Embodiments of the invention relate to cellular communications. More particularly, embodiments of the invention relate to hierarchical cell deployment within a cellular communication system.
Cellular radiotelephone communications utilize a network of cells having a base station with one or more antennae that allow the base station to communicate with multiple mobile devices within the cell. These cells typically overlap to provide complete coverage. A mobile device may move from between cells, which results in communication with multiple base stations.
A recent development is the concept of hierarchical cells. A hierarchical cell structure may include, for example, macrocells, microcells and picocells. Macrocells may provide coverage over a relatively large area. One or more microcells may exist within a macrocell and may be used for outdoor coverage, where high capacity is required and larger macrocells cannot cover, such as city streets hidden by large buildings.
One or more picocells may exist within a microcell. Picocells could be deployed for private, indoor services. The picocell locations could be in areas where there is a demand for high data rate services, such as laptop networking or multimedia conferencing. While this hierarchical cell architecture may provide an improvement over other network architectures, the resulting cell structure may not result in optimal performance.
Embodiments of the invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.
In the following description, numerous specific details are set forth. However, embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.
The hierarchical cell structure described herein may be applicable to any wireless communications network utilizing cells. For example, the wireless network may be a Worldwide Interoperability for Microwave Access (WiMAX) network. WiMAX is defined by standards available from the WiMAX Forum, formed in June 2001 to promote conformance and interoperability of the IEEE 802.16 standard, officially known as WirelessMAN. IEEE 802.16 corresponds to IEEE 802.15-2005 entitled “Air Interface for Fixed Broadband Wireless Access Systems” approved Dec. 7, 2005 as well as related documents. Other wireless network protocols may also be supported including, for example, Time Division, Multiple Access (TDMA) protocols, Global System for Mobile Communications (GSM) protocols, Code Division, Multiple Access (CDMA) protocols, and/or any other type of wireless communications protocol.
In the examples provided herein, a limited number of levels within a hierarchical cell structure are provided; however, any number of cell levels may be supported. In one embodiment, up to 16 cell types may be supported. In alternate embodiments a different number of cell types may be supported, for example, 8 cell types, 32 cell types, 24 cell types. In general the smaller cells are better for low mobility and high data rate capacities whereas the larger cells are more suitable for high mobility and lower data rates. In order to reduce the handoff frequency and achieve improved data rate, techniques described herein may be utilized to identify cell types prior to handoff.
Handoff procedures typically entail a significant amount of signaling and impose service interrupts and potential packet loss. For example if a user is moving quickly, the mobile device should handoff to a larger cell in order to reduce the handoff frequency and associated handoff signaling and service disruption. In one embodiment, in order to enable an intelligent cell type selection, techniques described herein utilize an identifier of a cell type and size. In one embodiment, a 4-bit TLV identifying the cell type and size may be included in a IEEE 802.16 compliant header, for example, in the MOB_NBR_ADV or the DL_MAP messages. As another example, the DCD/UCD data structure for a cell can include a cell type parameter. The DCD/UCD data structure contains downlink and uplink channel related information for a cell. Other value sizes, message types, and communications protocols may also be supported.
Base station 100 may provide an access point for wireless communications for one or more mobile wireless devices such as, for example, wireless mobile device 175. Any number of wireless mobile devices may be supported. A wireless mobile device may be, for example, a cellular telephone, a laptop computer, a personal digital assistant, a smart phone, or any other wireless-enabled device. Base station 100 may have a range (e.g., 1 km) corresponding to macrocell 110.
As mobile wireless device 175 moves within cell 110, it may communicate with base station 100. If mobile wireless device 175 exits cell 110, it may be transferred to another base station (not illustrated in
In some network configurations a cell (e.g., 110) may include one or more microcells (e.g., 135, 145), each of which may have a corresponding base station (e.g., 130, 140). A microcell may be an area (e.g., 100 m) in which a microcell base station may provide improved coverage for mobile wireless devices to fill coverage holes or provide higher overall capacity. Within a microcell (e.g., 145) there may be provided one or more picocells (e.g., 155, 165). A picocell may have an area (e.g., 10 m) in which a picocell base station (e.g., 150, 160) may fill coverage holes or provide higher overall capacity.
By determining the movement of a mobile wireless device as described herein a base station (or other network component) may reduce the frequency of handovers, provide more efficient handovers, improved signal quality and/or other advantages that may not be available without information related to movement of the mobile wireless device.
The cell type information may be utilized for network-initiated and/or for mobile device-initiated handoffs. For example, the mobile device and/or the network may determine the frequency of handoffs and utilize that information to determine whether the mobile device should be moved to a larger (in the case of a high handoff frequency) or a smaller (in the case of a low handoff frequency) cell. In one embodiment, one or more of the following characteristics may be used to determine a cell type to transfer to: a handoff frequency, a travel speed, a direction of travel, a bandwidth usage, a current cell type. Additional and/or different characteristics may also be supported.
A mobile wireless electronic device may communicate with a base station utilizing any appropriate wireless protocol, 300. The base station may be at any level in the hierarchical cell architecture as described herein.
During the time that the mobile wireless electronic device communicates with the first base station, one or more characteristics corresponding to the communication may be determined, 310. These characteristics may include, for example, handoff frequency for the mobile device, a travel speed of the mobile device, a direction of travel for the mobile device, a bandwidth usage, a current cell type. These characteristics may be determined by the mobile device, the base station and/or any other network entity.
Utilizing the characteristics corresponding to the communication, the preferred next cell type may be determined, 320. The next cell type may be determined by the mobile device, the base station and/or any other network entity. For example, if the mobile device has experienced a handoff frequency above a specified threshold, a larger cell type may be preferred. As another example, if the mobile device has experienced dropped data and/or lower than requested throughput, a smaller cell type may be preferred.
When the next handoff occurs, the mobile device may transition to a cell of the preferred cell type, 330. The handoff may occur as a result of the mobile device reaching a cell boundary or the handoff may occur as a result of determining that a different cell type is preferred. For example, the mobile device may be within a picocell and a macrocell. As the bandwidth usage of the mobile device increases, the mobile device may transition to the picocell that can provide increased data rates.
In one embodiment, messages used in association with a handoff allow the mobile device, base stations and/or other network devices to determine the type of cell currently used by the mobile device as well as the type of cell to which the mobile device may transition. After the transition the mobile device may communicate with a second base station that corresponds to the preferred cell type, 340.
Electronic system 400 includes bus 405 or other communication device to communicate information, and processor 410 coupled to bus 405 to process information. While electronic device 400 is illustrated with a single processor, electronic device 400 can include multiple processors and/or co-processors. Electronic device 400 further includes random access memory (RAM) or other dynamic storage device 420 (referred to as memory), coupled to bus 405 to store information and instructions to be executed by processor 410. Memory 420 also can be used to store temporary variables or other intermediate information during execution of instructions by processor 410.
Electronic device 400 also includes read only memory (ROM) and/or other static storage device 430 coupled to bus 405 to store static information and instructions for processor 410. Data storage device 440 is coupled to bus 405 to store information and instructions. Data storage device 440 such as a magnetic disk or optical disc and corresponding drive can be coupled to electronic device 400.
Electronic device 400 can also be coupled via bus 405 to display device 450, such as liquid crystal display (LCD) or other display device, to display information to a user. Input device(s) 460 may include any type of user input device and may be coupled to bus 405 to communicate information and command selections to processor 410. Electronic device 400 further includes network interface 470 to provide access to a network, such as a local area network. Network interface 470 may include one or more antennae 480 to communicate utilizing wireless protocols.
Base station 500 may include bus 505 or other communication device to communicate information, and processor 510 coupled to bus 505 that may process information. While base station 500 is illustrated with a single processor, base station 500 may include multiple processors and/or co-processors. Base station 500 further may include random access memory (RAM) or other dynamic storage device 520, coupled to bus 505 and may store information and instructions that may be executed by processor 510. For example, the process of
Base station 500 may also include read only memory (ROM) and/or other static storage device 530 coupled to bus 505 that may store static information and instructions for processor 510. Data storage device 540 may be coupled to bus 505 to store information and instructions. Data storage device 540 such as a magnetic disk or optical disc and corresponding drive may be coupled to base station 500.
Base station 500 further may include network interface(s) 580 to provide access to a network. Network interface(s) 580 may include, for example, a wireless network interface having antenna 585, which may represent one or more antenna(e) that may communicate utilizing any of the protocols described herein. Network interface(s) 580 may also include, for example, a wired network interface to communicate with remote devices via network cable 587, which may be, for example, an Ethernet cable, a coaxial cable, a fiber optic cable, a serial cable, or a parallel cable.
A computer-readable medium includes any mechanism that provides (e.g., memory 520, ROM 530, storage device 540) content (e.g., computer executable instructions) in a form readable by an electronic device (e.g., a computer, a personal digital assistant, a cellular telephone). For example, a computer-readable medium includes read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices, etc.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
While the invention has been described in terms of several embodiments, those skilled in the art will recognize that the invention is not limited to the embodiments described, but can be practiced with modification and alteration within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.
This application claims priority to U.S. Provisional Application No. 60/894,146, entitled, “HIERARCHICAL CELL DEPLOYMENT,” filed on Mar. 9, 2007.
Number | Name | Date | Kind |
---|---|---|---|
5280471 | Kondou et al. | Jan 1994 | A |
5551064 | Nobbe et al. | Aug 1996 | A |
5561841 | Markus | Oct 1996 | A |
5568654 | Fukawa | Oct 1996 | A |
5787344 | Scheinert | Jul 1998 | A |
5864764 | Thro et al. | Jan 1999 | A |
5910946 | Csapo | Jun 1999 | A |
6047183 | Kingdon et al. | Apr 2000 | A |
6128496 | Scheinert | Oct 2000 | A |
6292891 | Bergenwall et al. | Sep 2001 | B1 |
6370378 | Yahagi | Apr 2002 | B1 |
6405048 | Haartsen | Jun 2002 | B1 |
RE37820 | Scheinert | Aug 2002 | E |
6459900 | Scheinert | Oct 2002 | B1 |
6496700 | Chawla et al. | Dec 2002 | B1 |
6603975 | Inouchi et al. | Aug 2003 | B1 |
6636742 | Torkki et al. | Oct 2003 | B1 |
6711388 | Neitiniemi | Mar 2004 | B1 |
6944426 | Esser et al. | Sep 2005 | B1 |
20020075846 | Valentine et al. | Jun 2002 | A1 |
20020089951 | Hyun et al. | Jul 2002 | A1 |
20020131387 | Pitcher et al. | Sep 2002 | A1 |
20030031130 | Vanghi | Feb 2003 | A1 |
20030073455 | Hashem et al. | Apr 2003 | A1 |
20030109254 | Motegi et al. | Jun 2003 | A1 |
20030115362 | Tarvainen et al. | Jun 2003 | A1 |
20040097234 | Rajkotia et al. | May 2004 | A1 |
20040209602 | Joyce et al. | Oct 2004 | A1 |
20050282562 | Lee et al. | Dec 2005 | A1 |
20080037472 | Ryu et al. | Feb 2008 | A1 |
20080039089 | Berkman et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
505106 | Sep 1992 | EP |
Entry |
---|
International Search Report and Written Opinion for PCT Patent Application No. PCT/US04/25487 mailed Aug. 6, 2004, 10 pgs. |
Number | Date | Country | |
---|---|---|---|
20080219216 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60894146 | Mar 2007 | US |