The invention relates to a mounting system for marine windshields and method of manufacture, and more specifically to a hidden mounting system utilizes an interlocking pair of extrusions, which are adjustable and separable.
Mounting, trimming or finishing the edges of marine windshields has become more complex over the years as the windshield shapes have progressed from simple rectangular panes to complexly curved and obliquely oriented windshields, some of which are segmented to allow access to a forward seating area.
The most common approach currently in use is to employ a metal extrusion which is stretch formed on a die set to the curved shape of the edge of the windshield glass to be mounted. Usually the mounting and edge trimming extrusions are formed from aluminum and often have a windshield receiving longitudinally extending channel. A gasket, such as a vinyl or thermoplastic gasket, is mounted between the windshield channel in the extrusion and the glass so as to seal and cushion the windshield edge assembly.
Typical marine windshield mounting extrusions that extend along the bottom edge of the windshield for mounting the windshield to the deck are the following patented mounting assemblies, as are set forth in U.S. Pat. Nos. 6,800,160; 6,647,914; 5,601,050; 5,269,250; 4,815,410; 4,750,449; 3,810,267; 3,654,648; 3,021,535 and 3,016,548.
Accordingly, it is an object of the present invention to provide a windshield mounting system and method of manufacturing and attaching the same, which is well suited for use as a mounting assembly for curved boat windshields.
Another object of the present invention is to provide a windshield mounting system in which can be interconnected together during stretch forming of the windshield mounting system into a curved configuration and separable for suitable assembly and mounting on a marine vessel deck.
Another object of the present invention is to provide a windshield mounting system having improved aesthetic value.
A further object is to provide a windshield mounting system where mounting by boat manufactures is made easier.
Still a further object of the present invention is to provide a windshield mounting assembly that can be adjustable, fore or aft as may be required after the marine vessel has been in service for a period.
The hidden marine windshield mounting system and method of the present invention has other objects and features of advantage which will become apparent from and are set forth in more detail in, the accompanying drawings and following details.
The hidden marine windshield mounting system and method of the present invention is designed to be stretch or die formed so as to fit along the frontal area of a marine vessel deck, and comprises briefly, an elongated base member, longitudinally extending along the front and somewhat along the sides of the vessel deck and including a windshield mounting rail. The windshield mounting rail includes an elongated windshield glass adhesion area. The windshield assembly usually includes a longitudinally extending top windshield edge receiving structure applied to complete the windshield assembly. These windshield structural members are typically made using suitable aluminum alloy extrusions.
The base member is fastened to the curved deck and a windshield mounting rail longitudinally inserted into the base member. The base member has an elongated V-shaped profile which is tipped onto one element of it's shape, where this lower element is fasten to the deck and where the top overhanging element includes a downward protruding lip along and under its upper edge. The windshield mounting rail profile has a lower wedge shaped element to fit within the base member. The lower protruding lip engages a recess near the mid section of the windshield mounting rail, to lockably engage the windshield mounting rail within the first base profile. The windshield mounting rail includes as an integral part of the member, a windshield receiving flange, vertically appended to the wedge shaped lower element.
The two base members of the present invention will allow for adjustment of the windshield sections towards the center of the boat when the system is installed or in use. This is particularly required where there is an access door through the center area of the windshield assembly to the front area of the boat, as is common in many modern boat designs. This type of boat design compromises the boat's structure and often causes the boat to settle, or to cause “shoe boxing” after time. The present invention can be readily adjusted towards center, as may be required to alleviate this problem.
Also, the area where the windshield system is installed on certain boat designs, a step in the deck, or top of the hull area may be desirable. This step would be below the glass and would be added to allow for slight inconsistencies in the deck or hull and or the glass, and gives a cleaner visual line at the bottom of the glass.
In a second aspect of the present invention, the base member and the windshield mounting rail are cooperatively formed by first snapping the members together and then stretch forming them as a unit. The extrusions shape of the first and the windshield mounting rail and extrusions area thickness as well as the stretch forming dies used in the stretch forming process hold the extrusions in cooperative engagement, while applying a concerted surface pressure during stretch forming, this allows the base member and the windshield mounting rail to be separated from one another after the stretch forming.
As well, these mating mounting extrusions may be of different aluminum alloys to assist in the forming and subsequent correspondence of the two extrusion elements. As an example the base member can be a 6063 T1 extrusion while the windshield mounting rail can be a 6063 T5 extrusion.
The profile configuration of the two base elements being a wide point to small point of a wedge shape, inherently allows control of deformation during the forming process and provides an adjustable control surface with tight tolerance when cooperatively formed together and when matching of replacement parts.
As well, it has been found that the profile design of both the base member and the windshield mounting rail is inherently adaptive to the process of extruding of the longitudinal elements.
Also, it is intended that the base member and the windshield mounting rail be coated by anodizing or other applied coating to improve durability as well as the releaseability from one another. Releaseability is required after the stretch forming process for completion of the windshield manufacturing process and when mounting the system on a marine vessel deck, and again for purposes of replacing, or adjusting the windshield assembly after the system has been in service on the marine vessel.
In a third aspect of present invention, which is the manufacturability of the system, an adhesive application process is used to fix the glass to the windshield mounting rail's vertical element. This adhesive application process may be of two parts. The application of a double backed strip adhesive along with a liquid or gelled consistency, urethane type glue, applied alongside the strip adhesive. This process will allow the windshield glass to be aligned and “set” while the glue sets up over a longer period.
Another similar application would be the use of a plurality of parallel adhesive strips that are separate by a distance to allow the application of glue applied in-between the adhesive strips. A further mode of application would be the use of a single wider adhesive strip with a series of spaced apertures, where glue is placed within the apertures along the strip adhesive.
Yet a further glue application method that resembles the opposite of the previous method, uses adhesive tabs along with a urethane glue ribbon or band. Here the tabs are evenly spaced along the bottom of the glass, or onto the windshield mounting rail's glue receiving area, the glass and windshield mounting rail are then “set” together.
One other method is the application of a heat sensitive glue, where the glue is heated upon application of the glass to rapidly set the glue. This type of glue could be used along with the above application methods, or as a singular application method. These steps will reduce the time that the windshield assembling process takes by allowing the assembly to be moved along before the glue has set-up.
The processing of applying glue and “setting” the windshield glass to the windshield mounting rail requires another crucial step, which is that of alignment, that is to precisely aligning the glass and the windshield mounting rail as the glue or adhesive is “set”. This process includes the application of a few small markers applied to the glass. The markers can be small dots or thin X marks on the glass. The windshield mounting rail extrusion requires home marker points which are placed onto the windshield mounting rail glue adhesion area and these home marker points coincide exactly to the glass markers, so the glass and the windshield mounting rail are precisely “set” together.
The present invention may include a thin ceramic coating applied to the lower area of the glass during its tempering process. The ceramic coating would then have the previously mentioned alignment markers therein. Of course, the alignment marks would actually be clear dots or X marks within the ceramic coating. The ceramic coating is preferably black, although other colors can be used, but it is important to use the same color as the adhesive used, so the adhesive will hide the markers. The ceramic coating can also be designed to improve the aesthetic value of the windshield assembly as desired.
Also, the glass can be tinted or “smoked” as may be desired to enhance the overall visual appearance of the windshield assembly, while acting in effect to make the adhesive and the alignment marks to become virtually invisible.
Advantages of the present invention will become more fully appreciated as the same becomes better understood when considered in conjunction with the following detailed description of an illustrative embodiment and accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein;
a and 5b are sectional views of the base member and the windshield mounting rail separated.
a is a sectional view of the base member and the windshield mounting rail together.
b is a sectional view of the base member together with the windshield mounting rail having been bent back after forming.
a, 7b and 7c show sections of adhesive for mounting the windshield mounting rail to windshield glass.
a and 8b show sections of windshield glass and the windshield mounting rail, showing the alignment markings.
a and 9b is a partial sectional view of and alternate base mounting member and windshield mounting rail, mounted on a boat deck.
The Hidden marine windshield mounting system is generally referred to as 10 as shown in a perspective view in
Windshield 10 is shown in 3 sections where the center windshield section 16 is attached to a door 18, where door 18 allows access to the front seating area 20. Windshield 10 includes curved glass 22, with two peripheral sections 22a and 22b. On top of glass sections 16, 22a and 22b are longitudinally extending top windshield edge receiving structures 16a, 24a and 24b.
As seen in
As best seen in
In
As seen in
Windshield mounting rail extrusion 30 includes a wedged shaped element 30a where at the top of the wedge shaped element there is a recessed area 30b.
As seen in
As seen in
As seen in
As seen in
As seen in
As seen in
As seen in
The method and apparatus of the present invention, therefore, produce a curved windshield mounting assembly having many aesthetic and installation advantages as compared to currently employed mounting systems.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. These modifications may include forming the base members separately and reversing male and female members. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.