only one bit. For example, as shown in FIG. 3B, the corresponding bit-tuples for adjacent ranges 301 and 302 are respectively “11” and “01,” the corresponding bit-tuples for adjacent ranges 302 and 303 are respectively “01” and “00,” and the corresponding bit-tuples for adjacent ranges 303 and 304 are respectively “00” and “10.” Using gray-coding, if the cell voltage drifts close to a read comparison voltage level, the error is typically limited to a single bit within the 2-bit bit-tuple.



FIGS. 4A-4C illustrate a flowchart representation of a method 400 of garbage collection for a storage medium in a storage system, in accordance with some embodiments. As noted above with respect to FIG. 1, since erasure of a storage medium is performed on a block basis, but in many embodiments, programming of the storage medium is performed on a smaller subunit of a block (e.g., on a page basis), pages with invalid data cannot be overwritten until the whole block containing those pages is erased. The storage system (e.g., data storage system 100, FIG. 1) uses garbage collection to reclaim portions of memory (e.g., storage medium 130, FIG. 1) that no longer contain valid data, which initiates performance of method 400.


At least in some implementations, method 400 is performed by a storage system (e.g., data storage system 100, FIG. 1) or one or more components of the storage system (e.g., memory controller 120 and/or storage medium 130, FIG. 1). In some embodiments, method 400 is governed by instructions that are stored in a non-transitory computer readable storage medium and that are executed by one or more processors of a device, such as the one or more processing units (CPUs) 122 of management module 121, shown in FIGS. 1 and 2.


A storage system (e.g., data storage system 100, FIG. 1) determines (402) a time parameter for a block (e.g., selectable portion of storage medium 131, FIG. 1) in a storage medium (e.g., storage medium 130, FIG. 1) in the storage system. In some implementations, a time parameter module (e.g., time parameter module 216, FIG. 2) is used to determine a time parameter for a block, as described above with respect to FIG. 2.


In some embodiments, the time parameter is (404) a dwell time, the dwell time being a time since a last program command to modify data stored in the block. In some implementations, the actual dwell time is the time between the last program command to modify data stored in the block and the next erase command to erase the block. In an active garbage collection scheme, in some embodiments, blocks remain programmed until they need to be erased to accommodate new host write commands. Soon after a block is erased by the garbage collection process, it is programmed by a host write command. Thus, the greater the dwell time for a block, the greater the time between program commands to modify data stored in the block. Dwell time has a significant impact on the error rate characteristics of a storage system (e.g., data storage system 100, FIG. 1). For example, if a system is operated in a lower dwell time region (e.g., less than 50 seconds), the error rate can be orders of magnitude higher than when the system is operated in a higher dwell time region (e.g., greater than 200 seconds). In addition, the effect of dwell time is more pronounced if the storage system is operating under high temperature.


In some embodiments, determining (406) the time parameter for the block includes determining a time when the block was last programmed. In some implementations, determining a time when the block was last programmed includes tagging the block with a time when the block was last programmed. In some implementations, each block in the system is time tagged with the time it was last programmed.


In some embodiments, the storage medium comprises (408) one or more non-volatile storage devices, such as flash memory devices. In some implementations, the non-volatile storage medium (e.g., storage medium 130, FIG. 1) is a single flash memory device, while in other implementations, the non-volatile storage medium includes a plurality of flash memory devices. In some implementations, the non-volatile storage medium (e.g., storage medium 130, FIG. 1) is NAND-type flash memory or NOR-type flash memory.


Next, in accordance with a determination that the time parameter for the block is greater than a first threshold time, the storage system enables (410) garbage collection of the block. In some embodiments, the first threshold time is a minimum dwell time. For example, if the first threshold time (e.g., minimum dwell time) is 200 seconds, the storage system only enables garbage collection of the block when the time parameter for the block (e.g., actual dwell time) is greater than 200 seconds. In some implementations, an enable module (e.g., enable module 226, FIG. 2) is used for enabling garbage collection of the block, as described above with respect to FIG. 2.


In some embodiments, in accordance with a determination that the time parameter for the block is greater than the first threshold time and that the block meets predefined staleness criteria, the storage system enables (412) garbage collection of the block. In some implementations, predefined staleness criteria include criteria regarding the level of staleness of the data in a block (e.g., time since last read or write in the block). For example, if the staleness criteria is defined as the highest staleness and the first threshold time (e.g., minimum dwell time) is 200 seconds, the storage system only enables garbage collection of the block when the time parameter for the block (e.g., actual dwell time) is greater than 200 seconds and the block has the highest level of staleness.


In some embodiments, the first threshold time is (414) determined in accordance with one or more characteristics of the block. In some implementations, the first threshold time (e.g., minimum dwell time) is determined by device characterization and may vary depending on one or more device characteristics (e.g., process technology, operating temperature, programming algorithm, etc.). In some implementations, a threshold time module (e.g., threshold time module 218, FIG. 2) is used to determine and/or adapt the first threshold time, as described above with respect to FIG. 2.


Optionally, the storage system adapts (416) the first threshold time based on one or more parameter values of the block. In some embodiments, the one or more parameter values of the block include the number of times the block has been programmed, memory cell wear-out, frequency of read scrub, dynamic read frequency, and/or usage frequency of secondary error recovery or other techniques for recovering from the block data that would otherwise have been lost. Alternatively, or in addition, in some embodiments, the one or more parameter values of the block include at least one parameter in the set consisting of an error count for a respective block, an error rate for the respective block, number of reads from the respective block, number of times the respective block has been programmed, number of times the respective block has been erased, a read scrub frequency for the respective block, a dynamic read frequency for the respective block, and a reading threshold voltage margin for the respective block, as discussed below with respect to operation 420. In some implementations, a threshold time module (e.g., threshold time module 218, FIG. 2) is used to determine and/or adapt the first threshold time, as described above with respect to FIG. 2.


Optionally, the storage system selects (418) a set of blocks from the storage medium. In some embodiments, the set of blocks are selected for “vacation” (e.g., a longer dwell time). Blocks on vacation are provided healing time for the de-trapping of charges in the oxide of the memory cells. This healing time helps to reduce the error rate and extends the overall life of the storage system. The number of blocks selected for vacation is selected such that it has negligible impact on usable over-provisioning. In some implementations, for example, the number of blocks on vacation ranges from 0.1% to 2% of the total number of blocks in the storage medium. In some implementations, a selection module (e.g., selection module 224, FIG. 2) is used to select the set of blocks from the storage medium, as described above with respect to FIG. 2.


As discussed below with reference to operations 428, 430, and 432, for purposes of selecting a current set of blocks for vacation, in some embodiments the storage system rotates through multiple sets of blocks in round robin fashion, putting one set of blocks on vacation at a time.


In some other embodiments, the storage system selects (420) the set of blocks (i.e., selects individual respective blocks to include in the set of blocks for vacation) in accordance with one or more parameter values, wherein the one or more parameter values include at least one parameter in the set consisting of an error count for a respective block, an error rate for the respective block, number of reads from the respective block, number of times the respective block has been programmed, number of times the respective block has been erased, a read scrub frequency for the respective block, a dynamic read frequency for the respective block, and a reading threshold voltage margin for the respective block. In some implementations, some blocks receive preferential vacation based on one or more parameter values. This helps to improve endurance for the blocks and to extend the life of the storage system. For example, in some implementations, blocks with a high error count are selected for vacation over blocks with a low error count. As another example, in some implementations, blocks with a high number of reads (e.g., blocks with “hot pages”) are selected for vacation over blocks with a low number of reads.


Next, the storage system determines (422) a second threshold time for the set of blocks. In some embodiments, the second threshold time is a vacation time, as described above. In some implementations, a threshold time module (e.g., threshold time module 218, FIG. 2) is used to determine and/or adapt the second threshold time, as described above with respect to FIG. 2.


In some embodiments, the second threshold time is greater than the first threshold time. For example, in some implementations, the first threshold time (e.g., minimum dwell time) is on the order of 200 seconds and the second threshold time (e.g., vacation time) is on the order of 20,000 seconds. In some implementations, the second threshold is long enough to provide healing time for the memory cells, which may be more or less than 20,000 seconds.


Next, for each block in the set of blocks, in accordance with a determination that the time parameter for the block is less than the determined second threshold time, the storage system disables (426) garbage collection of the block. As discussed above, in some embodiments, the second threshold time is a vacation time. For example, for a given block in the set of blocks, if the second threshold time (e.g., vacation time) is 20,000 seconds, the storage system disables garbage collection of the block when the time parameter for the block (e.g., actual dwell time) is less than 20,000 seconds. In some implementations, when a set of blocks is selected for vacation, garbage collection is disabled for the set of blocks during the vacation time. In some implementations, a disable module (e.g., disable module 228, FIG. 2) is used for disabling garbage collection of the block, as described above with respect to FIG. 2.


Optionally, in some embodiments, the storage medium includes (428) a plurality of sets of blocks. In some embodiments, the storage system suspends (430) garbage collection of a first set of blocks for the determined second threshold time. For example, if the storage medium includes four sets of blocks (e.g., set A, set B, set C, and set D) and the determined second threshold time (e.g., vacation time) is 20,000 seconds, the storage system suspends garbage collection of set A for 20,000 seconds. In some implementations, a vacation module (e.g., vacation module 230, FIG. 2) is used to suspend garbage collection of one or more blocks for the determined time, as described above with respect to FIG. 2.


Next, the storage system suspends (432), in succession, garbage collection of all other sets of blocks of the plurality of sets of blocks for the determined second threshold time before suspending garbage collection of the first set of blocks again. Using the example above where the storage medium includes four sets of blocks (e.g., set A, set B, set C, and set D), after the storage system suspends garbage collection of set A, the storage system suspends, in succession, garbage collection of set B, set C, and set D before suspending garbage collection of set A again. For example, if the determined second threshold time (e.g., vacation time) is 20,000 seconds, after the storage system suspends garbage collection of set A for 20,000 seconds, the storage system then suspends garbage collection of set B for 20,000 seconds, then suspends garbage collection of set C for 20,000 seconds, and then suspends garbage collection of set D for 20,000 seconds, before suspending garbage collection of set A again. In some implementations, a vacation module (e.g., vacation module 230, FIG. 2) is used to suspend garbage collection of one or more blocks for the determined time, as described above with respect to FIG. 2.


Optionally, in some embodiments, the storage medium adapts (434) the second threshold time based on one or more parameter values of the set of blocks, wherein the one or more parameter values include at least one parameter in the set consisting of an error count for the set of blocks, an error rate for the set of blocks, number of reads from the set of blocks, number of times the set of blocks has been programmed, number of times the set of blocks has been erased, a read scrub frequency for the set of blocks, a dynamic read frequency for the set of blocks, and a reading threshold voltage margin for the set of blocks. Optionally, a respective parameter of the one or more parameters includes an average of the respective parameter value, per block, across the set of blocks. Optionally, a respective parameter of the one or more parameters includes a worst case value of the respective parameter value across the set of blocks.


In some implementations, the second threshold time (e.g., vacation time) is adapted based on the one or more parameter values used to select a set of blocks for preferential vacation, as discussed above with respect to operation 420. For example, in some implementations, a set of blocks with a high error count receives a longer vacation than a set of blocks with a low error count. In some implementations, a threshold time module (e.g., threshold time module 218, FIG. 2) is used to determine and/or adapt the second threshold time, as described above with respect to FIG. 2.


Optionally, in some embodiments, for each block in the set of blocks, in accordance with a determination that the time parameter for the block is less than the determined second threshold time, the storage medium disables (436) write access to the block in accordance with host write commands. As discussed above, in some embodiments, the second threshold time is a vacation time. For example, for a given block in the set of blocks, if the second threshold time (e.g., vacation time) is 20,000 seconds, the storage system disables write access to the block in accordance with host write commands when the time parameter for the block (e.g., actual dwell time) is less than 20,000 seconds. In some implementations, when a set of blocks is selected for vacation, write access to the blocks (e.g., from host write commands) is disabled for the set of blocks during the vacation time. In some implementations, a disable module (e.g., disable module 228, FIG. 2) is used for disabling write access to the block, as described above with respect to FIG. 2.



FIG. 5 illustrates a flowchart representation of a method 500 of garbage collection for a storage medium in a storage system, in accordance with some embodiments. As noted above with respect to FIG. 1, since erasure of a storage medium is performed on a block basis, but in many embodiments programming of the storage medium is performed on a smaller subunit of a block (e.g., on a page basis), pages with invalid data cannot be overwritten until the whole block containing those pages is erased. The storage system (e.g., data storage system 100, FIG. 1) uses garbage collection to reclaim portions of memory (e.g., storage medium 130, FIG. 1) that no longer contain valid data, which initiates performance of method 500.


At least in some implementations, method 500 is performed by a storage system (e.g., data storage system 100, FIG. 1) or one or more components of the storage system (e.g., memory controller 120 and/or storage medium 130, FIG. 1). In some embodiments, method 500 is governed by instructions that are stored in a non-transitory computer readable storage medium and that are executed by one or more processors of a device, such as the one or more processing units (CPUs) 122 of management module 121, shown in FIGS. 1 and 2.


A storage system (e.g., data storage system 100, FIG. 1) identifies (502) a set of garbage collection eligible blocks, including determining (504) a time parameter for each unerased block in a set of blocks in a storage medium (e.g., storage medium 130, FIG. 1) in the storage system. In some implementations, a time parameter module (e.g., time parameter module 216, FIG. 2) is used to determine a time parameter for a block, as described above with respect to FIG. 2.


In some embodiments, the time parameter is a dwell time, the dwell time being a time since a last program command to modify data stored in the block, as discussed above with respect to operation 404.


In some embodiments, determining the time parameter for the block includes determining a time when the block was last programmed, as discussed above with respect to operation 406.


In some embodiments, the storage medium comprises (506) one or more non-volatile storage devices, such as flash memory devices. In some implementations, the non-volatile storage medium (e.g., storage medium 130, FIG. 1) is a single flash memory device, while in other implementations, the non-volatile storage medium includes a plurality of flash memory devices. In some implementations, the non-volatile storage medium (e.g., storage medium 130, FIG. 1) is NAND-type flash memory or NOR-type flash memory.


Next, the storage system further identifies (502) a set of garbage collection eligible blocks by identifying (508), in accordance with the time parameter for each unerased block in the set of blocks, the set of garbage collection eligible blocks. In some embodiments, the storage system identifies the set of garbage collection eligible blocks based on the time parameter for each unerased block in the set of blocks. As discussed above, in some embodiments, the time parameter is a dwell time and the storage system identifies the set of garbage collection eligible blocks based on the dwell time for each unerased block in the set of blocks. In some implementations, an identification module (e.g., identification module 222, FIG. 2) is used to identify a set of garbage collection eligible blocks, as described above with respect to FIG. 2.


In some embodiments, the set of blocks includes (510) a first set of blocks and a second set of blocks distinct from the first set of blocks, and the identifying includes identifying garbage collection eligible blocks from among the first set of blocks in accordance with a first threshold time and identifying garbage collection eligible blocks from among the second set of blocks in accordance with a second threshold time that is greater than the first threshold time. In some embodiments, the first threshold time is a minimum dwell time and the second threshold time is a vacation time, as described above. For example, if the first threshold time (e.g., minimum dwell time) is 200 seconds and the second threshold time (e.g., vacation time) is 20,000 seconds, the storage system identifies garbage collection eligible blocks from among the first set of blocks in accordance with the first threshold time (e.g., 200 seconds) and identifies garbage collection eligible blocks from among the second set of blocks in accordance with the second threshold time (e.g., 20,000 seconds). In some implementations, blocks from the first set of blocks are eligible for garbage collection when their time parameter (e.g., dwell time) is greater than the first threshold time (e.g., minimum dwell time) and blocks from the second set of blocks are eligible for garbage collection when their time parameter (e.g., dwell time) is greater than the second threshold time (e.g., vacation time). In some implementations, the blocks in the second set of blocks are on vacation, as described above with respect to operation 418.


Next, the storage system selects (512) a subset of the set of garbage collection eligible blocks for garbage collection in accordance with predefined staleness criteria. In some embodiments, the storage system identifies a staleness parameter (e.g., time since last read or write) for each unerased block in the set of blocks, and then selects the N blocks having the largest staleness parameters, where N is the target number of blocks to be garbage collected. For example, if N is equal to four, from the set of garbage collection eligible blocks identified in operation 502, the storage system selects the four blocks having the largest staleness parameters for garbage collection. In some implementations, a selection module (e.g., selection module 224, FIG. 2) is used to select the subset of the set of garbage collection eligible blocks for garbage collection in accordance with predefined staleness criteria, as described above with respect to FIG. 2.


In some implementations, with respect to any of the methods described above, the storage medium (e.g., storage medium 130, FIG. 1) is a single flash memory device, while in other implementations, the storage medium (e.g., storage medium 130, FIG. 1) includes a plurality of flash memory devices.


In some implementations, with respect to any of the methods described above, a storage system includes a storage medium (e.g., storage medium 130, FIG. 1), one or more processors (e.g., CPUs 122, FIGS. 1 and 2) and memory (e.g., memory 206, FIG. 2) storing one or more programs configured for execution by the one or more processors and configured to perform or control performance of any of the methods described above.


In some implementations, with respect to any of the methods described above, a device operable to perform garbage collection includes a storage medium interface (e.g., storage medium I/O 128, FIG. 1) for coupling the device to the storage medium (e.g., storage medium 130, FIG. 1) and one or more modules, including a memory management module (e.g., management module 121, FIGS. 1 and 2) that includes one or more processors (e.g., CPUs 122, FIGS. 1 and 2) and memory (e.g., memory 206, FIG. 2) storing one or more programs configured for execution by the one or more processors, the one or more modules coupled to the storage medium interface (e.g., storage medium I/O 128, FIG. 1) and configured to perform or control performance of any of the methods described above.


It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, which changing the meaning of the description, so long as all occurrences of the “first contact” are renamed consistently and all occurrences of the second contact are renamed consistently. The first contact and the second contact are both contacts, but they are not the same contact.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.


The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.

Claims
  • 1. A method of garbage collection for a storage medium in a storage system, the method comprising: determining a time parameter for a block in the storage medium;adapting a first threshold time based on one or more parameter values of the block;in accordance with a determination that the time parameter for the block is greater than the first threshold time, as adapted, enabling garbage collection of the block;selecting a first set of multiple blocks from the storage medium;determining a second threshold time for the first set of multiple blocks, wherein the second threshold time is distinct from the first threshold time; andfor each block in the first set of multiple blocks, in accordance with a determination that the time parameter for the block is less than the second threshold time, suspending garbage collection of the block for a remaining duration of the second threshold time.
  • 2. The method of claim 1, including: in accordance with a determination that the time parameter for the block is greater than the first threshold time and that the block meets predefined staleness criteria, enabling garbage collection of the block.
  • 3. The method of claim 1, wherein the time parameter is a dwell time, the dwell time being a time since a last program command to modify data stored in the block.
  • 4. The method of claim 1, wherein the first threshold time is determined in accordance with one or more characteristics of the block.
  • 5. The method of claim 1, wherein determining the time parameter for the block includes determining a time when the block was last programmed.
  • 6. A method of garbage collection for a storage medium in a storage system, comprising: selecting a first set of multiple blocks from the storage medium, wherein the storage system uses one or more parameter values to select blocks to include in the first set of multiple blocks;determining a threshold time for the first set of multiple blocks;for each block in the first set of multiple blocks, in accordance with a determination that a time parameter for the block is less than the determined threshold time, suspending garbage collection of the block for a remaining duration of the determined threshold time; andsuspending, in succession, garbage collection of each set of blocks, in two or more other sets of blocks in the storage medium, for a respective threshold time, before suspending garbage collection of the first set of blocks again.
  • 7. The method of claim 6, wherein the one or more parameter values include at least one parameter in the set consisting of an error count for a respective block, an error rate for the respective block, number of reads from the respective block, number of times the respective block has been programmed, number of times the respective block has been erased, a read scrub frequency for the respective block, a dynamic read frequency for the respective block, and a reading threshold voltage margin for the respective block.
  • 8. The method of claim 6, further comprising adapting the threshold time based on the one or more parameter values of the set of blocks, wherein the one or more parameter values include at least one parameter in the set consisting of an error count for the set of blocks, an error rate for the set of blocks, number of reads from the set of blocks, number of times the set of blocks has been programmed, number of times the set of blocks has been erased, a read scrub frequency for the set of blocks, a dynamic read frequency for the set of blocks, and a reading threshold voltage margin for the set of blocks.
  • 9. The method of claim 1, wherein the storage medium comprises one or more flash memory devices.
  • 10. A method of garbage collection for a storage medium in a storage system, the method comprising: determining a time parameter for each unerased block in a set of blocks in the storage medium, wherein the set of blocks includes a first set of multiple blocks and a second set of multiple blocks distinct from the first set of multiple blocks;identifying, in accordance with the time parameter for each unerased block in the set of blocks, garbage collection eligible blocks from among the first set of multiple blocks in accordance with a first threshold time, and identifying garbage collection eligible blocks from among the second set of multiple blocks in accordance with a second threshold time that is greater than the first threshold time; andselecting a subset of the set of garbage collection eligible blocks for garbage collection in accordance with predefined staleness criteria.
  • 11. The method of claim 10, wherein the storage medium comprises one or more flash memory devices.
  • 12. A device operable to perform garbage collection for a storage medium, the device comprising: a storage medium interface for coupling the device to the storage medium; andone or more modules, including a memory management module that includes one or more processors and memory storing one or more programs configured for execution by the one or more processors, the one or more modules coupled to the storage medium interface and configured to: determine a time parameter for each unerased block in a set of blocks in the storage medium, wherein the set of blocks includes a first set of multiple blocks and a second set of multiple blocks distinct from the first set of multiple blocks;identify, in accordance with the time parameter for each unerased block in the set of blocks, garbage collection eligible blocks from among the first set of multiple blocks in accordance with a first threshold time, and identify garbage collection eligible blocks from among the second set of multiple blocks in accordance with a second threshold time that is greater than the first threshold time; andselect a subset of the set of garbage collection eligible blocks for garbage collection in accordance with predefined staleness criteria.
  • 13. The device of claim 12, wherein the garbage collection eligible blocks from among the first set of blocks are identified in accordance with a determination that the time parameter for the garbage collection eligible blocks is greater than the first threshold time.
  • 14. The device of claim 12, wherein the time parameter is a dwell time, the dwell time being a time since a last program command to modify data stored in the block.
  • 15. The device of claim 12, wherein the first threshold time is determined in accordance with one or more characteristics of the first set of multiple blocks.
  • 16. The device of claim 12, wherein determining the time parameter for the block includes determining a time when the block was last programmed.
  • 17. A device operable to perform garbage collection for a storage medium, the device comprising: a storage medium interface for coupling the device to the storage medium; andone or more modules, including a memory management module that includes one or more processors and memory storing one or more programs configured for execution by the one or more processors, the one or more modules coupled to the storage medium interface and configured to:select a first set of multiple blocks from the storage medium, wherein the storage system uses one or more parameter values to select blocks to include in the first set of multiple blocks;determine a threshold time for the first set of multiple blocks;for each block in the first set of multiple blocks, in accordance with a determination that a time parameter for the block is less than the determined threshold time, suspend garbage collection of the block for a remaining duration of the determined threshold time; andsuspend, in succession, garbage collection of each set of blocks, in two or more other sets of blocks in the storage medium, for a respective threshold time, before suspending garbage collection of the first set of blocks again.
  • 18. The device of claim 17, wherein the one or more parameter values include at least one parameter in the set consisting of an error count for a respective block, an error rate for the respective block, number of reads from the respective block, number of times the respective block has been programmed, number of times the respective block has been erased, a read scrub frequency for the respective block, a dynamic read frequency for the respective block, and a reading threshold voltage margin for the respective block.
  • 19. The device of claim 17, wherein the one or more modules are further configured to adapt the threshold time based on one or more parameter values of the set of blocks, wherein the one or more parameter values include at least one parameter in the set consisting of an error count for the set of blocks, an error rate for the set of blocks, number of reads from the set of blocks, number of times the set of blocks has been programmed, number of times the set of blocks has been erased, a read scrub frequency for the set of blocks, a dynamic read frequency for the set of blocks, and a reading threshold voltage margin for the set of blocks.
  • 20. The device of claim 12, wherein the storage medium comprises one or more flash memory devices.
  • 21. A device operable to perform garbage collection for a storage medium, the device comprising: a storage medium interface for coupling the device to the storage medium; andone or more modules, including a memory management module that includes one or more processors and memory storing one or more programs configured for execution by the one or more processors, the one or more modules coupled to the storage medium interface and configured to: determine a time parameter for a block in the storage medium;adapt a first threshold time based on one or more parameter values of the block;in accordance with a determination that the time parameter for the block is greater than the first threshold time, as adapted, enable garbage collection of the block;select a first set of multiple blocks from the storage medium;determine a second threshold time for the first set of multiple blocks, wherein the second threshold time is distinct from the first threshold time; andfor each block in the first set of multiple blocks, in accordance with a determination that the time parameter for the block is less than the second threshold time, suspend garbage collection of the block for a remaining duration of the second threshold time.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/870,166, filed on Aug. 26, 2013, which is incorporated by reference herein.

US Referenced Citations (523)
Number Name Date Kind
4173737 Skerlos et al. Nov 1979 A
4888750 Kryder et al. Dec 1989 A
4916652 Schwarz et al. Apr 1990 A
5129089 Nielsen Jul 1992 A
5270979 Harari et al. Dec 1993 A
5329491 Brown et al. Jul 1994 A
5381528 Brunelle Jan 1995 A
5404485 Ban Apr 1995 A
5488702 Byers et al. Jan 1996 A
5519847 Fandrich et al. May 1996 A
5530705 Malone, Sr. Jun 1996 A
5537555 Landry et al. Jul 1996 A
5551003 Mattson et al. Aug 1996 A
5636342 Jeffries Jun 1997 A
5657332 Auclair et al. Aug 1997 A
5666114 Brodie et al. Sep 1997 A
5708849 Coke et al. Jan 1998 A
5765185 Lambrache et al. Jun 1998 A
5890193 Chevallier Mar 1999 A
5930188 Roohparvar Jul 1999 A
5936884 Hasbun et al. Aug 1999 A
5943692 Marberg et al. Aug 1999 A
5946714 Miyauchi Aug 1999 A
5982664 Watanabe Nov 1999 A
6000006 Bruce et al. Dec 1999 A
6006345 Berry, Jr. Dec 1999 A
6016560 Wada et al. Jan 2000 A
6018304 Bessios Jan 2000 A
6044472 Crohas Mar 2000 A
6070074 Perahia et al. May 2000 A
6104304 Clark et al. Aug 2000 A
6119250 Nishimura et al. Sep 2000 A
6138261 Wilcoxson et al. Oct 2000 A
6182264 Ott Jan 2001 B1
6192092 Dizon et al. Feb 2001 B1
6260120 Blumenau et al. Jul 2001 B1
6295592 Jeddeloh Sep 2001 B1
6311263 Barlow et al. Oct 2001 B1
6408394 Vander Kamp et al. Jun 2002 B1
6412042 Paterson et al. Jun 2002 B1
6442076 Roohparvar Aug 2002 B1
6449625 Wang Sep 2002 B1
6484224 Robins et al. Nov 2002 B1
6516437 Van Stralen et al. Feb 2003 B1
6564285 Mills et al. May 2003 B1
6647387 McKean et al. Nov 2003 B1
6678788 O'Connell Jan 2004 B1
6728879 Atkinson Apr 2004 B1
6757768 Potter et al. Jun 2004 B1
6775792 Ulrich et al. Aug 2004 B2
6810440 Micalizzi, Jr. et al. Oct 2004 B2
6836808 Bunce et al. Dec 2004 B2
6836815 Purcell et al. Dec 2004 B1
6842436 Moeller Jan 2005 B2
6865650 Morley et al. Mar 2005 B1
6871257 Conley et al. Mar 2005 B2
6895464 Chow et al. May 2005 B2
6934755 Saulpaugh et al. Aug 2005 B1
6966006 Pacheco et al. Nov 2005 B2
6978343 Ichiriu Dec 2005 B1
6980985 Amer-Yahia et al. Dec 2005 B1
6981205 Fukushima et al. Dec 2005 B2
6988171 Beardsley et al. Jan 2006 B2
7020017 Chen et al. Mar 2006 B2
7024514 Mukaida et al. Apr 2006 B2
7028165 Roth et al. Apr 2006 B2
7032123 Kane et al. Apr 2006 B2
7043505 Teague et al. May 2006 B1
7076598 Wang Jul 2006 B2
7100002 Shrader Aug 2006 B2
7102860 Wenzel Sep 2006 B2
7111293 Hersh et al. Sep 2006 B1
7126873 See et al. Oct 2006 B2
7133282 Sone Nov 2006 B2
7155579 Neils et al. Dec 2006 B1
7162678 Saliba Jan 2007 B2
7173852 Gorobets et al. Feb 2007 B2
7184446 Rashid et al. Feb 2007 B2
7212440 Gorobets May 2007 B2
7269755 Moshayedi et al. Sep 2007 B2
7275170 Suzuki Sep 2007 B2
7295479 Yoon et al. Nov 2007 B2
7328377 Lewis et al. Feb 2008 B1
7426633 Thompson et al. Sep 2008 B2
7486561 Mokhlesi Feb 2009 B2
7516292 Kimura et al. Apr 2009 B2
7523157 Aguilar, Jr. et al. Apr 2009 B2
7527466 Simmons May 2009 B2
7529466 Takahashi May 2009 B2
7533214 Aasheim et al. May 2009 B2
7546478 Kubo et al. Jun 2009 B2
7566987 Black et al. Jul 2009 B2
7571277 Mizushima Aug 2009 B2
7574554 Tanaka et al. Aug 2009 B2
7596643 Merry, Jr. et al. Sep 2009 B2
7669003 Sinclair et al. Feb 2010 B2
7681106 Jarrar et al. Mar 2010 B2
7685494 Varnica et al. Mar 2010 B1
7707481 Kirschner et al. Apr 2010 B2
7761655 Mizushima et al. Jul 2010 B2
7765454 Passint Jul 2010 B2
7774390 Shin Aug 2010 B2
7809836 Mihm et al. Oct 2010 B2
7840762 Oh et al. Nov 2010 B2
7870326 Shin et al. Jan 2011 B2
7890818 Kong et al. Feb 2011 B2
7913022 Baxter Mar 2011 B1
7925960 Ho et al. Apr 2011 B2
7934052 Prins et al. Apr 2011 B2
7945825 Cohen et al. May 2011 B2
7954041 Hong et al. May 2011 B2
7971112 Murata Jun 2011 B2
7974368 Shieh et al. Jul 2011 B2
7978516 Olbrich et al. Jul 2011 B2
7996642 Smith Aug 2011 B1
8006161 Lestable et al. Aug 2011 B2
8032724 Smith Oct 2011 B1
8041884 Chang Oct 2011 B2
8042011 Nicolaidis et al. Oct 2011 B2
8069390 Lin Nov 2011 B2
8190967 Hong et al. May 2012 B2
8250380 Guyot Aug 2012 B2
8254181 Hwang et al. Aug 2012 B2
8259506 Sommer et al. Sep 2012 B1
8261020 Krishnaprasad et al. Sep 2012 B2
8312349 Reche et al. Nov 2012 B2
8385117 Sakurada et al. Feb 2013 B2
8412985 Bowers et al. Apr 2013 B1
8429436 Fillingim et al. Apr 2013 B2
8438459 Cho et al. May 2013 B2
8453022 Katz May 2013 B2
8510499 Banerjee Aug 2013 B1
8531888 Chilappagari et al. Sep 2013 B2
8554984 Yano et al. Oct 2013 B2
8627117 Johnston Jan 2014 B2
8634248 Sprouse et al. Jan 2014 B1
8694854 Dar et al. Apr 2014 B1
8724789 Altberg et al. May 2014 B2
8775741 de la Iglesia Jul 2014 B1
8832384 de la Iglesia Sep 2014 B1
8874992 Desireddi et al. Oct 2014 B2
8885434 Kumar Nov 2014 B2
8898373 Kang et al. Nov 2014 B1
8909894 Singh et al. Dec 2014 B1
8910030 Goel Dec 2014 B2
8923066 Subramanian et al. Dec 2014 B1
9043517 Sprouse et al. May 2015 B1
9128690 Lotzenburger et al. Sep 2015 B2
9329789 Chu et al. May 2016 B1
20010026949 Ogawa et al. Oct 2001 A1
20010050824 Buch Dec 2001 A1
20020024846 Kawahara et al. Feb 2002 A1
20020032891 Yada et al. Mar 2002 A1
20020036515 Eldridge et al. Mar 2002 A1
20020083299 Van Huben et al. Jun 2002 A1
20020099904 Conley Jul 2002 A1
20020116651 Beckert et al. Aug 2002 A1
20020122334 Lee et al. Sep 2002 A1
20020152305 Jackson et al. Oct 2002 A1
20020162075 Talagala et al. Oct 2002 A1
20020165896 Kim Nov 2002 A1
20030041299 Kanazawa et al. Feb 2003 A1
20030043829 Rashid et al. Mar 2003 A1
20030079172 Yamagishi et al. Apr 2003 A1
20030088805 Majni et al. May 2003 A1
20030093628 Matter et al. May 2003 A1
20030163594 Aasheim et al. Aug 2003 A1
20030163629 Conley et al. Aug 2003 A1
20030188045 Jacobson Oct 2003 A1
20030189856 Cho et al. Oct 2003 A1
20030198100 Matsushita et al. Oct 2003 A1
20030204341 Guliani et al. Oct 2003 A1
20030212719 Yasuda et al. Nov 2003 A1
20030225961 Chow et al. Dec 2003 A1
20040024957 Lin et al. Feb 2004 A1
20040024963 Talagala et al. Feb 2004 A1
20040057575 Zhang et al. Mar 2004 A1
20040062157 Kawabe Apr 2004 A1
20040073829 Olarig Apr 2004 A1
20040085849 Myoung et al. May 2004 A1
20040114265 Talbert Jun 2004 A1
20040143710 Walmsley Jul 2004 A1
20040148561 Shen et al. Jul 2004 A1
20040153902 Machado et al. Aug 2004 A1
20040158775 Shibuya et al. Aug 2004 A1
20040167898 Margolus et al. Aug 2004 A1
20040181734 Saliba Sep 2004 A1
20040199714 Estakhri et al. Oct 2004 A1
20040210706 In et al. Oct 2004 A1
20040237018 Riley Nov 2004 A1
20050060456 Shrader et al. Mar 2005 A1
20050060501 Shrader Mar 2005 A1
20050073884 Gonzalez et al. Apr 2005 A1
20050108588 Yuan May 2005 A1
20050114587 Chou et al. May 2005 A1
20050138442 Keller, Jr. et al. Jun 2005 A1
20050144358 Conley et al. Jun 2005 A1
20050144361 Gonzalez et al. Jun 2005 A1
20050144367 Sinclair Jun 2005 A1
20050144516 Gonzalez et al. Jun 2005 A1
20050154825 Fair Jul 2005 A1
20050172065 Keays Aug 2005 A1
20050172207 Radke et al. Aug 2005 A1
20050193161 Lee et al. Sep 2005 A1
20050201148 Chen et al. Sep 2005 A1
20050210348 Totsuka Sep 2005 A1
20050231765 So et al. Oct 2005 A1
20050249013 Janzen et al. Nov 2005 A1
20050251617 Sinclair et al. Nov 2005 A1
20050257120 Gorobets et al. Nov 2005 A1
20050273560 Hulbert et al. Dec 2005 A1
20050281088 Ishidoshiro et al. Dec 2005 A1
20050289314 Adusumilli et al. Dec 2005 A1
20060010174 Nguyen et al. Jan 2006 A1
20060039196 Gorobets et al. Feb 2006 A1
20060039227 Lai et al. Feb 2006 A1
20060053246 Lee Mar 2006 A1
20060062054 Hamilton et al. Mar 2006 A1
20060069932 Oshikawa et al. Mar 2006 A1
20060085671 Majni et al. Apr 2006 A1
20060087893 Nishihara et al. Apr 2006 A1
20060103480 Moon et al. May 2006 A1
20060107181 Dave et al. May 2006 A1
20060136570 Pandya Jun 2006 A1
20060136655 Gorobets et al. Jun 2006 A1
20060136681 Jain et al. Jun 2006 A1
20060156177 Kottapalli et al. Jul 2006 A1
20060184738 Bridges et al. Aug 2006 A1
20060195650 Su et al. Aug 2006 A1
20060209592 Li et al. Sep 2006 A1
20060224841 Terai et al. Oct 2006 A1
20060244049 Yaoi et al. Nov 2006 A1
20060259528 Dussud et al. Nov 2006 A1
20060265568 Burton Nov 2006 A1
20060291301 Ziegelmayer Dec 2006 A1
20070011413 Nonaka et al. Jan 2007 A1
20070033376 Sinclair Feb 2007 A1
20070058446 Hwang et al. Mar 2007 A1
20070061597 Holtzman et al. Mar 2007 A1
20070076479 Kim et al. Apr 2007 A1
20070081408 Kwon et al. Apr 2007 A1
20070083697 Birrell et al. Apr 2007 A1
20070088716 Brumme et al. Apr 2007 A1
20070091677 Lasser et al. Apr 2007 A1
20070101096 Gorobets May 2007 A1
20070106679 Perrin et al. May 2007 A1
20070113019 Beukema et al. May 2007 A1
20070133312 Roohparvar Jun 2007 A1
20070147113 Mokhlesi et al. Jun 2007 A1
20070150790 Gross et al. Jun 2007 A1
20070156842 Vermeulen et al. Jul 2007 A1
20070157064 Falik et al. Jul 2007 A1
20070174579 Shin Jul 2007 A1
20070180188 Fujibayashi et al. Aug 2007 A1
20070180346 Murin Aug 2007 A1
20070191993 Wyatt Aug 2007 A1
20070201274 Yu et al. Aug 2007 A1
20070204128 Lee et al. Aug 2007 A1
20070208901 Purcell et al. Sep 2007 A1
20070234143 Kim Oct 2007 A1
20070245061 Harriman Oct 2007 A1
20070245099 Gray et al. Oct 2007 A1
20070263442 Cornwall et al. Nov 2007 A1
20070268754 Lee et al. Nov 2007 A1
20070277036 Chamberlain et al. Nov 2007 A1
20070279988 Nguyen Dec 2007 A1
20070291556 Kamei Dec 2007 A1
20070294496 Goss et al. Dec 2007 A1
20070300130 Gorobets Dec 2007 A1
20080013390 Zipprich-Rasch Jan 2008 A1
20080019182 Yanagidaira et al. Jan 2008 A1
20080022163 Tanaka et al. Jan 2008 A1
20080028275 Chen et al. Jan 2008 A1
20080043871 Latouche et al. Feb 2008 A1
20080052446 Lasser et al. Feb 2008 A1
20080052451 Pua et al. Feb 2008 A1
20080056005 Aritome Mar 2008 A1
20080059602 Matsuda et al. Mar 2008 A1
20080071971 Kim et al. Mar 2008 A1
20080077841 Gonzalez et al. Mar 2008 A1
20080077937 Shin et al. Mar 2008 A1
20080086677 Yang et al. Apr 2008 A1
20080112226 Mokhlesi May 2008 A1
20080141043 Flynn et al. Jun 2008 A1
20080144371 Yeh et al. Jun 2008 A1
20080147714 Breternitz et al. Jun 2008 A1
20080147964 Chow et al. Jun 2008 A1
20080147998 Jeong Jun 2008 A1
20080148124 Zhang et al. Jun 2008 A1
20080163030 Lee Jul 2008 A1
20080168191 Biran et al. Jul 2008 A1
20080168319 Lee et al. Jul 2008 A1
20080170460 Oh et al. Jul 2008 A1
20080180084 Dougherty et al. Jul 2008 A1
20080209282 Lee et al. Aug 2008 A1
20080229000 Kim Sep 2008 A1
20080229003 Mizushima et al. Sep 2008 A1
20080229176 Arnez et al. Sep 2008 A1
20080270680 Chang Oct 2008 A1
20080282128 Lee et al. Nov 2008 A1
20080285351 Shlick et al. Nov 2008 A1
20080313132 Hao et al. Dec 2008 A1
20080320110 Pathak Dec 2008 A1
20090003046 Nirschl et al. Jan 2009 A1
20090003058 Kang Jan 2009 A1
20090019216 Yamada et al. Jan 2009 A1
20090031083 Willis et al. Jan 2009 A1
20090037652 Yu et al. Feb 2009 A1
20090070608 Kobayashi Mar 2009 A1
20090116283 Ha et al. May 2009 A1
20090125671 Flynn et al. May 2009 A1
20090144598 Yoon et al. Jun 2009 A1
20090158288 Fulton Jun 2009 A1
20090168525 Olbrich et al. Jul 2009 A1
20090172258 Olbrich et al. Jul 2009 A1
20090172259 Prins et al. Jul 2009 A1
20090172260 Olbrich et al. Jul 2009 A1
20090172261 Prins et al. Jul 2009 A1
20090172262 Olbrich et al. Jul 2009 A1
20090172308 Prins et al. Jul 2009 A1
20090172335 Kulkarni et al. Jul 2009 A1
20090172499 Olbrich et al. Jul 2009 A1
20090193058 Reid Jul 2009 A1
20090204823 Giordano et al. Aug 2009 A1
20090207660 Hwang et al. Aug 2009 A1
20090213649 Takahashi et al. Aug 2009 A1
20090222708 Yamaga Sep 2009 A1
20090228761 Perlmutter et al. Sep 2009 A1
20090235128 Eun et al. Sep 2009 A1
20090249160 Gao et al. Oct 2009 A1
20090251962 Yun et al. Oct 2009 A1
20090268521 Ueno et al. Oct 2009 A1
20090292972 Seol et al. Nov 2009 A1
20090296466 Kim et al. Dec 2009 A1
20090296486 Kim et al. Dec 2009 A1
20090310422 Edahiro et al. Dec 2009 A1
20090319864 Shrader Dec 2009 A1
20100002506 Cho et al. Jan 2010 A1
20100008175 Sweere et al. Jan 2010 A1
20100011261 Cagno et al. Jan 2010 A1
20100020620 Kim et al. Jan 2010 A1
20100037012 Yano et al. Feb 2010 A1
20100054034 Furuta et al. Mar 2010 A1
20100061151 Miwa et al. Mar 2010 A1
20100091535 Sommer et al. Apr 2010 A1
20100103737 Park Apr 2010 A1
20100110798 Hoei et al. May 2010 A1
20100115206 de la Iglesia et al. May 2010 A1
20100118608 Song et al. May 2010 A1
20100138592 Cheon Jun 2010 A1
20100153616 Garratt Jun 2010 A1
20100161936 Royer et al. Jun 2010 A1
20100174959 No et al. Jul 2010 A1
20100185807 Meng et al. Jul 2010 A1
20100199027 Pucheral et al. Aug 2010 A1
20100199125 Reche Aug 2010 A1
20100199138 Rho Aug 2010 A1
20100202196 Lee et al. Aug 2010 A1
20100202239 Moshayedi et al. Aug 2010 A1
20100208521 Kim et al. Aug 2010 A1
20100257379 Wang et al. Oct 2010 A1
20100262889 Bains Oct 2010 A1
20100281207 Miller et al. Nov 2010 A1
20100281342 Chang et al. Nov 2010 A1
20100306222 Freedman et al. Dec 2010 A1
20100332858 Trantham et al. Dec 2010 A1
20100332863 Johnston Dec 2010 A1
20110010514 Benhase et al. Jan 2011 A1
20110022779 Lund et al. Jan 2011 A1
20110022819 Post et al. Jan 2011 A1
20110051513 Shen et al. Mar 2011 A1
20110066597 Mashtizadeh et al. Mar 2011 A1
20110066806 Chhugani et al. Mar 2011 A1
20110072207 Jin et al. Mar 2011 A1
20110072302 Sartore Mar 2011 A1
20110078407 Lewis Mar 2011 A1
20110078496 Jeddeloh Mar 2011 A1
20110083060 Sakurada et al. Apr 2011 A1
20110099460 Dusija et al. Apr 2011 A1
20110113281 Zhang et al. May 2011 A1
20110122691 Sprouse May 2011 A1
20110131444 Buch et al. Jun 2011 A1
20110138260 Savin Jun 2011 A1
20110173378 Filor et al. Jul 2011 A1
20110179249 Hsiao Jul 2011 A1
20110199825 Han et al. Aug 2011 A1
20110205823 Hemink et al. Aug 2011 A1
20110213920 Frost et al. Sep 2011 A1
20110222342 Yoon et al. Sep 2011 A1
20110225346 Goss et al. Sep 2011 A1
20110228601 Olbrich et al. Sep 2011 A1
20110231600 Tanaka et al. Sep 2011 A1
20110239077 Bal et al. Sep 2011 A1
20110264843 Haines et al. Oct 2011 A1
20110271040 Kamizono Nov 2011 A1
20110283119 Szu et al. Nov 2011 A1
20110289125 Guthery Nov 2011 A1
20110320733 Sanford et al. Dec 2011 A1
20120011393 Roberts et al. Jan 2012 A1
20120017053 Yang et al. Jan 2012 A1
20120023144 Rub Jan 2012 A1
20120026799 Lee Feb 2012 A1
20120054414 Tsai et al. Mar 2012 A1
20120063234 Shiga et al. Mar 2012 A1
20120072639 Goss et al. Mar 2012 A1
20120096217 Son et al. Apr 2012 A1
20120110250 Sabbag et al. May 2012 A1
20120117317 Sheffler May 2012 A1
20120117397 Kolvick et al. May 2012 A1
20120124273 Goss et al. May 2012 A1
20120131286 Faith et al. May 2012 A1
20120151124 Baek et al. Jun 2012 A1
20120151253 Horn Jun 2012 A1
20120151294 Yoo et al. Jun 2012 A1
20120173797 Shen Jul 2012 A1
20120173826 Takaku Jul 2012 A1
20120185750 Hayami Jul 2012 A1
20120195126 Roohparvar Aug 2012 A1
20120203804 Burka Aug 2012 A1
20120203951 Wood et al. Aug 2012 A1
20120210095 Nellans et al. Aug 2012 A1
20120216079 Fai et al. Aug 2012 A1
20120233391 Frost et al. Sep 2012 A1
20120236658 Byom et al. Sep 2012 A1
20120239858 Melik-Martirosian Sep 2012 A1
20120239868 Ryan et al. Sep 2012 A1
20120239976 Cometti et al. Sep 2012 A1
20120246204 Nalla Sep 2012 A1
20120259863 Bodwin et al. Oct 2012 A1
20120275466 Bhadra et al. Nov 2012 A1
20120278564 Goss et al. Nov 2012 A1
20120284574 Avila et al. Nov 2012 A1
20120284587 Yu et al. Nov 2012 A1
20120297122 Gorobets Nov 2012 A1
20130007073 Varma Jan 2013 A1
20130007343 Rub Jan 2013 A1
20130007381 Palmer Jan 2013 A1
20130007543 Goss et al. Jan 2013 A1
20130024735 Chung et al. Jan 2013 A1
20130031438 Hu et al. Jan 2013 A1
20130036418 Yadappanavar et al. Feb 2013 A1
20130038380 Cordero et al. Feb 2013 A1
20130047045 Hu et al. Feb 2013 A1
20130058145 Yu et al. Mar 2013 A1
20130070527 Sabbag et al. Mar 2013 A1
20130073784 Ng et al. Mar 2013 A1
20130073798 Kang et al. Mar 2013 A1
20130073924 D'Abreu et al. Mar 2013 A1
20130079942 Smola et al. Mar 2013 A1
20130086131 Hunt et al. Apr 2013 A1
20130086132 Hunt et al. Apr 2013 A1
20130094288 Patapoutian et al. Apr 2013 A1
20130103978 Akutsu Apr 2013 A1
20130110891 Ogasawara et al. May 2013 A1
20130111279 Jeon et al. May 2013 A1
20130111298 Seroff et al. May 2013 A1
20130117606 Anholt et al. May 2013 A1
20130121084 Jeon et al. May 2013 A1
20130124792 Melik-Martirosian et al. May 2013 A1
20130124888 Tanaka et al. May 2013 A1
20130128666 Avila et al. May 2013 A1
20130132647 Melik-Martirosian May 2013 A1
20130132652 Wood et al. May 2013 A1
20130159609 Haas Jun 2013 A1
20130176784 Cometti et al. Jul 2013 A1
20130179646 Okubo et al. Jul 2013 A1
20130191601 Peterson et al. Jul 2013 A1
20130194865 Bandic et al. Aug 2013 A1
20130194874 Mu et al. Aug 2013 A1
20130232289 Zhong et al. Sep 2013 A1
20130238576 Binkert et al. Sep 2013 A1
20130254498 Adachi et al. Sep 2013 A1
20130254507 Islam et al. Sep 2013 A1
20130258738 Barkon et al. Oct 2013 A1
20130265838 Li Oct 2013 A1
20130282955 Parker et al. Oct 2013 A1
20130290611 Biederman et al. Oct 2013 A1
20130297613 Yu Nov 2013 A1
20130301373 Tam Nov 2013 A1
20130304980 Nachimuthu et al. Nov 2013 A1
20130314988 Desireddi et al. Nov 2013 A1
20130343131 Wu et al. Dec 2013 A1
20130346672 Sengupta et al. Dec 2013 A1
20140013027 Jannyavula Venkata et al. Jan 2014 A1
20140013188 Wu et al. Jan 2014 A1
20140025864 Zhang et al. Jan 2014 A1
20140032890 Lee et al. Jan 2014 A1
20140063905 Ahn et al. Mar 2014 A1
20140067761 Chakrabarti et al. Mar 2014 A1
20140071761 Sharon et al. Mar 2014 A1
20140075133 Li et al. Mar 2014 A1
20140082310 Nakajima Mar 2014 A1
20140082456 Li et al. Mar 2014 A1
20140082459 Li et al. Mar 2014 A1
20140095775 Talagala et al. Apr 2014 A1
20140101389 Nellans et al. Apr 2014 A1
20140115238 Xi et al. Apr 2014 A1
20140122818 Hayasaka et al. May 2014 A1
20140122907 Johnston May 2014 A1
20140136762 Li et al. May 2014 A1
20140136883 Cohen May 2014 A1
20140136927 Li et al. May 2014 A1
20140143505 Sim et al. May 2014 A1
20140153333 Avila et al. Jun 2014 A1
20140157065 Ong Jun 2014 A1
20140173224 Fleischer et al. Jun 2014 A1
20140181458 Loh et al. Jun 2014 A1
20140201596 Baum et al. Jul 2014 A1
20140223084 Lee et al. Aug 2014 A1
20140244578 Winkelstraeter Aug 2014 A1
20140258755 Stenfort Sep 2014 A1
20140269090 Flynn et al. Sep 2014 A1
20140310494 Higgins et al. Oct 2014 A1
20140359044 Davis et al. Dec 2014 A1
20140359381 Takeuchi et al. Dec 2014 A1
20150023097 Khoueir et al. Jan 2015 A1
20150032967 Udayashankar et al. Jan 2015 A1
20150037624 Thompson et al. Feb 2015 A1
20150153799 Lucas et al. Jun 2015 A1
20150153802 Lucas et al. Jun 2015 A1
20150212943 Yang et al. Jul 2015 A1
20150268879 Chu Sep 2015 A1
20150286438 Simionescu et al. Oct 2015 A1
Foreign Referenced Citations (17)
Number Date Country
1 299 800 Apr 2003 EP
1465203 Oct 2004 EP
1 990 921 Nov 2008 EP
2 386 958 Nov 2011 EP
2 620 946 Jul 2013 EP
2002-532806 Oct 2002 JP
WO 2007036834 Apr 2007 WO
WO 2007080586 Jul 2007 WO
WO 2008075292 Jun 2008 WO
WO 2008121553 Oct 2008 WO
WO 2008121577 Oct 2008 WO
WO 2009028281 Mar 2009 WO
WO 2009032945 Mar 2009 WO
WO 2009058140 May 2009 WO
WO 2009084724 Jul 2009 WO
WO 2009134576 Nov 2009 WO
WO 2011024015 Mar 2011 WO
Non-Patent Literature Citations (64)
Entry
Barr, Introduction to Watchdog Timers, Oct. 2001, 3 pgs.
Canim, Buffered Bloom ilters on Solid State Storage, ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs.
Kang, A Multi-Channel Architecture for High-Performance NAND Flash-Based Storage System, J. Syst. Archit., 53, 9, Sep. 2007, 15 pgs.
Kim, A Space-Efficient Flash Translation Layer for CompactFlash Systems, May 2002, 10 pgs.
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 27-30, 2011, article, 6 pgs.
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs.
McLean, Information Technology—AT Attachment with Packet Interface Extension, Aug. 19, 1998, 339 pgs.
Park, A High Performance Controller for NAND Flash-Based Solid State Disk (NSSD), Feb. 12-16, 2006, 4 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88133, Mar. 19, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88136, Mar. 19, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88146, Feb. 26, 2009, 10 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88154, Feb. 27, 2009, 8 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88164, Feb. 13, 2009, 6 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88206, Feb. 18, 2009, 8 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88217, Feb. 19, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88229, Feb. 13, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88232, Feb. 19, 2009, 8 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88236, Feb. 19, 2009, 7 pgs.
Pliant Technology, International Search Report / Written Opinion, PCT/US2011/028637, Oct. 27, 2011, 11 pgs.
Pliant Technology, Supplementary ESR, 08866997.3, Feb. 23, 2012, 6 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042764, Aug. 31, 2012, 12 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042771, Mar. 4, 2013, 14 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042775, Sep. 26, 2012, 8 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059447, Jun. 6, 2013, 12 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059453, Jun. 6, 2013, 12 pgs.
Sandisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059459, Feb. 14, 2013, 9 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065914, May 23, 2013, 7 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065916, Apr. 5, 2013, 7 pgs.
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065919, Jun. 17, 2013, 8 pgs.
SanDisk Enterprise IP LLC, Notification of the Decision to Grant a Patent Right for Patent for Invention, CN 200880127623.8, Jul. 4, 2013, 1 pg.
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Apr. 18, 2012, 12 pgs.
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Dec. 31, 2012, 9 pgs.
SanDisk Enterprise IP LLC, Office Action, JP 2010-540863, Jul. 24, 2012, 3 pgs.
Watchdog Timer and Power Savin Modes, Microchip Technology Inc., 2005, 14 pgs.
Zeidman, 1999 Verilog Designer's Library, 9 pgs.
International Search Report and Written Opinion dated Jul. 25, 2014, received in International Patent Application No. PCT/US2014/029453, which corresponds to U.S. Appl. No. 13/963,444, 9 pages (Frayer).
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074772, which corresponds to U.S. Appl. No. 13/831,218, 10 pages (George).
International Search Report and Written Opinion dated Mar. 24, 2014, received in International Patent Application No. PCT/US2013/074777, which corresponds to U.S. Appl. No. 13/831,308, 10 pages (George).
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074779, which corresponds to U.S. Appl. No. 13/831,374, 8 pages (George).
Ashkenazi et al., “Platform independent overall security architecture in multi-processor system-on-chip integrated circuits for use in mobile phones and hanheld devices,” ScienceDirect, Computers and Electrical Engineering 33 (2007), 18 pages.
Lee et al., “A Semi-Preemptive Garbage Collector for Solid State Drives,” Apr. 2011, IEEE pp. 12-21.
Office Action dated Feb. 17, 2015 received in Chinese Patent Application No. 201210334987.1, which corresponds to U.S. Appl. No. 12/082,207, 9 pages (Prins).
International Search Report and Written Opinion dated May 4, 2015, received in International Patent Application No. PCT/US2014/065987, which corresponds to U.S. Appl. No. 14/135,400, 12 pages (George).
International Search Report and Written Opinion dated Mar. 17, 2015, received in International Patent Application No. PCT/US2014/067467, which corresponds to U.S. Appl. 14/135,420, 13 pages (Lucas).
International Search Report and Written Opinion dated Apr. 20, 2015, received in International Patent Application No. PCT/US2014/063949, which corresponds to U.S. Appl. No. 14/135,433, 21 pages (Delpapa).
International Search Report and Written Opinion dated Mar. 9, 2015, received in International Patent Application No. PCT/US2014/059747, which corresponds to U.S. Appl. No. 14/137,440, 9 pages (Fitzpatrick).
Bayer, “Prefix B-Trees”, ip.com Journal, ip.com Inc., West Henrietta, NY, Mar. 30, 2007, 29 pages.
Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, IBM Research Report, Jun. 23, 2009, http://domino.research.ibm.com/library/cyberdig.nsf/papers/40B2C45876D0D747852575E100620CE7/$File/rc24815.pdf, 13 pages.
Oracle, “Oracle9i: Database Concepts”, Jul. 2001, http://docs.oracle.com/cd/A91202—01/901—doc/server.901/a88856.pdf, 49 pages.
International Search Report and Written Opinion dated Jun. 8, 2015, received in International Patent Application No. PCT/US2015/018252, which corresponds to U.S. Appl. No. 14/339,072, 9 pages (Busch).
International Search Report and Written Opinion dated Jun. 2, 2015, received in International Patent Application No. PCT/US2015/018255, which corresponds to U.S. Appl. No. 14/336,967, 14 pages (Chander).
International Search Report and Written Opinion dated Jun. 30, 2015, received in International Patent Application No. PCT/US2015/023927, which corresponds to U.S. Appl. No. 14/454,687, 11 pages (Kadayam).
International Search Report and Written Opinion dated Jul. 23, 2015, received in International Patent Application No. PCT/US2015/030850, which corresponds to U.S. Appl. No. 14/298,843, 12 pages (Ellis).
Office Action dated Dec. 8, 2014, received in Chinese Patent Application No. 201180021660.2, which corresponds to U.S. Appl. No. 12/726,200, 7 pages. (Olbrich).
Office Action dated Jul. 31, 2015, received in Chinese Patent Application No. 201180021660.2, which corresponds to U.S. Appl. No. 12/726,200, 9 pages (Olbrich).
International Search Report and Written Opinion dated Sep. 14, 2015, received in International Patent Application No. PCT/US2015/036807, which corresponds to U.S. Appl. No. 14/311,152, 9 pages (Higgins).
Oestreicher et al., “Object Lifetimes in Java Card,” 1999, USENIX, 10 pages.
Gasior, “Gigabyte's i-Ram storage device, Ram disk without the fuss,” The Tech Report, p. 1, Jan. 25, 2006, 5 pages.
IBM Research—Zurich, “The Fundamental Limnit of Flash Random Write Performance: Understanding, Analysis and Performance Modeling,” Mar. 31, 2010, pp. 1-15.
International Preliminary Report on Patentability dated May 24, 2016, received in International Patent Application No. PCT/US2014/065987, which corresponds to U.S. Appl. No. 14/135,400, 9 pages (George).
Invitation to Pay Additional Fees dated Feb. 13, 2015, received in International Patent Application No. PCT/US2014/063949, which corresponds to U.S. Appl. No. 14/135,433, 6 pages. (Deipapa).
International Search Report and Written Opinion dated Jan. 21, 2015, received in International Application No. PCT/US2014/059748, which corresponds to U.S. Appl. No. 14/137,511, 13 pages (Dancho).
International Search Report and Written Opinion dated Feb. 18, 2015, received in International Application No. PCT/US2014/066921, which corresponds to U.S Appl. No. 14/135,260, 13 pages. (Fitzpatrick).
Office Action dated Apr. 25, 2016, received in Chinese Patent Application No. 201280066282.4, which corresponds to U.S. Appl. No. 13/602,047, 8 pages (Tai).
Provisional Applications (1)
Number Date Country
61870166 Aug 2013 US