Hidden pivot attachment for showers and method of making same

Information

  • Patent Grant
  • 8371618
  • Patent Number
    8,371,618
  • Date Filed
    Wednesday, April 30, 2008
    16 years ago
  • Date Issued
    Tuesday, February 12, 2013
    11 years ago
Abstract
A water supply attachment is a spherically-shaped pivot attachment having a hollow passage extending between its opposing ends that includes a threaded portion for coupling to water supplies. The water supply attachment can be a hidden pivot attachment usable in various shower assemblies. The hidden pivot attachment may be used in combination with a seal cup and an attachment nut, such that the hidden pivot attachment closely fits within the void spaces of the seal cup and attachment nut, enabling the hidden pivot attachment to form a seal with the seal cup.
Description
FIELD OF THE INVENTION

Aspects of the present invention relate to a hidden pivot attachment for use in shower assemblies. More particularly, the present invention, in certain aspects, provides a hidden pivot attachment for a pivotal shower assembly fabricated from high-strength materials, which is attachable to a water supply.


BACKGROUND OF THE INVENTION

Showerheads and other shower assemblies having various configurations typically attach to a water pipe, e.g. a j-pipe, by a cylinder having internal threading that is complementary to external threading of a water pipe. The assemblies typically will also include a pivot ball that is coupled to the non-attachment end of the attachment cylinder. Once the cylinder is attached to the water pipe, the cylinder and some of the pipe threading are visible to the user. Problems can result from such an assembly, as the cylinder and exposed pipe threading may be difficult to clean. In addition, when a cylinder assembly is a unitary structure, e.g., a pivot ball and cylinder attached to the outside of the pivot ball, the structure typically requires cosmetic treatment, e.g., electroplating or powder coating, in order for the showerhead attachment to appear pleasing to the user. As a result, the materials that may be selected to fabricate the cylinder assembly are limited.


Accordingly, there is a need to provide a showerhead and other shower assemblies with an attachment that is hidden within the assembly. In addition, there is a need for a showerhead assembly that covers or at least obscures external pipe threading on water pipes. Further, there is a need for a showerhead assembly that is easy to clean.


SUMMARY OF THE INVENTION

Various embodiments of the invention address the issues described above by providing a hidden pivot attachment for attaching to water supplies that is usable in various shower assemblies. When housed in various shower assemblies, each of the hidden pivot attachment, any visible external threading on the water supply, and in some instances, a portion of the water supply that is not threaded are substantially hidden from view. Providing a hidden pivot attachment that is substantially hidden during use enables the pivotal attachment to be fabricated from various high-strength materials that do not require cosmetic treatment. In addition, the overall design of shower assemblies incorporating the hidden pivot attachment therein may be modified in order to provide shower assemblies that are easily cleaned.


According to one configuration, a water supply attachment is a spherically-shaped pivot attachment having a hollow passage extending between opposing ends. The hollow passage includes at least a threaded portion for coupling to water supplies and extends from one of the hollow passage opposing ends into the hollow passage.


In another configuration, an assembly for showers having a hidden pivot attachment includes a spherically-shaped pivot attachment; a nozzle plate cover having a threaded portion; and an attachment nut having a threaded portion, the threaded portion having threading that is complementary to the nozzle plate threaded portion; where when the assembly is coupled to a water supply, the spherically-shaped pivot attachment is coupled to a water supply pipe, the attachment nut and the nozzle plate enclose the spherically-shaped pivot attachment in a chamber-like interior having opposing opened ends, and where the opposing opened ends are configured to allow the spherically-shaped pivot attachment to attach to the water supply and allow water supply egress.


In one implementation, a method for making a water supply attachment includes forming a spherically-shaped pivot attachment having a hollow passage extending between opposing ends, where the hollow passage includes at least a threaded portion for coupling to water supplies, where the threaded portion extends from one of the hollow passage opposing ends into the hollow passage.


These and other features and advantages of aspects of the present invention will become apparent to those skilled in the art from the following detailed description, where it is shown and described illustrative embodiments, including best modes contemplated for carrying out the invention. As it will be realized, the various aspects of the invention are capable of modifications in various obvious respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





DESCRIPTION OF THE DRAWINGS


FIG. 1A depicts a cross-sectional view of a shower bracket for a hand shower with a hidden pivot attachment.



FIG. 1B depicts a side-view of a shower bracket for a hand shower with a hidden pivot attachment inside.



FIG. 1C depicts a cross-sectional view of a showerhead with a hidden pivot attachment.



FIGS. 2A-F depict various views of a hidden pivot attachment.



FIG. 3A is an expanded view of a hidden pivot attachment assembly.



FIG. 3
b is an exploded cross-sectional view of an attachment nut, seal cup and hidden pivot attachment.



FIG. 4A shows a cross-sectional view of a hidden pivot attachment coupled to a pipe.



FIG. 4B provides a side-view of a hidden pivot attachment coupled to a pipe.



FIG. 5A shows a side-view of the hidden pivot attachment coupled to a pipe, along with an attachment nut.



FIG. 5B is a view from the back of the pipe showing the hidden pivot attachment coupled to the pipe, along with an attachment nut.



FIGS. 6A-F depict various views of another hidden pivot attachment.



FIGS. 7A-F depict various views of yet another hidden pivot attachment.



FIG. 8B depicts an attachment wrench.



FIG. 8A depicts a cross-sectional view of a hidden pivot attachment.



FIG. 9A is a side-view of a hidden pivot attachment coupled to a pipe, along with another attachment nut.



FIG. 9B is a cross-sectional view of the hidden pivot attachment with the attachment nut shown in FIG. 9A.





DETAILED DESCRIPTION OF THE INVENTION

Certain embodiments of the invention provide a hidden pivot attachment for use with shower assemblies such as mounted showerheads, shower brackets for hand showers, diverter valves, shower arms and shower combinations. The various aspects of the present invention are described below with reference to the figures.



FIG. 1A provides a cross-sectional illustration of an exemplary shower bracket assembly 100 for a hand shower assembly that includes a hidden pivot attachment 101 for attaching to pipe P, e.g., a water pipe such as a threaded j-pipe or another fluid supply structure. The hidden pivot attachment 101 includes an attachment feature that enables the hidden pivot attachment 101 to be coupled to pipe P, and a passageway that provides open fluid communication with the shower bracket assembly. Hidden pivot attachment 101 allows angular adjustment of the shower bracket assembly, e.g., rotational and/or pivotal adjustment. Further aspects of hidden pivot attachment 101 are described in detail below.


The shower bracket assembly is coupled to hidden pivot attachment 101 via attachment nut 102, which is a collar-shaped structure having opened ends and external threading. Attachment nut 102 serves to enclose a portion of the hidden pivot attachment 101, extend over a portion of the end of pipe P and to engage with the internal threading of the shower bracket assembly via the complementary external threading. Attachment nut 102, at one end, includes an open circumference with a cup-like recess sized and shaped to accommodate a first part of the hidden pivot attachment 101, e.g. about half of the hidden pivot attachment 101. At an opposite end, attachment nut 102 has an open circumference sized to enable a portion of the first part of the hidden pivot attachment 101 to protrude from an interior of the attachment nut 102, thus allowing hidden pivot attachment 101 to couple to pipe P.


Arranged in the interior of shower bracket assembly is seal cup 103, another cup-shaped structure having opened ends. The cup-shaped portion of seal cup 103 serves as a receiver for hidden pivot attachment 101. At one end, seal cup 103 has an opened circumference sized for receiving another part of the hidden pivot attachment 101, e.g., the balance of the hidden pivot attachment 101 that is not accommodated by attachment nut 102. At its opposite end, e.g., at the trough of the cup, seal cup 103 has an opened circumference sized for allowing water to exit from it. In addition, seal cup 103 includes a recessed external circumferential area for accommodating an o-ring 113.


The majority of the visible portion of the shower bracket assembly is formed of bracket housing 104. Bracket housing is arranged such that it is adjacent to seal cup 103, and in its interior, is sized to accommodate seal cup 103, a portion of hidden pivot attachment 101 and the threaded portion of attachment nut 102. Bracket housing 104 includes internal threading complementary to the external threading of attachment nut 102 so that bracket housing 104 and attachment nut 102 may be coupled, and hidden pivot attachment 101 and seal cup 103 secured within.


In addition, FIG. 1A includes o-ring 110 coupled to a recessed circumferential area of hidden pivot attachment 101 such that it runs transversely to the ribs, and o-ring 113 arranged in a recessed circumferential area of seal cup 103. O-rings 110 and 113 can provide water tight sealing so that all water from pipe P exits the water egress of bracket housing 104. For example, hidden pivot attachment 101 with o-ring 110 attached can form a sliding seal with seal cup 103, and seal cup 103 with o-ring 113 can form a seal with bracket housing 104. In addition, o-rings, such as o-ring 110, may facilitate holding the shower assembly in place in relation to the hidden pivot attachment 101 once a position has been selected by a user.



FIG. 1B is an illustration of a side-view of the substantially visible portions of the shower bracket assembly described in FIG. 1A.


In order to connect the shower bracket assembly to a water source, attachment nut 102 may be slid over pipe P and hidden pivot attachment 101 may then be coupled to pipe P. In this way, hidden pivot attachment 101 retains attachment nut 102 on pipe P. After hidden pivot attachment 101 is secured to pipe P, the seal cup 103 and bracket housing 104 together are brought near or into contact with hidden pivot attachment 101. Attachment nut 102 may then be slid down pipe P to hidden pivot attachment 101 so that the external threading of attachment nut 102 contacts the internal threading bracket housing 104. The attachment nut 102 can be rotated into the bracket housing 104, while the rest of the assembly remains stationary. The attachment nut 102 may be configured so that it can be tightened to bracket housing 104 sufficiently to hold the bracket assembly in a desired position. As the attachment nut 102 and bracket housing 104 are tightened, any o-rings provided in the assembly may form a seal with its opposing surfaces, e.g., o-ring 110 may couple to the opposing surfaces on seal cup 103 and in the internal recess of hidden pivot attachment 101. The attachment nut 102 and/or the bracket housing 104 may also be loosened to enable the bracket assembly to be repositioned, and then retightened to hold the bracket assembly in its adjusted position.


Upon assembly, the attachment nut 102 and bracket housing 104 are visible, and hidden pivot attachment 101 and seal cup 103 (not shown) are housed within the assembled shower bracket. According to this embodiment, due to the hidden pivot attachment 101 being attached to the water source separately from the other portions of the assembly, the orientation of the bracket housing 104 with respect to the water source can be selected without concern for whether the entire assembly needs adjusting in order to adequately couple to the water source.



FIG. 1C provides an exemplary cross-sectional view of a showerhead that includes hidden pivot attachment 101. The showerhead of FIG. 1C includes similar structures to the shower bracket assembly described in FIG. 1A above, except that nozzle plate cover 105 is provided that includes internal threading complementary to the threading of attachment nut 102. In addition, FIG. 1C includes flow regulator 107 arranged in the hollow passage of the hidden pivot attachment 101 in an area between a threaded portion and a water egress portion, which can be a 1-5 gallon flow regulator, for example. Similar to the shower bracket assembly, the visible portions of the assembled showerhead are nozzle plate cover 105 and attachment nut 102, while the hidden pivot attachment 101, seal cup 103 and flow regulator 107 are housed within the assembled showerhead. In addition, the showerhead assembly may be connected to a water source in the same way as the shower bracket assembly.


As a result of the hidden pivot attachment 101 being substantially invisible after the shower bracket is assembled, hidden pivot attachment 101 can have various shapes and sizes, and can be fabricated using a variety of high-strength materials, such as composite plastics. In addition, it is unnecessary for the hidden pivot attachment 101 to receive cosmetic treatment.



FIGS. 2A-2F provide various views of an exemplary hidden pivot attachment 101 according to the invention. FIG. 2A depicts a side-view of hidden pivot attachment 101 showing a cylindrical pivot ball having an internal hollow passage 200 and external ribs 201 separated by parallel recesses 202 around its circumference, a circumferential recess 203 for accommodating an o-ring, a first opened end 204 that is planar, and an opposite opened end 205 that is shaped like a hexagon so that the opened end has a scalloped shape around the circumference of its hexagonal opening. The ribs 201 around the circumference are arranged axially in FIG. 2A and are initiated adjacent to the first opened end 204 of the hidden pivot attachment 101 and terminate in an area adjacent the circumferential recess 203. In some implementations, the ribs 201 form a smooth external surface of the hidden pivot attachment in order to provide a surface that shower assembly components can pivot about. The circumferential recess 203 for accommodating an o-ring is formed by a revolved cut, which provides a radially oriented recessed surface for accepting an o-ring. The hollow passage 200 in the interior of hidden pivot attachment 101 is hollow between the first opened end 204 and the opposite opened end 205, and the portions of the hidden pivot attachment 101 forming the hollow spaces have varying configurations, e.g., threaded, small bore, large bore and hexagonal.



FIG. 2B depicts a top view of hidden pivot attachment 101 that may be attached to pipe P (not shown) via the attachment's recessed threading 206 in hollow passage 200. FIG. 2C depicts a bottom view of the hidden pivot attachment 101, where water from pipe P exits the hollow passage 200 via the hexagonally shaped opened end 205. The hexagonally shaped opened end 205 may be used for installing hidden pivot attachment pipe P.


For example, a hex wrench sized to closely fit in the hexagonal shape provided at the opened end 205 of hidden pivot attachment 101 may be used for rotating the hidden pivot attachment 101 about pipe P. FIG. 2D depicts an isometric view showing internal threading 206 recessing into hidden pivot attachment 101, along with the relief structure of the ribs 201 formed on the attachment's exterior circumference. FIG. 2E is another isometric view showing the opened end 205 having the hexagonal opened end 205 in the hidden pivot attachment 101 from which water passes into the rest of the shower assembly, e.g., into a bracket housing 104 or nozzle plate cover 105 for water egress. FIG. 2F is yet another isometric view showing internal threading 206 of hidden pivot attachment 101 and a bore hole arranged in the attachment, beyond the threading, that is sized to fit a removable flow regulator 107.



FIG. 3A depicts an exploded view of hidden pivot attachment 101, attachment nut 102, seal cup 103, and o-ring 110. The combination of the attachment nut 102 and seal cup 103 form the engagement structure of the shower head to movingly engage the pivot ball, and together form a chamber-like spherical area, i.e., interior void space. The chamber-like spherical area is defined by a wall or walls of the attachment nut 102 and seal cup 103, and has opened opposing ends, which receives the hidden pivot attachment 101 with o-ring 110. The attachment nut 102 includes a series of indentations 301 arranged around the exterior for providing a gripping surface, which may facilitate rotation of the attachment nut 102 in order to couple or decouple the attachment nut 102 threading 302 with the threading of bracket housing 104 or nozzle plate cover 105. Seal cup 103 includes a series of fins 303 extending outwardly from the rear of the seal cup 103 for properly seating the seal cup in a shower assembly such as bracket housing 104 and nozzle plate cover 105. FIG. 3B depicts a cross-sectional view of the attachment nut 102 and seal cup 103 in close proximity.


From FIG. 3B, the chamber walls are sized to closely fit the shape of hidden pivot attachment 101 to enable the chamber-like spherical area to pivot about hidden pivot attachment 101. For example, ribs 201 separated by recesses 202 provided on the external surface of the hidden pivot attachment and the chamber-like spherical area may be configured so that at least a portion of the ribs are contacting the chamber-like spherical area.


In FIG. 3B, attachment nut 102 is configured with a circumferential wall 304 forming the opening through which a shower pipe first passes through attachment nut 102. The circumferential wall 304 is angularly arranged and may be provided at various angles in order to allow the attachment nut 102 and associated shower assembly to pivot about hidden pivot attachment 101 with a range of motion to a larger or smaller degree. For example, the attachment nut in the assembly in FIG. 1A allows the assembly to pivot about pipe P to a pivot position where pipe P rests against the circumferential wall of the attachment nut. If the circumferential wall were provided at a larger or smaller angle, the shower assembly would be permitted a range of motion that is larger or smaller than that provided by attachment nut 102. Furthermore, with reference to FIG. 5B, the distance the shower assembly can pivot about hidden pivot attachment 101 is defined by the space S between the circumferential wall 304 of attachment nut 102 and pipe P.


In FIG. 3B, seal cup 103 is provided with an opening formed by circumferential wall 305, which allows water to pass out of the chamber-like spherical area. The circumferential wall 305 may be sized so that water freely flows out of the chamber-like spherical area at any position relative to the hidden pivot attachment. According to the embodiment in FIG. 3B, attachment nut 102 and seal cup 103 are arranged so that they are nearly touching. In some embodiments, the attachment nut 102 and seal cup 103 may loosely fit together. In further embodiments, an o-ring may be provided that forms a seal between attachment nut 102 and seal cup 103. It will be understood that each portion forming the chamber-like area may have various configurations while maintaining an internal chamber-like area having a void area that closely accommodates hidden pivot attachment 101.


In addition, from FIG. 3B, the internal walls of the hidden pivot attachment 101 forming the hollow passage 200 include a first opened end 204, internal threading 206, a large bore 307, e.g., for supporting a flow regulator, a small bore 308 and opposite opened end 205 having a hexagonal shape. It will be understood that hidden pivot attachment 101 may include a hollow channel having varying sizes and shapes, and that other channel configurations are contemplated, as would be understood by those of ordinary skill in the art. For example, hidden pivot attachment may have more or less threading along the hollow space compared to the threading depicted in FIG. 3B. In addition, the hollow space may be configured to accept additional components including filter screens, o-rings and other seals (See FIG. 7F).



FIGS. 4A and 4B depict a cross-sectional view and a side-view of hidden pivot attachment 101 coupled to pipe P, respectively. The hidden pivot attachment 101 securely couples to pipe P via its internal threading, and as a result, a separate attachment cylinder is unnecessary in the shower assemblies of the present invention. In each of FIGS. 4A and 4B, a small portion of the pipe threading is visible. According to configurations of the invention, and with reference to 5A, attachment nut 102 fits over a portion of hidden pivot attachment 101 and pipe P, thereby substantially masking the hidden pivot attachment 101 and any additional pipe threading. FIG. 5B shows a view of hidden pivot attachment 101 and attachment nut 102 from the back of pipe P. As can be seen by contrasting FIG. 5A with 5B, hidden pivot attachment 101 is substantially hidden except for when viewing the assembly from a back end.


Although hidden pivot attachment 101 is depicted in conjunction with the shower assemblies and various components thereof in FIGS. 1A-5B, it should be understood that other hidden attachments are also contemplated. FIGS. 6A-F depict various views of another hidden pivot attachment 1001 that may be incorporated in various shower assemblies according to the present invention. Hidden pivot attachment 1001 is similar to hidden pivot attachment 101 because, as depicted in FIGS. 6A-F, hidden pivot attachment 1001 is a cylindrical pivot ball with ribs 2001 around its exterior separated by recesses 2002 and threading 2006 extending into hollow passage 2000 at one end of its interior. However, hidden pivot attachment 1001 differs because it has a recess 2003 for receiving o-ring 1010 formed by a revolved cut located nearer to the water egress opened end 2005 compared to hidden pivot attachment 101. The revolved cut forming the recess 2003 for receiving an o-ring is axially oriented, which allows an o-ring to be easily pressed onto the hidden pivot attachment 1001 in the recessed area. Hidden pivot attachment 1001 also includes an annular opened end 2005 for water egress as opposed to a hexagonal opened end 205 in hidden pivot attachment 101. The annular opened end 2005 is formed by an annular circumferential protrusion 2007, and an o-ring may be fitted around the circumferential protrusion 2007 and/or into the recess formed from the revolved cut. In addition, between the ribs 2001 on the exterior of hidden pivot attachment 1001, additional material, or an inner rib, is provided along a portion of hidden pivot attachment 1001 that corresponds to the location of the threading running in the interior of the hollow passage and the additional material terminates in a shoulder 2008 where the hollow passage becomes narrower and the threading terminates. Further, a first planar surface 2051 and a second planar surface 2052 may be defined on adjacent sides of the pivot attachment between the open ends of the pivot attachment 1001. Moreover, a first surface rib 2053 extends from the pivot attachment to substantially bisect the first planar surface 2051 and a second surface rib fib 2055 extends from the pivot attachment to substantially bisect the second planar surface 2052.



FIGS. 7A-F depict yet another hidden pivot attachment 1101 that may be used in shower assemblies according to various embodiments. The hidden pivot attachment 1101 resembles the hidden pivot attachment provided in FIGS. 6A-F. For example, as shown in FIGS. 7A-F the hidden pivot attachment 1101 may include a hollow passage 2100 through a length of the body, terminating at an open end 2105, similar to the hollow passage 2000 and open end 2005 of the hidden pivot attachment in FIGS. 6A-F. Also, the hidden pivot attachment 1101 may also include a recess 2103 defined circumferentially around a top surface for receiving an o-ring. This recess 2103 is similar to the recess 2003 in the hidden pivot attachment 1001 illustrated in FIGS. 6A-F. However, in this embodiment the hidden pivot attachment 1101 is formed with its own annular surface 2109 running transversely to the hollow passage for forming a seal between it and an attachment nut and/or a seal cup. In some implementations the annular surface 2109 may protrude from hidden pivot attachment 1101. In addition or alternatively, two or more annular surfaces may be provided on hidden pivot attachment 1101 in order to form a seal between in and an attachment nut and/or a seal cup. FIG. 7F is an isometric view of hidden pivot attachment 1101, along with additional components including: filter screen 1102, regulator 1103, and seal 1104 that may optionally be included in the hollow passage.


Moreover, the various views of the hidden pivot attachments provided in FIGS. 2A-2F, 6A-F and 7A-F depict exemplary hidden pivot attachments 101, 1001 and 1101, and it will be understood that even further hidden pivot attachment configurations are contemplated, as would be understood by those of ordinary skill in the art. For example, a hidden pivot attachment may have two external recesses for accepting o-rings in order to form a seal between hidden pivot attachment 101, 1001, 1101 and attachment nut 102 and between hidden pivot attachment 101, 1001, 1101 and seal cup 103. Alternatively, a hidden pivot attachment may be formed without recesses. Ribs provided on the exterior of the hidden pivot attachment may be oriented transversely or at another angle relative to the hollow passageway of the hidden pivot attachment. In addition, the external surface of the hidden pivot attachment that engages with various components of the shower assembly may be relatively smooth and/or may have a relief, e.g., a rough surface or a relief pattern. For example, a relief pattern provided on the exterior of the hidden pivot attachment may enable the shower assembly to pivot about the hidden pivot attachment for positioning, but the relief provided may facilitate holding the assembly in place once a position is selected. All or a portion of the external surface of the hidden pivot attachment may be overmolded to enhance frictional engagement. For example, see U.S. Pat. No. 6,626,210, which is incorporated by reference in its entirety herein.


The hidden pivot attachment may also have varying shapes, e.g., a semi-spherical shape at one end and an alternative shape at another end. For example, the hidden attachment may have a semi-spherical shape at one end, e.g., an end that is received by seal cup 103, and a cone shape at another end. This may allow the shower assembly to pivot in the seal cup 103 in all directions, e.g., via the semi-spherical portion of the attachment, while enabling the attachment nut to have an interior cone-void space that is complementary to the alternatively shaped portion of the hidden attachment. In addition, the hidden pivot attachment may have a solid exterior surface, which may provide enhanced frictional engagement. In another alternative configuration, a hidden attachment may be cylindrically shaped and aligned longitudinally with pipe P, thus allowing only a rotational adjustment of a shower assembly, e.g., a shower arm. In such an implementation, the attachment nut and seal cup 103 may be suitably formed so that their void space with opened ends resembles the cylindrical shape of the hidden attachment. In another implementation, a cylinder may be aligned perpendicular to the longitudinal axis of the supply pipe, thus allowing only a pivotal adjustment (about a single axis) of a shower assembly, e.g., a shower arm.


Moreover, a hidden pivot attachment may be attached to a water source using a specially made tool. FIG. 8 depicts a cross sectional view of hidden pivot attachment 1101 showing the relief provided by the ribs of hidden pivot attachment 1101. According to various embodiments, a tool such as a spanner wrench 8001 may be provided with an opening sized to receive a portion of the spherically-shaped pivot attachment and shaped to engage with the ribs 2101 and/or recesses 2102 arranged about the circumference. For example, the opening may have a complementary configuration to the relief provided by the ribs 2101 of the hidden pivot attachment. A review of each of the hidden pivot attachments depicted herein, see e.g., FIGS. 2C and 6B and 7B, shows the relief provided by the ribs 201, 2001, 2101 and recesses 202, 2002, 2102 which are complementary to the opening in spanner wrench 8001, and that any of the hidden pivot attachments 101, 1001 and 1101 may be affixed to a water source using spanner wrench 8001. Accordingly, a user may insert the hidden pivot attachment into the spanner wrench 8001 so the water egress passes through the opening of spanner wrench until the protruding ribs of the hidden pivot attachment engage with the complementary recesses in the spanner wrench 8001. A user may place the opened end 204, 2004, 2104 proximate the threaded portion 206, 2006, 2106 of the hidden pivot attachment against a water source by raising the spanner wrench holding the hidden pivot attachment up towards the water source and begin rotating the spanner wrench and hidden pivot attachment about the threading provided on the water source. This may enable a user to more easily assemble their shower assembly because a user may exert torque on the spanner wrench 8001 and transfer the torque to the hidden pivot attachment in order to rotate the hidden pivot attachment around the threading provided on a water source so as to form a threaded engagement. It will be understood that the spanner wrench 8001 is not limited to the configuration provided in FIG. 8, and instead may have any configuration suitable for engaging with any hidden pivot attachment.


Hidden pivot attachments such as those described above may be fabricated using various manufacturing methods including: molding, injection molding, reaction injection molding, machining, pressing and punching. One hidden pivot attachment fabrication method involves providing a machined threaded insert in a mold having a hidden pivot attachment configuration, e.g., the hidden pivot attachment configuration of 101, 1001, 1101 or combinations or variations thereof, and delivering a durable plastic composite at high pressure and/or high temperature into the mold. As a result, the hollow passageway consists of the machined threaded insert, and the rest of the hidden pivot attachment is formed of a highly durable plastic. In another method, the threaded insert may extend from one end of the hidden pivot attachment partly into the molded hidden pivot attachment. Machining a portion of the molded plastic until the threaded insert is reached may form the remainder of the passageway. This allows the passageway to have varying configurations. For example, the passageway may be formed with an arc or at an angle in order to cause water to be delivered from, for example, hidden pivot attachment 101, 1001, 1101 or combinations or variations thereof, at an angle that is different from the water supply's angle of delivery.


In addition to the alternative configurations of the hidden pivot attachments described above, other shower assembly components may also have alternative configurations. FIGS. 9A-B depict an alternative configuration of an attachment nut 1002 that may be provided according to certain embodiments. Attachment nut 1002 includes flanges protruding from an exterior in order to facilitate a user rotating the attachment nut 1002. The flanges may provide a user with a surface for exerting rotational torque using their fingers. Accordingly, flanges may assist in threadably engaging or disengaging the attachment nut 1002 to the bracket housing 104 and/or nozzle plate cover 105. For example, during attaching and detaching procedures where the attachment nut 1002 is stuck in place or difficult to rotate, additional rotational force exerted via the flanges may help facilitate movement of the attachment nut 1002 on or off of the bracket housing 104. In addition, if the assembled shower assembly is wet, flanges provide surfaces where a user's fingers will not slip off of the assembly. Furthermore, compared to attachment nut 102, the end of the attachment nut 1002 that first receives pipe P, as seen in the cross-sectional view of attachment nut 1002 and hidden pivot attachment 1101 in FIG. 9B, is longer and has an internal circumferential wall that runs substantially vertically compared to the angled orientation of the corresponding portion of attachment nut 102. As discussed above, the angle of the vertically arranged circumferential wall 3004 affects the range of motion the attachment nut 1002 and shower assembly can pivot about hidden pivot attachment 1101 and pipe P. In certain implementations, the vertically arranged circumferential wall may not be configured with a different angle, but instead may have a larger or smaller radius than the radius R of vertically arranged circumferential wall 3004, which allows the attachment nut 1002 to have a larger or smaller range of motion. However, it will be understood that the circumferential wall 3004 of attachment nut 1002 may be configured with a variety of other radii and other angles in order to provide a desired range of motion.


In alternative configurations, seal cup 103 may be integrated with bracket housing 104, nozzle plate cover 105 or another water delivery device. In addition, it is not critical for seal cup 103 to have a spherical shape. Instead, the seal cup 103 may have a shape that is complementary to the shape of a hidden attachment, e.g., hidden pivot attachment 101, 1001, 1101 or other hidden attachment. Alternatively, seal cup 103 may not have a complementary shape to a hidden attachment, but may instead be configured to cooperate with a hidden attachment. For example, seal cup 103 may include an inner surface with features that guide the movement of a hidden attachment.


Moreover, bracket housing 104 or nozzle plate cover 105 may have external threading and attachment nut 102 may have internal threading that is complementary to the external threading of bracket housing 104. Alternatively, threading may be replaced with some other attachment structure such as clamps, snap locks, sealing o-rings, or other mechanisms that would allow the mating portions of the shower assembly to be securely coupled.


In addition, o-ring 110 may be positioned in a recessed circumferential area of the cup-shaped portion of seal cup 103 rather than coupled to hidden pivot attachment 101, 1001, 1101. In this way, a seal between seal cup 103 and hidden pivot attachment 101, 1001, 1101 are still provided. Similarly, o-ring 113 may be positioned in a recess on the internal surface of bracket housing 104 rather than the external surface of seal cup 103, while still providing a seal between seal cup 103 and bracket housing 104.


In alternative embodiments, the hidden attachment, a seal cup and an attachment nut may be assembled together in a way that allows the hidden attachment to move within the void space of the seal cup and the attachment nut. An opened circumferential portion of the attachment nut would allow the attachment nut to be coupled to a water pipe, and threading on the attachment nut or seal cup would enable the combined structure to be coupled to a shower bracket or nozzle plate, for example.


The shower assemblies of the present invention may be considered to have better aesthetics for the user because the hidden attachment and pipe threading are substantially hidden from view. In addition, because the hidden attachment is substantially hidden, it can be made of a variety of highly durable materials, regardless of their appearance, and without the need for cosmetic treatments, e.g., electroplating, painting or powder coating. Further, shower assemblies may be designed with features that are easily cleanable as compared to other shower assemblies having exposed pipe attachments.


Embodiments of the invention may be combined with various showerhead devices. For example, hidden pivot attachments of the present invention may be used in combination with an ecologically friendly showerhead that is shown and described in U.S. Provisional Patent Application having Application Ser. No. 60/916,146, filed on May 4, 2007 and entitled “Low Flow Showerhead And Method Of Making Same,” which is herein incorporated by reference in its entirety. In addition, the hidden pivot attachment 101 may be incorporated with a molded arm for showerheads, which is shown and described in U.S. Provisional Patent Application having Application Ser. No. 60/916,092, filed on May 4, 2007 and entitled “Molded Arm For Showerheads And Method Of Making Same,” which is herein incorporated by reference in its entirety.


From the above description and drawings, it will be understood by those of ordinary skill in the art that the particular embodiments shown and described are for purposes of illustration only and are not intended to limit the scope of the present invention. Those of ordinary skill in the art will recognize that the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. References to details of particular embodiments are not intended to limit the scope of the invention.

Claims
  • 1. A water supply attachment comprising: a generally spherically shaped pivot attachment having a main body defining a hollow passageway therethrough and defining opposing ends with a longitudinal axis extending between the opposing ends;a plurality of adjacent ribs extending radially outwardly from the main body on opposite sides of the main body, substantially longitudinally along a length of the main body and extending substantially between one of the opposing ends to the other of the opposing ends, each of the plurality of adjacent ribs defining an outer edge;an internal threaded portion extending along a portion of the hollow passageway from one end of the opposing ends;an inner rib positioned between at least two adjacent ribs of the plurality of adjacent ribs, the inner rib extending from one end of the at least two adjacent ribs along a portion of a length of each of the at least two adjacent ribs and spaced radially inward from the outer edge of the at least two adjacent ribs, the inner rib terminating at a shoulder substantially perpendicular to the longitudinal axis;wherein the shoulder is located at a position along the length of the main body corresponding to a terminal end of the internal threaded portion.
  • 2. The water supply of claim 1, wherein the outer edges of each of the plurality of ribs define the spherical shape of the pivot attachment.
  • 3. The water supply attachment of claim 1, wherein the main body of the pivot attachment further includes an annular ring defined therein, wherein the annular ring is adjacent to one end of the opposing ends and is concentric with the one end of the opposing ends.
  • 4. The water supply attachment of claim 3, wherein the pivot attachment further includes an annular circumferential protrusion extending from the main body concentrically with the annular ring, wherein the annular circumferential protrusion is configured to receive a O-ring.
  • 5. The water supply attachment of claim 1, wherein the main body of the pivot attachment further includes at least one planar surface.
  • 6. The water supply attachment of claim 5, wherein the at least one planar surface further includes a first planar surface positioned on a first side of the pivot attachment and a second planar surface positioned on a second side of the pivot attachment, wherein the passageway is positioned between the first planar surface and the second planar surface.
  • 7. The water supply attachment of claim 6, wherein the pivot attachment further includes a first surface rib extending longitudinally along a portion of the length of the main body, and the first surface rib substantially bisects the first planar surface; anda second surface rib extending longitudinally along a portion of the length of the main body, and the second surface rib substantially bisects the second planar surface.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of provisional patent application No. 60/916,219, filed May 4, 2007 and entitled “Hidden Pivot Attachment for Showers and Method of Making Same”; provisional patent application No. 60/916,092, filed May 4, 2007 and entitled “Molded Arm for Showerheads and Method of Making Same”; and provisional patent application No. 60/916,146, filed May 4, 2007 and entitled “Low Flow Showerhead and Method of Making Same”; the contents of each of which are incorporated herein by reference in their entireties. This application is also related to copending patent application No. 12/112,697, entitled “Molded Arm for Showerheads and Method of Making Same,” and copending Patent Application No. 12/114,304 entitled “Low Flow Showerhead And Method Of Making Same,” the entire disclosures of which are incorporated herein by reference. This application hereby incorporates by reference herein U.S. Pat. No. 6,626,210 in its entirety.

US Referenced Citations (902)
Number Name Date Kind
203094 Wakeman Apr 1878 A
204333 Josias May 1878 A
309349 Hart Dec 1884 A
428023 Schoff May 1890 A
432712 Taylor Jul 1890 A
445250 Lawless Jan 1891 A
453109 Dreisorner May 1891 A
486986 Schinke Nov 1892 A
566384 Engelhart Aug 1896 A
566410 Schinke Aug 1896 A
570405 Jerguson et al. Oct 1896 A
694888 Pfluger Mar 1902 A
800802 Franquist Oct 1905 A
832523 Andersson Oct 1906 A
835678 Hammond Nov 1906 A
845540 Ferguson Feb 1907 A
854094 Klein May 1907 A
926929 Dusseau Jul 1909 A
1001842 Greenfield Aug 1911 A
1003037 Crowe Sep 1911 A
1018143 Vissering Feb 1912 A
1046573 Ellis Dec 1912 A
1130520 Kenney Mar 1915 A
1203466 Benson Oct 1916 A
1217254 Winslow Feb 1917 A
1218895 Porter Mar 1917 A
1255577 Berry Feb 1918 A
1260181 Garnero Mar 1918 A
1276117 Riebe Aug 1918 A
1284099 Harris Nov 1918 A
1327428 Gregory Jan 1920 A
1451800 Agner Apr 1923 A
1459582 Dubee Jun 1923 A
1469528 Owens Oct 1923 A
1500921 Bramson et al. Jul 1924 A
1560789 Johnson et al. Nov 1925 A
1597477 Panhorst Aug 1926 A
1633531 Keller Jun 1927 A
1692394 Sundh Nov 1928 A
1695263 Jacques Dec 1928 A
1724147 Russell Aug 1929 A
1724161 Wuesthoff Aug 1929 A
1736160 Jonsson Nov 1929 A
1754127 Srulowitz Apr 1930 A
1758115 Kelly May 1930 A
1778658 Baker Oct 1930 A
1821274 Plummer Sep 1931 A
1849517 Fraser Mar 1932 A
1890156 Konig Dec 1932 A
1906575 Goeriz May 1933 A
1934553 Mueller et al. Nov 1933 A
1946207 Haire Feb 1934 A
2011446 Judell Aug 1935 A
2024930 Judell Dec 1935 A
2033467 Groeniger Mar 1936 A
2044445 Price et al. Jun 1936 A
2085854 Hathaway et al. Jul 1937 A
2096912 Morris Oct 1937 A
2117152 Crosti May 1938 A
D113439 Reinecke Feb 1939 S
2196783 Shook Apr 1940 A
2197667 Shook Apr 1940 A
2216149 Weiss Oct 1940 A
D126433 Enthof Apr 1941 S
2251192 Krumsiek et al. Jul 1941 A
2268263 Newell et al. Dec 1941 A
2285831 Pennypacker Jun 1942 A
2342757 Roser Feb 1944 A
2402741 Draviner Jun 1946 A
D147258 Becker Aug 1947 S
D152584 Becker Feb 1949 S
2467954 Becker Apr 1949 A
2546348 Schuman Mar 1951 A
2567642 Penshaw Sep 1951 A
2581129 Muldoon Jan 1952 A
D166073 Dunkelberger Mar 1952 S
2648762 Dunkelberger Aug 1953 A
2664271 Arutunoff Dec 1953 A
2671693 Hyser et al. Mar 1954 A
2676806 Bachman Apr 1954 A
2679575 Haberstump May 1954 A
2680358 Zublin Jun 1954 A
2726120 Bletcher et al. Dec 1955 A
2759765 Pawley Aug 1956 A
2776168 Schweda Jan 1957 A
2792847 Spencer May 1957 A
2873999 Webb Feb 1959 A
2930505 Meyer Mar 1960 A
2931672 Merritt et al. Apr 1960 A
2935265 Richter May 1960 A
2949242 Blumberg et al. Aug 1960 A
2957587 Tobin Oct 1960 A
2966311 Davis Dec 1960 A
D190295 Becker May 1961 S
2992437 Nelson et al. Jul 1961 A
3007648 Fraser Nov 1961 A
D192935 Becker May 1962 S
3032357 Shames et al. May 1962 A
3034809 Greenberg May 1962 A
3037799 Mulac Jun 1962 A
3081339 Green et al. Mar 1963 A
3092333 Gaiotto Jun 1963 A
3098508 Gerdes Jul 1963 A
3103723 Becker Sep 1963 A
3104815 Schultz Sep 1963 A
3104827 Aghnides Sep 1963 A
3111277 Grimsley Nov 1963 A
3112073 Larson et al. Nov 1963 A
3143857 Eaton Aug 1964 A
3196463 Farneth Jul 1965 A
3231200 Heald Jan 1966 A
3236545 Parkes et al. Feb 1966 A
3239152 Bachli et al. Mar 1966 A
3266059 Stelle Aug 1966 A
3272437 Coson Sep 1966 A
3273359 Fregeolle Sep 1966 A
3306634 Groves et al. Feb 1967 A
3323148 Burnon Jun 1967 A
3329967 Martinez et al. Jul 1967 A
3341132 Parkison Sep 1967 A
3342419 Weese Sep 1967 A
3344994 Fife Oct 1967 A
3363842 Burns Jan 1968 A
3383051 Fiorentino May 1968 A
3389925 Gottschald Jun 1968 A
3393311 Dahl Jul 1968 A
3393312 Dahl Jul 1968 A
3404410 Sumida Oct 1968 A
3492029 French et al. Jan 1970 A
3516611 Piggott Jun 1970 A
3546961 Marton Dec 1970 A
3550863 McDermott Dec 1970 A
3552436 Stewart Jan 1971 A
3565116 Gabin Feb 1971 A
3566917 White Mar 1971 A
3580513 Martin May 1971 A
3584822 Oram Jun 1971 A
3596835 Smith et al. Aug 1971 A
3612577 Pope Oct 1971 A
3637143 Shames et al. Jan 1972 A
3641333 Gendron Feb 1972 A
3647144 Parkison et al. Mar 1972 A
3663044 Contreras et al. May 1972 A
3669470 Deurloo Jun 1972 A
3672648 Price Jun 1972 A
3682392 Kint Aug 1972 A
3685745 Peschcke-Koedt Aug 1972 A
D224834 Laudell Sep 1972 S
3711029 Bartlett Jan 1973 A
3722798 Bletcher et al. Mar 1973 A
3722799 Rauh Mar 1973 A
3731084 Trevorrow May 1973 A
3754779 Peress Aug 1973 A
D228622 Jublin Oct 1973 S
3762648 Deines et al. Oct 1973 A
3768735 Ward Oct 1973 A
3786995 Manoogian et al. Jan 1974 A
3801019 Trenary et al. Apr 1974 A
3810580 Rauh May 1974 A
3826454 Zieger Jul 1974 A
3840734 Oram Oct 1974 A
3845291 Portyrata Oct 1974 A
3860271 Rodgers Jan 1975 A
3861719 Hand Jan 1975 A
3865310 Elkins et al. Feb 1975 A
3869151 Fletcher et al. Mar 1975 A
3896845 Parker Jul 1975 A
3902671 Symmons Sep 1975 A
3910277 Zimmer Oct 1975 A
D237708 Grohe Nov 1975 S
3929164 Richter Dec 1975 A
3929287 Givler et al. Dec 1975 A
3958756 Trenary et al. May 1976 A
D240322 Staub Jun 1976 S
3967783 Halsted et al. Jul 1976 A
3979096 Zieger Sep 1976 A
3997116 Moen Dec 1976 A
3998390 Peterson et al. Dec 1976 A
3999714 Lang Dec 1976 A
4005880 Anderson et al. Feb 1977 A
4006920 Sadler et al. Feb 1977 A
4023782 Eifer May 1977 A
4042984 Butler Aug 1977 A
4045054 Arnold Aug 1977 A
D245858 Grube Sep 1977 S
D245860 Grube Sep 1977 S
4068801 Leutheuser Jan 1978 A
4081135 Tomaro Mar 1978 A
4084271 Ginsberg Apr 1978 A
4091998 Peterson May 1978 A
D249356 Nagy Sep 1978 S
4117979 Lagarelli et al. Oct 1978 A
4129257 Eggert Dec 1978 A
4130120 Kohler, Jr. Dec 1978 A
4131233 Koenig Dec 1978 A
4133486 Fanella Jan 1979 A
4135549 Baker Jan 1979 A
D251045 Grube Feb 1979 S
4141502 Grohe Feb 1979 A
4151955 Stouffer May 1979 A
4151957 Gecewicz et al. May 1979 A
4162801 Kresky et al. Jul 1979 A
4165837 Rundzaitis Aug 1979 A
4167196 Morris Sep 1979 A
4174822 Larsson Nov 1979 A
4185781 O'Brien Jan 1980 A
4190207 Fienhold et al. Feb 1980 A
4191332 De Langis et al. Mar 1980 A
4203550 On May 1980 A
4209132 Kwan Jun 1980 A
D255626 Grube Jul 1980 S
4219160 Allred, Jr. Aug 1980 A
4221338 Shames et al. Sep 1980 A
4239409 Osrwo Dec 1980 A
4243253 Rogers, Jr. Jan 1981 A
4244526 Arth Jan 1981 A
D258677 Larsson Mar 1981 S
4254914 Shames et al. Mar 1981 A
4258414 Sokol Mar 1981 A
4272022 Evans Jun 1981 A
4274400 Baus Jun 1981 A
4282612 King Aug 1981 A
D261300 Klose Oct 1981 S
D261417 Klose Oct 1981 S
4303201 Elkins et al. Dec 1981 A
4319608 Raikov et al. Mar 1982 A
4330089 Finkbeiner May 1982 A
D266212 Haug et al. Sep 1982 S
4350298 Tada Sep 1982 A
4353508 Butterfield et al. Oct 1982 A
4358056 Greenhut et al. Nov 1982 A
D267582 Mackay et al. Jan 1983 S
D268359 Klose Mar 1983 S
D268442 Darmon Mar 1983 S
D268611 Klose Apr 1983 S
4383554 Merriman May 1983 A
4396797 Sakuragi et al. Aug 1983 A
4398669 Fienhold Aug 1983 A
4425965 Bayh, III et al. Jan 1984 A
4432392 Paley Feb 1984 A
D274457 Haug Jun 1984 S
4461052 Mostul Jul 1984 A
4465308 Martini Aug 1984 A
4467964 Kaeser Aug 1984 A
4495550 Visciano Jan 1985 A
4527745 Butterfield et al. Jul 1985 A
4540202 Amphoux et al. Sep 1985 A
4545081 Nestor et al. Oct 1985 A
4553775 Halling Nov 1985 A
D281820 Oba et al. Dec 1985 S
4561593 Cammack et al. Dec 1985 A
4564889 Bolson Jan 1986 A
4571003 Roling et al. Feb 1986 A
4572232 Gruber Feb 1986 A
D283645 Tanaka Apr 1986 S
4587991 Chorkey May 1986 A
4588130 Trenary et al. May 1986 A
4598866 Cammack et al. Jul 1986 A
4614303 Moseley, Jr. et al. Sep 1986 A
4616298 Bolson Oct 1986 A
4618100 White et al. Oct 1986 A
4629124 Gruber Dec 1986 A
4629125 Liu Dec 1986 A
4643463 Halling et al. Feb 1987 A
4645244 Curtis Feb 1987 A
RE32386 Hunter Mar 1987 E
4650120 Kress Mar 1987 A
4650470 Epstein Mar 1987 A
4652025 Conroy, Sr. Mar 1987 A
4654900 McGhee Apr 1987 A
4657185 Rundzaitis Apr 1987 A
4669666 Finkbeiner Jun 1987 A
4669757 Bartholomew Jun 1987 A
4674687 Smith et al. Jun 1987 A
4683917 Bartholomew Aug 1987 A
4703893 Gruber Nov 1987 A
4717180 Roman Jan 1988 A
4719654 Blessing Jan 1988 A
4733337 Bieberstein Mar 1988 A
D295437 Fabian Apr 1988 S
4739801 Kimura et al. Apr 1988 A
4749126 Kessener et al. Jun 1988 A
D296582 Haug et al. Jul 1988 S
4754928 Rogers et al. Jul 1988 A
D297160 Robbins Aug 1988 S
4764047 Johnston et al. Aug 1988 A
4778104 Fisher Oct 1988 A
4787591 Villacorta Nov 1988 A
4790294 Allred, III et al. Dec 1988 A
4801091 Sandvik Jan 1989 A
4809369 Bowden Mar 1989 A
4839599 Fischer Jun 1989 A
4842059 Tomek Jun 1989 A
D302325 Charet et al. Jul 1989 S
4850616 Pava Jul 1989 A
4854499 Neuman Aug 1989 A
4856822 Parker Aug 1989 A
4865362 Holden Sep 1989 A
D303830 Ramsey et al. Oct 1989 S
4871196 Kingsford Oct 1989 A
4896658 Yonekubo et al. Jan 1990 A
D306351 Charet et al. Feb 1990 S
4901927 Valdivia Feb 1990 A
4903178 Englot et al. Feb 1990 A
4903897 Hayes Feb 1990 A
4903922 Harris, III Feb 1990 A
4907137 Schladitz et al. Mar 1990 A
4907744 Jousson Mar 1990 A
4909435 Kidouchi et al. Mar 1990 A
4914759 Goff Apr 1990 A
4946202 Perricone Aug 1990 A
4951329 Shaw Aug 1990 A
4953585 Rollini et al. Sep 1990 A
4964573 Lipski Oct 1990 A
4972048 Martin Nov 1990 A
D313267 Lenci et al. Dec 1990 S
4976460 Newcombe et al. Dec 1990 A
D314246 Bache Jan 1991 S
D315191 Mikol Mar 1991 S
4998673 Pilolla Mar 1991 A
5004158 Halem et al. Apr 1991 A
D317348 Geneve et al. Jun 1991 S
5020570 Cotter Jun 1991 A
5022103 Faist Jun 1991 A
5032015 Christianson Jul 1991 A
5033528 Volcani Jul 1991 A
5033897 Chen Jul 1991 A
D319294 Kohler, Jr. et al. Aug 1991 S
D320064 Presman Sep 1991 S
5046764 Kimura et al. Sep 1991 A
D321062 Bonbright Oct 1991 S
5058804 Yonekubo et al. Oct 1991 A
D322119 Haug et al. Dec 1991 S
D322681 Yuen Dec 1991 S
5070552 Gentry et al. Dec 1991 A
D323545 Ward Jan 1992 S
5082019 Tetrault Jan 1992 A
5086878 Swift Feb 1992 A
5090624 Rogers Feb 1992 A
5100055 Rokitenetz et al. Mar 1992 A
D325769 Haug et al. Apr 1992 S
D325770 Haug et al. Apr 1992 S
5103384 Drohan Apr 1992 A
D326311 Lenci et al. May 1992 S
D327115 Rogers Jun 1992 S
5121511 Sakamoto et al. Jun 1992 A
D327729 Rogers Jul 1992 S
5127580 Fu-I Jul 1992 A
5134251 Martin Jul 1992 A
D328944 Robbins Aug 1992 S
5141016 Nowicki Aug 1992 A
D329504 Yuen Sep 1992 S
5143300 Cutler Sep 1992 A
5145114 Monch Sep 1992 A
5148556 Bottoms et al. Sep 1992 A
D330068 Haug et al. Oct 1992 S
D330408 Thacker Oct 1992 S
D330409 Raffo Oct 1992 S
5153976 Benchaar et al. Oct 1992 A
5154355 Gonzalez Oct 1992 A
5154483 Zeller Oct 1992 A
5161567 Humpert Nov 1992 A
5163752 Copeland et al. Nov 1992 A
5171429 Yasuo Dec 1992 A
5172860 Yuch Dec 1992 A
5172862 Heimann et al. Dec 1992 A
5172866 Ward Dec 1992 A
D332303 Klose Jan 1993 S
D332994 Huen Feb 1993 S
D333339 Klose Feb 1993 S
5197767 Kimura et al. Mar 1993 A
D334794 Klose Apr 1993 S
D335171 Lenci et al. Apr 1993 S
5201468 Freier et al. Apr 1993 A
5206963 Wiens May 1993 A
5207499 Vajda et al. May 1993 A
5213267 Heimann et al. May 1993 A
5220697 Birchfield Jun 1993 A
D337839 Zeller Jul 1993 S
5228625 Grassberger Jul 1993 A
5230106 Henkin et al. Jul 1993 A
D338542 Yuen Aug 1993 S
5232162 Chih Aug 1993 A
D339492 Klose Sep 1993 S
D339627 Klose Sep 1993 S
D339848 Gottwald Sep 1993 S
5246169 Heimann et al. Sep 1993 A
5246301 Hirasawa Sep 1993 A
D340376 Klose Oct 1993 S
5253670 Perrott Oct 1993 A
5253807 Newbegin Oct 1993 A
5254809 Martin Oct 1993 A
D341007 Haug et al. Nov 1993 S
D341191 Klose Nov 1993 S
D341220 Eagan Nov 1993 S
5263646 McCauley Nov 1993 A
5265833 Heimann et al. Nov 1993 A
5268826 Greene Dec 1993 A
5276596 Krenzel Jan 1994 A
5277391 Haug et al. Jan 1994 A
5286071 Storage Feb 1994 A
5288110 Allread Feb 1994 A
5294054 Benedict et al. Mar 1994 A
5297735 Heimann et al. Mar 1994 A
5297739 Allen Mar 1994 A
D345811 Van Deursen et al. Apr 1994 S
D346426 Warshawsky Apr 1994 S
D346428 Warshawsky Apr 1994 S
D346430 Warshawsky Apr 1994 S
D347262 Black et al. May 1994 S
D347265 Gottwald May 1994 S
5316216 Cammack et al. May 1994 A
D348720 Haug et al. Jul 1994 S
5329650 Zaccai et al. Jul 1994 A
D349947 Hing-Wah Aug 1994 S
5333787 Smith et al. Aug 1994 A
5333789 Garneys Aug 1994 A
5340064 Heimann et al. Aug 1994 A
5340165 Sheppard Aug 1994 A
D350808 Warshawsky Sep 1994 S
5344080 Matsui Sep 1994 A
5349987 Shieh Sep 1994 A
5356076 Bishop Oct 1994 A
5356077 Shames Oct 1994 A
D352092 Warshawsky Nov 1994 S
D352347 Dannenberg Nov 1994 S
D352766 Hill et al. Nov 1994 S
5368235 Drozdoff et al. Nov 1994 A
5369556 Zeller Nov 1994 A
5370427 Hoelle et al. Dec 1994 A
5385500 Schmidt Jan 1995 A
D355242 Warshawsky Feb 1995 S
D355703 Duell Feb 1995 S
D356626 Wang Mar 1995 S
5397064 Heitzman Mar 1995 A
5398872 Joubran Mar 1995 A
5398977 Berger et al. Mar 1995 A
5402812 Moineau et al. Apr 1995 A
5405089 Heimann et al. Apr 1995 A
5414879 Hiraishi et al. May 1995 A
5423348 Jezek et al. Jun 1995 A
5433384 Chan et al. Jul 1995 A
D361399 Carbone et al. Aug 1995 S
D361623 Huen Aug 1995 S
5441075 Clare Aug 1995 A
5449206 Lockwood Sep 1995 A
D363360 Santarsiero Oct 1995 S
5454809 Janssen Oct 1995 A
5468057 Megerle et al. Nov 1995 A
D364935 deBlois Dec 1995 S
D365625 Bova Dec 1995 S
D365646 deBlois Dec 1995 S
5476225 Chan Dec 1995 A
D366309 Huang Jan 1996 S
D366707 Kaiser Jan 1996 S
D366708 Santarsiero Jan 1996 S
D366709 Szmanski Jan 1996 S
D366710 Szymanski Jan 1996 S
5481765 Wang Jan 1996 A
D366948 Carbone Feb 1996 S
D367315 Andrus Feb 1996 S
D367333 Swyst Feb 1996 S
D367696 Andrus Mar 1996 S
D367934 Carbone Mar 1996 S
D368146 Carbone Mar 1996 S
D368317 Swyst Mar 1996 S
5499767 Morand Mar 1996 A
D368539 Carbone et al. Apr 1996 S
D368540 Santarsiero Apr 1996 S
D368541 Kaiser et al. Apr 1996 S
D368542 deBlois et al. Apr 1996 S
D369204 Andrus Apr 1996 S
D369205 Andrus Apr 1996 S
5507436 Ruttenberg Apr 1996 A
D369873 deBlois et al. May 1996 S
D369874 Santarsiero May 1996 S
D369875 Carbone May 1996 S
D370052 Chan et al. May 1996 S
D370250 Fawcett et al. May 1996 S
D370277 Kaiser May 1996 S
D370278 Nolan May 1996 S
D370279 deBlois May 1996 S
D370280 Kaiser May 1996 S
D370281 Johnstone et al. May 1996 S
5517392 Rousso et al. May 1996 A
5521803 Eckert et al. May 1996 A
D370542 Santarsiero Jun 1996 S
D370735 deBlois Jun 1996 S
D370987 Santarsiero Jun 1996 S
D370988 Santarsiero Jun 1996 S
D371448 Santarsiero Jul 1996 S
D371618 Nolan Jul 1996 S
D371619 Szymanski Jul 1996 S
D371856 Carbone Jul 1996 S
D372318 Szymanski Jul 1996 S
D372319 Carbone Jul 1996 S
5531625 Zhong Jul 1996 A
5539624 Dougherty Jul 1996 A
D372548 Carbone Aug 1996 S
D372998 Carbone Aug 1996 S
D373210 Santarsiero Aug 1996 S
D373434 Nolan Sep 1996 S
D373435 Nolan Sep 1996 S
D373645 Johnstone et al. Sep 1996 S
D373646 Szymanski et al. Sep 1996 S
D373647 Kaiser Sep 1996 S
D373648 Kaiser Sep 1996 S
D373649 Carbone Sep 1996 S
D373651 Szymanski Sep 1996 S
D373652 Kaiser Sep 1996 S
5551637 Lo Sep 1996 A
5552973 Hsu Sep 1996 A
5558278 Gallorini Sep 1996 A
D374271 Fleischmann Oct 1996 S
D374297 Kaiser Oct 1996 S
D374298 Swyst Oct 1996 S
D374299 Carbone Oct 1996 S
D374493 Szymanski Oct 1996 S
D374494 Santarsiero Oct 1996 S
D374732 Kaiser Oct 1996 S
D374733 Santasiero Oct 1996 S
5560548 Mueller et al. Oct 1996 A
5567115 Carbone Oct 1996 A
D375541 Michaluk Nov 1996 S
5577664 Heitzman Nov 1996 A
D376217 Kaiser Dec 1996 S
D376860 Santarsiero Dec 1996 S
D376861 Johnstone et al. Dec 1996 S
D376862 Carbone Dec 1996 S
5605173 Arnaud Feb 1997 A
D378401 Neufeld et al. Mar 1997 S
5613638 Blessing Mar 1997 A
5613639 Storm et al. Mar 1997 A
5615837 Roman Apr 1997 A
5624074 Parisi Apr 1997 A
5624498 Lee et al. Apr 1997 A
D379212 Chan May 1997 S
D379404 Spelts May 1997 S
5632049 Chen May 1997 A
D381405 Waidele et al. Jul 1997 S
D381737 Chan Jul 1997 S
D382936 Shfaram Aug 1997 S
5653260 Huber Aug 1997 A
5667146 Pimentel et al. Sep 1997 A
D385332 Andrus Oct 1997 S
D385333 Caroen et al. Oct 1997 S
D385334 Caroen et al. Oct 1997 S
D385616 Dow et al. Oct 1997 S
D385947 Dow et al. Nov 1997 S
D387230 von Buelow et al. Dec 1997 S
5697557 Blessing et al. Dec 1997 A
5699964 Bergmann et al. Dec 1997 A
5702057 Huber Dec 1997 A
D389558 Andrus Jan 1998 S
5704080 Kuhne Jan 1998 A
5707011 Bosio Jan 1998 A
5718380 Schorn et al. Feb 1998 A
D392369 Chan Mar 1998 S
5730361 Thonnes Mar 1998 A
5730362 Cordes Mar 1998 A
5730363 Kress Mar 1998 A
5742961 Casperson et al. Apr 1998 A
D394490 Andrus et al. May 1998 S
5746375 Guo May 1998 A
5749552 Fan May 1998 A
5749602 Delaney et al. May 1998 A
D394899 Caroen et al. Jun 1998 S
D395074 Neibrook Jun 1998 S
D395142 Neibrook Jun 1998 S
5764760 Grandbert et al. Jun 1998 A
5765760 Kuo Jun 1998 A
5769802 Wang Jun 1998 A
5772120 Huber Jun 1998 A
5778939 Hok-Yin Jul 1998 A
5788157 Kress Aug 1998 A
D398370 Purdy Sep 1998 S
5806771 Loschelder et al. Sep 1998 A
5819791 Chronister et al. Oct 1998 A
5820574 Henkin et al. Oct 1998 A
5823431 Pierce Oct 1998 A
5823442 Guo Oct 1998 A
5826803 Cooper Oct 1998 A
5833138 Crane et al. Nov 1998 A
5839666 Heimann et al. Nov 1998 A
D402350 Andrus Dec 1998 S
D403754 Gottwald Jan 1999 S
D404116 Bosio Jan 1999 S
5855348 Fornara Jan 1999 A
5860599 Lin Jan 1999 A
5862543 Reynoso et al. Jan 1999 A
5862985 Neibrook et al. Jan 1999 A
D405502 Tse Feb 1999 S
5865375 Hsu Feb 1999 A
5865378 Hollinshead et al. Feb 1999 A
5873647 Kurtz et al. Feb 1999 A
D408893 Tse Apr 1999 S
D409276 Ratzlaff May 1999 S
D410276 Ben-Tsur May 1999 S
5918809 Simmons Jul 1999 A
5918811 Denham et al. Jul 1999 A
D413157 Ratzlaff Aug 1999 S
5937905 Santos Aug 1999 A
5938123 Heitzman Aug 1999 A
5941462 Sandor Aug 1999 A
5947388 Woodruff Sep 1999 A
D415247 Haverstraw et al. Oct 1999 S
5961046 Joubran Oct 1999 A
5967417 Mantel Oct 1999 A
5979776 Williams Nov 1999 A
5992762 Wang Nov 1999 A
D418200 Ben-Tsur Dec 1999 S
5997047 Pimentel et al. Dec 1999 A
6003165 Loyd Dec 1999 A
D418902 Haverstraw et al. Jan 2000 S
D418903 Haverstraw et al. Jan 2000 S
D418904 Milrud Jan 2000 S
D421099 Mullenmeister Feb 2000 S
6021960 Kehat Feb 2000 A
D422053 Brenner et al. Mar 2000 S
6042027 Sandvik Mar 2000 A
6042155 Lockwood Mar 2000 A
D422336 Haverstraw et al. Apr 2000 S
D422337 Chan Apr 2000 S
D423083 Haug et al. Apr 2000 S
D423110 Cipkowski Apr 2000 S
D424160 Haug et al. May 2000 S
D424161 Haug et al. May 2000 S
D424162 Haug et al. May 2000 S
D424163 Haug et al. May 2000 S
D426290 Haug et al. Jun 2000 S
D427661 Haverstraw et al. Jul 2000 S
D428110 Haug et al. Jul 2000 S
D428125 Chan Jul 2000 S
6085780 Morris Jul 2000 A
D430267 Milrud et al. Aug 2000 S
6095801 Spiewak Aug 2000 A
D430643 Tse Sep 2000 S
6113002 Finkbeiner Sep 2000 A
6123272 Havican et al. Sep 2000 A
6123308 Faisst Sep 2000 A
D432624 Chan Oct 2000 S
D432625 Chan Oct 2000 S
D433096 Tse Oct 2000 S
D433097 Tse Oct 2000 S
6126091 Heitzman Oct 2000 A
6126290 Veigel Oct 2000 A
D434109 Ko Nov 2000 S
6164569 Hollinshead et al. Dec 2000 A
6164570 Smeltzer Dec 2000 A
D435889 Ben-Tsur et al. Jan 2001 S
D439305 Slothower Mar 2001 S
6199580 Morris Mar 2001 B1
6202679 Titus Mar 2001 B1
D440276 Slothower Apr 2001 S
D440277 Slothower Apr 2001 S
D440278 Slothower Apr 2001 S
D441059 Fleischmann Apr 2001 S
6209799 Finkbeiner Apr 2001 B1
D443025 Kollmann et al. May 2001 S
D443026 Kollmann et al. May 2001 S
D443027 Kollmann et al. May 2001 S
D443029 Kollmann et al. May 2001 S
6223998 Heitzman May 2001 B1
6230984 Jager May 2001 B1
6230988 Chao et al. May 2001 B1
6230989 Haverstraw et al. May 2001 B1
D443335 Andrus Jun 2001 S
D443336 Kollmann et al. Jun 2001 S
D443347 Gottwald Jun 2001 S
6241166 Overington et al. Jun 2001 B1
6250572 Chen Jun 2001 B1
D444865 Gottwald Jul 2001 S
D445871 Fan Jul 2001 S
6254014 Clearman et al. Jul 2001 B1
6270278 Mauro Aug 2001 B1
6276004 Bertrand et al. Aug 2001 B1
6283447 Fleet Sep 2001 B1
6286764 Garvey et al. Sep 2001 B1
D449673 Kollmann et al. Oct 2001 S
D450370 Wales et al. Nov 2001 S
D450805 Lindholm et al. Nov 2001 S
D450806 Lindholm et al. Nov 2001 S
D450807 Lindholm et al. Nov 2001 S
D451169 Lindholm et al. Nov 2001 S
D451170 Lindholm et al. Nov 2001 S
D451171 Lindholm et al. Nov 2001 S
D451172 Lindholm et al. Nov 2001 S
6321777 Wu Nov 2001 B1
6322006 Guo Nov 2001 B1
D451583 Lindholm et al. Dec 2001 S
D451980 Lindholm et al. Dec 2001 S
D452553 Lindholm et al. Dec 2001 S
D452725 Lindholm et al. Jan 2002 S
D452897 Gillette et al. Jan 2002 S
6336764 Liu Jan 2002 B1
D453369 Lobermeier Feb 2002 S
D453370 Lindholm et al. Feb 2002 S
D453551 Lindholm et al. Feb 2002 S
6349735 Gul Feb 2002 B2
D454617 Curbbun et al. Mar 2002 S
D454938 Lord Mar 2002 S
6375342 Koren et al. Apr 2002 B1
D457937 Lindholm et al. May 2002 S
6382531 Tracy May 2002 B1
D458348 Mullenmeister Jun 2002 S
6412711 Fan Jul 2002 B1
D461224 Lobermeier Aug 2002 S
D461878 Green et al. Aug 2002 S
6450425 Chen Sep 2002 B1
6454186 Haverstraw et al. Sep 2002 B2
6463658 Larsson Oct 2002 B1
6464265 Mikol Oct 2002 B1
D465552 Tse Nov 2002 S
D465553 Singtoroj Nov 2002 S
6484952 Koren Nov 2002 B2
D468800 Tse Jan 2003 S
D469165 Lim Jan 2003 S
6502796 Wales Jan 2003 B1
6508415 Wang Jan 2003 B2
6511001 Huang Jan 2003 B1
D470219 Schweitzer Feb 2003 S
6516070 Macey Feb 2003 B2
D471253 Tse Mar 2003 S
D471953 Colligan et al. Mar 2003 S
6533194 Marsh et al. Mar 2003 B2
6537455 Farley Mar 2003 B2
D472958 Ouyoung Apr 2003 S
6550697 Lai Apr 2003 B2
6585174 Huang Jul 2003 B1
6595439 Chen Jul 2003 B1
6607148 Marsh et al. Aug 2003 B1
6611971 Antoniello et al. Sep 2003 B1
6637676 Zieger et al. Oct 2003 B2
6641057 Thomas et al. Nov 2003 B2
D483837 Fan Dec 2003 S
6659117 Gilmore Dec 2003 B2
6659372 Marsh et al. Dec 2003 B2
D485887 Luettgen et al. Jan 2004 S
D486888 Lobermeier Feb 2004 S
6691338 Zieger Feb 2004 B2
6691933 Bosio Feb 2004 B1
D487301 Haug et al. Mar 2004 S
D487498 Blomstrom Mar 2004 S
6701953 Agosta Mar 2004 B2
6715699 Greenberg et al. Apr 2004 B1
6719218 Cool et al. Apr 2004 B2
D489798 Hunt May 2004 S
D490498 Golichowski May 2004 S
6736336 Wong May 2004 B2
6739523 Haverstraw et al. May 2004 B2
6739527 Chung May 2004 B1
D492004 Haug et al. Jun 2004 S
D492007 Kollmann et al. Jun 2004 S
6742725 Fan Jun 2004 B1
D493208 Lin Jul 2004 S
D493864 Haug et al. Aug 2004 S
D494655 Lin Aug 2004 S
D494661 Zieger et al. Aug 2004 S
D495027 Mazzola Aug 2004 S
6776357 Naito Aug 2004 B1
6789751 Fan Sep 2004 B1
D496987 Glunk Oct 2004 S
D497974 Haug et al. Nov 2004 S
D498514 Haug et al. Nov 2004 S
D500121 Blomstrom Dec 2004 S
D500549 Blomstrom Jan 2005 S
D501242 Blomstrom Jan 2005 S
D502760 Zieger et al. Mar 2005 S
D502761 Zieger et al. Mar 2005 S
D503211 Lin Mar 2005 S
6863227 Wollenberg et al. Mar 2005 B2
6869030 Blessing et al. Mar 2005 B2
D503774 Zieger Apr 2005 S
D503775 Zieger Apr 2005 S
D503966 Zieger Apr 2005 S
6899292 Titinet May 2005 B2
D506243 Wu Jun 2005 S
D507037 Wu Jul 2005 S
6935581 Titinet Aug 2005 B2
D509280 Bailey et al. Sep 2005 S
D509563 Bailey et al. Sep 2005 S
D510123 Tsai Sep 2005 S
D511809 Haug et al. Nov 2005 S
D512119 Haug et al. Nov 2005 S
6981661 Chen Jan 2006 B1
D516169 Wu Feb 2006 S
7000854 Malek et al. Feb 2006 B2
7004409 Okubo Feb 2006 B2
7004410 Li Feb 2006 B2
D520109 Wu May 2006 S
7040554 Drennow May 2006 B2
7048210 Clark May 2006 B2
7055767 Ko Jun 2006 B1
7070125 Williams et al. Jul 2006 B2
7077342 Lee Jul 2006 B2
D527440 Macan Aug 2006 S
7093780 Chung Aug 2006 B1
7097122 Farley Aug 2006 B1
D528631 Gillette et al. Sep 2006 S
7100845 Hsieh Sep 2006 B1
7111795 Thong Sep 2006 B2
7111798 Thomas et al. Sep 2006 B2
D530389 Glenslak et al. Oct 2006 S
D530392 Tse Oct 2006 S
D531259 Hsieh Oct 2006 S
7114666 Luettgen et al. Oct 2006 B2
D533253 Luettgen et al. Dec 2006 S
D534239 Dingler et al. Dec 2006 S
D535354 Wu Jan 2007 S
D536060 Sadler Jan 2007 S
7156325 Chen Jan 2007 B1
D538391 Mazzola Mar 2007 S
D540424 Kirar Apr 2007 S
D540425 Endo et al. Apr 2007 S
D540426 Cropelli Apr 2007 S
D540427 Bouroullec et al. Apr 2007 S
D542391 Gilbert May 2007 S
D542393 Haug et al. May 2007 S
7229031 Schmidt Jun 2007 B2
7243863 Glunk Jul 2007 B2
7246760 Marty et al. Jul 2007 B2
D552713 Rexach Oct 2007 S
7278591 Clearman et al. Oct 2007 B2
D556295 Genord et al. Nov 2007 S
7299510 Tsai Nov 2007 B2
D557763 Schonherr et al. Dec 2007 S
D557764 Schonherr et al. Dec 2007 S
D557765 Schonherr et al. Dec 2007 S
D558301 Hoernig Dec 2007 S
7303151 Wu Dec 2007 B2
D559357 Wang et al. Jan 2008 S
D559945 Patterson et al. Jan 2008 S
D560269 Tse Jan 2008 S
D562937 Schonherr et al. Feb 2008 S
D562938 Blessing Feb 2008 S
D562941 Pan Feb 2008 S
7331536 Zhen et al. Feb 2008 B1
7347388 Chung Mar 2008 B2
D565699 Berberet Apr 2008 S
D565703 Lammel et al. Apr 2008 S
D566228 Neagoe Apr 2008 S
D566229 Rexach Apr 2008 S
D567328 Spangler et al. Apr 2008 S
7360723 Lev Apr 2008 B2
7364097 Okuma Apr 2008 B2
7374112 Bulan et al. May 2008 B1
7384007 Ho Jun 2008 B2
D577099 Leber Sep 2008 S
D577793 Leber Sep 2008 S
D580012 Quinn et al. Nov 2008 S
D580513 Quinn et al. Nov 2008 S
D581014 Quinn et al. Nov 2008 S
7503345 Paterson et al. Mar 2009 B2
7520448 Luettgen et al. Apr 2009 B2
7537175 Miura et al. May 2009 B2
D608412 Barnard et al. Jan 2010 S
D608413 Barnard et al. Jan 2010 S
D616061 Whitaker et al. May 2010 S
D621904 Yoo et al. Aug 2010 S
D621905 Yoo et al. Aug 2010 S
7832662 Gallo Nov 2010 B2
D628676 Lee Dec 2010 S
D629867 Rexach et al. Dec 2010 S
20020109023 Thomas et al. Aug 2002 A1
20030062426 Gregory et al. Apr 2003 A1
20040074993 Thomas et al. Apr 2004 A1
20040118949 Marks Jun 2004 A1
20040217209 Bui Nov 2004 A1
20040244105 Tsai Dec 2004 A1
20050001072 Bolus et al. Jan 2005 A1
20050082824 Luettgen et al. Apr 2005 A1
20050284967 Korb Dec 2005 A1
20060016908 Chung Jan 2006 A1
20060016913 Lo Jan 2006 A1
20060043214 Macan et al. Mar 2006 A1
20060060678 Mazzola Mar 2006 A1
20060102747 Ho May 2006 A1
20060157590 Clearman et al. Jul 2006 A1
20060163391 Schorn Jul 2006 A1
20060219822 Miller et al. Oct 2006 A1
20060283986 Chung Dec 2006 A1
20070040054 Farzan Feb 2007 A1
20070200013 Hsiao Aug 2007 A1
20070246577 Leber Oct 2007 A1
20070252021 Cristina Nov 2007 A1
20070272770 Leber et al. Nov 2007 A1
20080073449 Haynes et al. Mar 2008 A1
20080083844 Leber et al. Apr 2008 A1
20080111004 Huffman May 2008 A1
20080121293 Leber May 2008 A1
20080156897 Leber Jul 2008 A1
20080156902 Luettgen et al. Jul 2008 A1
20080156903 Leber Jul 2008 A1
20080223957 Schorn Sep 2008 A1
20080272203 Leber Nov 2008 A1
20090200404 Cristina Aug 2009 A1
20090218420 Mazzola Sep 2009 A1
20090307836 Blattner et al. Dec 2009 A1
20100320290 Luettgen et al. Dec 2010 A1
20110000982 Luettgen et al. Jan 2011 A1
20110000983 Chang Jan 2011 A1
20110011953 Macan et al. Jan 2011 A1
Foreign Referenced Citations (70)
Number Date Country
659510 Mar 1963 CA
2341041 Aug 1999 CA
234284 Mar 1963 CH
352813 May 1922 DE
848627 Sep 1952 DE
854100 Oct 1952 DE
2360534 Jun 1974 DE
2806093 Aug 1979 DE
3107808 Sep 1982 DE
3246327 Jun 1984 DE
3440901 Jul 1985 DE
3706320 Mar 1988 DE
8804236 Jun 1988 DE
4034695 May 1991 DE
19608085 Sep 1996 DE
202005000881 Mar 2005 DE
102006032017 Jan 2008 DE
0167063 Jun 1985 EP
0478999 Apr 1992 EP
0514753 Nov 1992 EP
0435030 Jul 1993 EP
0617644 Oct 1994 EP
0683354 Nov 1995 EP
0687851 Dec 1995 EP
0695907 Feb 1996 EP
0700729 Mar 1996 EP
0719588 Jul 1996 EP
0721082 Jul 1996 EP
0733747 Sep 1996 EP
0808661 Nov 1997 EP
0726811 Jan 1998 EP
2164642 Oct 2010 EP
2260945 Dec 2010 EP
538538 Jun 1922 FR
873808 Jul 1942 FR
1039750 Oct 1953 FR
1098836 Aug 1955 FR
2596492 Oct 1987 FR
2695452 Mar 1994 FR
3314 Jan 1914 GB
10086 Jan 1894 GB
129812 Jul 1919 GB
204600 Oct 1923 GB
634483 Mar 1950 GB
971866 Oct 1964 GB
1111126 Apr 1968 GB
2066074 Jan 1980 GB
2066704 Jul 1981 GB
2068778 Aug 1981 GB
2121319 Dec 1983 GB
2155984 Oct 1985 GB
2156932 Oct 1985 GB
2199771 Jul 1988 GB
2298595 Nov 1996 GB
2337471 Nov 1999 GB
327400 Jul 1935 IT
350359 Jul 1937 IT
563459 May 1957 IT
S63-181459 Nov 1988 JP
H2-78660 Jun 1990 JP
4062238 Feb 1992 JP
4146708 May 1992 JP
8902957 Jun 1991 NL
WO9312894 Jul 1993 WO
WO9325839 Dec 1993 WO
WO9600617 Jan 1996 WO
WO9830336 Jul 1998 WO
WO9959726 Nov 1999 WO
WO0010720 Mar 2000 WO
WO201004593 Jan 2010 WO
Non-Patent Literature Citations (3)
Entry
Color Copy, Labeled 1A, Gemlo, available at least as early as Dec. 2, 1998.
Color Copy, Labeled 1B, Gemlo, available at least as early as Dec. 2, 1998.
Author Unknown, “Flipside: The Bolder Look of Kohler,” 1 page, at least as early as Jun. 2011.
Related Publications (1)
Number Date Country
20080272591 A1 Nov 2008 US
Provisional Applications (3)
Number Date Country
60916092 May 2007 US
60916146 May 2007 US
60916219 May 2007 US