The invention relates generally to a high intensity discharge (HID) lamp and HID ballast tester particularly for standard metal halide ballasts of 175–400 W, pulse start metal halide ballasts of 50–450 W and high pressure sodium ballasts (HPS) of 50–400 W. The HID ballast and HID lamp tester continuously monitor the status of the HID lighting system of the ballast and HID lamp and provide a visual, continuous indication of the operating condition of the HID ballast and HID lamp. When the LED of the tester flashes when the lamp is out, the HID lamp has failed. When the LED of the tester does not flash when the lamp is out, the ballast or igniter or both have failed.
High intensity discharge (HID) lamps are used in many applications because of their long life and high efficiency. Principal types of HID lamps are high pressure sodium (HPS), pulse start metal halide (PSMH), and mercury vapor lamps.
Mercury vapor, metal halide, and HPS lamps all operate similarly during stabilized lamp operations. The visible light output results from the ionization of gases confined within an envelope and which must be broken down before there is any flow of ionization current. Accordingly, a high open circuit voltage must be applied to an HID lamp for igniting. This voltage is substantially higher than the operating voltage and the available line voltage.
HID lamps also exhibit negative resistance. When operating, their resistance decreases with increase in the applied voltage. As a result, such lamps require an impedance means in their power supply to limit the alternating current flow to a predetermined value.
Because of the high starting or igniting voltage requirement and the negative resistance characteristic, HID lamps are provided with igniting and operating circuits, which provide a relatively high open circuit voltage and impedance means for current limitations. A ballast between the power supply and lamp typically serves as its impedance means in igniting and operating circuits for HID lamps. For HID lamps such as mercury vapor lamps, igniting voltages can be two times the operating voltage. The igniting voltage is generated by the ballast secondary coil winding. For high pressure sodium (HPS) lamps, the required voltages can be more than ten times the operating voltages and more complex igniting mechanisms are employed.
The ballast system also typically provides for certain requirements when electronic igniters are used in conjunction with the HID lamps. For example, electronic igniters used in conjunction with high pressure sodium (HPS) ballast coils produce a high voltage pulse to start the HPS lamp. These electronic igniters work by sensing whether the lamp is burning or not. If the lamp is not burning, the igniter continuously supplies starting pulses to the lamp, regardless of whether the lamp is not burning because of lamp failure, absence of a lamp in the lamp socket, or by the lamp “cycling off.”
Lamp cycling is a well-known phenomenon in which a lamp nearing the end of its life will light, turn on for some time, go out, relight, and repeat this cycle time after time until the lamp is replaced or the lamp will fail to start at all. In an HPS lamp, as the HPS lamp nears the end of its life, its lamp operating voltage gets so high that the ballast will no longer sustain operation, and the lamp cycling condition manifests itself.
From the foregoing, it is clear that certain problems can arise in the operation of HID lamps and associated ballasts. In certain situations, e.g., when a lamp is cycling, failed or is missing, the igniter in the lamp's HID circuit continues to operate. Such operation shortens igniter and ballast life due to the presence of continuous high voltage pulses that inflict unusual, extended stress on the lighting system. The result of this stress on the ballast transformer may result in burning or smoking, damaged HID lamp fixtures, and wiring. Cycling lamps can be also avoid replacement by being “on” when inspected and thus cause future maintenance problems.
High intensity discharge (HID) lamps are used in roadway lighting, manufacturing installations with high/inaccessible ceilings, military installations, aircraft hangars, parking lots, tennis courts, athletic arenas and the like. Replacement of a failed lamp installation can be time-consuming and require specialized access equipment not always immediately available. Maintenance and operational inspections can be infrequent. Frequently, replacement of the lamp of a failed lamp installation is the first step. If the lamp is not the cause of the lamp outage, the cause can be a failed igniter or failed ballast or both. The cause may not be determined until the failed element is replaced and operating power is applied.
The ability to make an operating/problem diagnosis from the ground without access to the lamp installation overhead is an advantage. To determine the cause of the failed lamp installation to order the requisite replacement components and to schedule the repair in a manner that minimizes disruption to the facility where the HID lamp is located is a further advantage provided by the instant invention in the maintenance and repair of failed HID lamp installations.
In the prior art, U.S. Pat. No. 4,318,031 teaches a visual monitor including a single light indicator for HID lamps not needing a starter and a visual monitor including two light indicators for an HID lamp operating in conjunction with the starter. When the lamp is out, the presence or non-presence of an ignited first light indicator indicates lamp failure or ballast failure, respectively. The blinking or non-blinking of the second light indicator indicates whether or not the starter is producing satisfactory starting pulses. Power source is 60 Hz line voltage.
The visual monitor of U.S. Pat. No. 4,318,031 for an HID lamp and ballast includes a second indicator light circuit connected to the starter having a storage capacitor, a diode connected to said capacitor and conductive at a predetermined voltage and an indicator light connected to said capacitor, wherein when the lamp is not lit, the operating starter producing pulses of short duration of predetermined amplitude causes conduction of said diode and storage on said capacitor. A plurality of pulses causes capacitor discharge through said indicator light to cause periodic blinking thereof, the absence of periodic blinking when the lamp is not lit indicating a starter failure.
The visual monitor of U.S. Pat. No. 4,318,031 for a light fixture includes a lamp and a ballast and a starter, said monitor comprising a first indicator light circuit connected in parallel with the lamp and including a first indicator light and the second indicator light connected to the starter wherein absence of ignition of the first indicator light with absence of the lamp being lit indicates ballast failure.
Accordingly, in the prior art it is known to provide visual indicators connected to an HID lamp's ballast and starter to indicate which of the two components of the HID lamp's circuitry, either the ballast or the starter, has failed when the monitored lamp is extinguished. However, the visual device of the instant invention permits rapid identification of failed, broken or missing HID lamps in virtually all applications using HID (high pressure sodium and metal halide) lamps and ballasts equipped with pulse type igniters. A flashing LED signifies a failed lamp, whereas a non-flashing LED signifies a failed ballast or igniter or both.
This invention relates to a high intensity discharge (HID) ballast and lamp tester, which provides a flashing signal via a light emitting diode (LED) to indicate ballast or lamp failure. The invented tester connects to the output side of the ballast and does not require a specific input voltage. The tester continuously monitors the status of the HID lighting system and provides a visual indicator for troubleshooting purposes. The HID ballast and lamp tester utilizes the voltage difference between the open circuit voltage and the output voltage of the ballast to trigger visual indication of the open circuit voltage when the lamp has failed and failure of the ballast or igniter when no visual indication is provided. The ballast and lamp tester comprise four basis components: (a) an alternating current voltage divider resistor load, (b) a direct current bridge rectifier circuit to provide a regulated direct current voltage to components of the ballast and lamp tester, (c) a trigger circuit comprising a diac bi-directional silicon switch which is triggered when its breakover voltage is exceeded, and (d) a display circuit comprising a light emitting diode (LED) which emits light when triggered by a voltage output from the trigger circuit comprising a diac.
In operation, upon application of an activating alternating current supplied from the output side of the ballast, the voltage divider current and the input leads of the direct current rectifier circuit comprise a rectifier bridge of four rectifier diodes and filter capacitor C1. The DC voltage across C1 comprises a regulated voltage level basis the current limiting resistor which causes the trigger circuit diac to conduct to activate the display circuit LED upon failure of the lamp to illuminate, based on the voltage differences between the resulting open circuit voltage and the operating voltage of the ballast when the lamp is illuminated.
In the event of a failed, broken or missing HID lamp, voltages present at the input leads of the ballast and lamp tester are reduced by dropping and load resistors and are imposed upon the direct current rectifier circuit. The trigger circuit causes the display circuit to be activated to cause the LED to flash, indicating a failed, broken or missing lamp. If the lamp is out and the LED fails to flash, the failure of the LED to flash indicates the ballast or igniter has failed or both the ballast and igniter have failed.
In the instant invention, the first embodiment (
Referring to
During this start cycle, a small fraction of this open circuit voltage is introduced by the voltage divider circuit across the input to the BRI, the output of the BR1 serving to store a DC voltage in capacitor C1. As the relatively high amplitude open circuit of the ballast continues, the output of the BR1 continues to provide a DC voltage capacitor C1 until the stored voltage level of capacitor C1 reaches the breakdown voltage of 32 volt diac. At this level, the 32 volt diac switch conducts. The LED momentarily flashes to indicate the relatively high amplitude open circuit voltage of the ballast present. The process continues, the LED continuing to flash to indicate the presence of the high amplitude open circuit voltage of the ballast, thus indicating a lamp failure and an operating ballast.
In operation of the first embodiment (
During normal fixture operation, voltages present at taps X1 and X2 are seen by rectifier bridge BR1, consisting of four rectifier diodes and filter capacitor C1 and are insufficient to overcome the breakdown voltage of a 32 volt diac bi-directional silicon switch, preventing illumination of light emitting diode (LED) at terminals J3 and J4. The ballast open circuit voltage is measured through voltage divider consisting of R1 and R2.
In the event of a failed, broken or missing lamp, voltages present at taps X1 and X2 are appropriately reduced by dropping resistor R1 and load resistor R2 and imposed upon rectifier bridge BR1 and filter capacitor C1. Under failed lamp conditions, the ballast open circuit voltage rises across these components to a level sufficient to force 32 volt diac into conduction, discharging the voltage stored in capacitor C1 across the LED via the diac and current limiting resistor R3. During this process, capacitor C1 discharges to a point where the diac returns to a non-conductive state as the current flow to the LED falls below the diac's ability to remain in conduction, or in holding current condition. The LED is briefly extinguished while capacitor C1 again charges to a level sufficient to again force the diac to conduction.
The wiring diagram in
In the instant invention, the second embodiment (
The wiring diagram in
The wiring diagram in
In operation of the second embodiment, as illustrated in
During normal operation with igniter start type lamps and ballasts, voltages present at tap X3 and either tap X1a or X1b (based on fixture type and wattage) are seen by rectifier bridge BR1 (consisting of four rectifier diodes) and filter capacitor C1, and are insufficient to overcome the breakdown voltage of a 32 volt diac bi-directional silicon switch, preventing illumination of the light emitting diode (LED) at terminals J4 and J5.
Lamp wattages and types can be selected by selection of the proper voltage divider network consisting of series resistors R1 and R2 and load resistor R3.
In operation of the second embodiment of the present invention with igniter start type lamps and ballasts, in the event of failed, broken or missing lamp, voltages present at tap X3 and either tap X1a or X1b are appropriately reduced by resistor R1 or R2 and load resistor R3 and imposed upon rectifier bridge BR1 and filter capacitor C1. During proper igniter operation, the voltage across C1 rises to a level sufficient to force 32 volt diac into conduction, discharging the voltage stored in C1 across the LED via the diac and current limiting resistor R4. During this process, capacitor C1 discharges to a point where the diac returns to a non-conductive state, as the current flow to the LED falls below the diac's ability to remain in conduction, or holding current condition. The LED is briefly extinguished while capacitor C1 again charges to a level sufficient to again force the diac into conduction. This repetitive process causes the LED to flash or strobe, indicating a failed, broken or missing lamp.
Exemplary components of the first embodiment for a non-igniter start of lamps and ballasts of the instant invention are:
Exemplary components of the second embodiment for igniter start type lamps and ballasts of the instant invention are:
In further detail, operation of the instant invention to test operation of an HID ballast and HID lamp is by operating circuitry characteristics of the HID ballast. Typically, the operating output voltage of any HID ballast is at least one-half its open circuit voltage of a charging capacitor or igniter.
The instant invention operating circuit detects and utilizes the voltage difference between the relatively high amplitude open circuit voltage of the ballast and accompanying igniter, when used, and the lower operating voltage of the HID lamp. The voltage difference between the open circuit voltage of the ballast is utilized to initiate the breakdown voltage of the 32 volt diac bi-directional silicon switch to cause the illumination of its light emitting diode (LED).
Referring to
Again, as in the start cycle for the ballast for a non-igniter start, the start cycle for an igniter start lamp and ballast requires voltages to be present at tap X3 and either tap X1a or X1b. A small fraction of the open circuit voltage is introduced across the input to the BR1, the output of the BR1 serving to store a DC voltage in capacitor C1. As the relatively high amplitude open circuit of the ballast continues, the output of the BR1 continues to provide a DC voltage to capacitor C1 until the stored voltage level of capacitor C1 reaches the breakdown voltage of 32 volt diac. At this level, the 32 volt diac conducts. The LED momentarily flashes to indicate the relatively high amplitude of the open circuit voltage present of the ballast. The process continues, the LED continuing to flash to indicate the presence of the high amplitude open circuit voltage of the ballast, thus indicating a lamp failure and an operating ballast in conjunction with an operating igniter. If the lamp is out and the LED is not flashing, the failure of the lamp to illuminate could be caused by failure of the ballast or failure of the igniter or by failure of both the ballast and the igniter.
While particular embodiments of the invention have been shown and described, it will be understood that the invention is not limited thereto, as many modifications may be made and will become apparent to those skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
3771014 | Paget | Nov 1973 | A |
4318031 | Lonseth et al. | Mar 1982 | A |
5321338 | Nuckolls et al. | Jun 1994 | A |
5323116 | Atria | Jun 1994 | A |
6127782 | Flory et al. | Oct 2000 | A |
6429597 | Flory et al. | Aug 2002 | B1 |