The field of the invention is data processing, or, more specifically, methods, apparatus, and products for distributing management responsibilities for a storage system.
Enterprise storage systems can frequently include many storage devices that are communicatively coupled to multiple storage array controllers. In many systems, one of the storage array controllers may serve as a primary storage array controller at a particular point in time, while other storage array controllers serve as secondary storage array controllers. The storage array controllers may also include control mechanisms that are capable of gathering information about the storage system, as well as taking some action that may be selected in dependence upon the gathered information, such as queueing commands to be executed by entities within the storage system, broadcasting commands to be executed by entities within the storage system, and so on. In such an example, the control mechanism executing on the primary storage array controller may be responsible for gathering information about the storage system and initiating an action that can be selected in dependence upon the gathered information. Issues may arise, however, when a disruption occurs between the time that information about the storage system is gathered and an action that is selected in dependence upon the gathered information is initiated.
Methods, apparatuses, and products for distributing management responsibilities for a storage system that includes a storage array controller and a plurality of storage devices, including: identifying a plurality of elements in the storage system; for each of the plurality of elements in the storage system, creating a distributed manager, wherein each distributed manager is configured for gathering information describing the state of the associated element in the storage system, determining an action to perform against the associated element in the storage system, and executing an approved action against the associated element in the storage system; and creating a distributed management hierarchy that includes each of the distributed managers.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of example embodiments of the invention as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of example embodiments of the invention.
Example methods, apparatus, and products for distributing management responsibilities for a storage system in accordance with the present disclosure are described with reference to the accompanying drawings, beginning with
The computing devices (164, 166, 168, 170) in the example of
The local area network (160) of
The example storage arrays (102, 104) of
Each storage array controller (106, 112) may be implemented in a variety of ways, including as a Field Programmable Gate Array (‘FPGA’), a Programmable Logic Chip (‘PLC’), an Application Specific Integrated Circuit (‘ASIC’), or computing device that includes discrete components such as a central processing unit, computer memory, and various adapters. Each storage array controller (106, 112) may include, for example, a data communications adapter configured to support communications via the SAN (158) and the LAN (160). Although only one of the storage array controllers (112) in the example of
Each write buffer device (148, 152) may be configured to receive, from the storage array controller (106, 112), data to be stored in the storage devices (146). Such data may originate from any one of the computing devices (164, 166, 168, 170). In the example of
A ‘storage device’ as the term is used in this specification refers to any device configured to record data persistently. The term ‘persistently’ as used here refers to a device's ability to maintain recorded data after loss of a power source. Examples of storage devices may include mechanical, spinning hard disk drives, Solid-state drives (e.g., “Flash drives”), and the like.
The arrangement of computing devices, storage arrays, networks, and other devices making up the example system illustrated in
Distributing management responsibilities for a storage system in accordance with embodiments of the present disclosure is generally implemented with computers. In the system of
The storage array controller (202) of
The storage array controller (202) of
Stored in RAM (214) is an operating system (246). Examples of operating systems useful in storage array controllers (202) configured for distributing management responsibilities for a storage system according to embodiments of the present disclosure include UNIX™, Linux™, Microsoft Windows™, and others as will occur to those of skill in the art. Also stored in RAM (236) is a distributed manager creation module (248), a module that includes computer program instructions useful in distributing management responsibilities for a storage system that includes a storage array controller (202) and a plurality of storage devices (212). The manager creation module may be configured for identifying a plurality of elements in the storage system, creating a distributed manager for each of the plurality of elements in the storage system, and creating a distributed management hierarchy that includes each of the distributed managers, as will be described in greater detail below.
Also stored in RAM (236) is a distributed manager (250). Although the example depicted in
The storage array controller (202) of
The storage array controller (202) of
The storage array controller (202) of
The storage array controller (202) of
Readers will recognize that these components, protocols, adapters, and architectures are for illustration only, not limitation. Such a storage array controller may be implemented in a variety of different ways, each of which is well within the scope of the present disclosure.
For further explanation,
The example method depicted in
In the example method depicted in
The example method depicted in
The distributed manager (316) depicted in
The distributed manager (316) depicted in
The distributed manager (316) depicted in
The example method depicted in
For further explanation,
In the example method depicted in
In the example method depicted in
In the example method depicted in
In the example method depicted in
In the example method depicted in
In the example method depicted in
Consider an example in which a hierarchy exists where each storage device (324, 326, 328) has an associated distributed manager (316) that has been created (310) and ultimately inserted in the distributed management hierarchy (314). Further assume that each storage device (324, 326, 328) is part of a write group, and that an associated distributed manager (316) has been created (310) for the write group, where the hierarchy (314) is structured such that each the distributed manager associated with each storage device (324, 326, 328) is a child of the distributed manager associated with the write group. Further assume that the storage system includes many write groups, each of which is a child of a system administration module executing on the storage array controller (304), and that the distributed manager associated with each write group is a child of the distributed manager associated with the system administration module executing on the storage array controller (304).
In such an example, if the distributed manager that is associated with a particular storage device (324) issues a request (404) to perform an action that must be approved by the distributed manager associated with the system administration module, the request may initially be sent to the distributed manager associated with the write group and subsequently sent to the distributed manager associated with the system administration module. Upon determining whether to approve the requested action, the distributed manager associated with the system administration module may send a response to the distributed manager associated with the write group, and the distributed manager associated with the write group may subsequently send the response to the distributed manager that is associated with the particular storage device (324).
Readers will appreciate that not all requests must ascend the entire hierarchy in order to be approved, as some requests may be approved by lower-level distributed managers. For example, a request to perform a data collection action (e.g., a read command) to be executed on one path at a time so the underlying storage device doesn't get overloaded may not need to ascend the entire hierarchy in order to be approved, as such a request may be approved by a lower-level distributed manager.
In the example method depicted in
For further explanation,
In the example method depicted in
In the example method depicted in
In the example method depicted in
Readers will appreciate that although the examples described above with respect to
Example embodiments of the present disclosure are described largely in the context of a fully functional computer system for distributing management responsibilities for a storage system that includes a storage array controller and a plurality of storage devices. Readers of skill in the art will recognize, however, that the present disclosure also may be embodied in a computer program product disposed upon computer readable storage media for use with any suitable data processing system. Such computer readable storage media may be any storage medium for machine-readable information, including magnetic media, optical media, or other suitable media. Examples of such media include magnetic disks in hard drives or diskettes, compact disks for optical drives, magnetic tape, and others as will occur to those of skill in the art. Persons skilled in the art will immediately recognize that any computer system having suitable programming means will be capable of executing the steps of the method of the invention as embodied in a computer program product. Persons skilled in the art will recognize also that, although some of the example embodiments described in this specification are oriented to software installed and executing on computer hardware, nevertheless, alternative embodiments implemented as firmware or as hardware are well within the scope of the present disclosure.
Although the examples described above depict embodiments where various actions are described as occurring within a certain order, no particular ordering of the steps is required. In fact, it will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present disclosure without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present disclosure is limited only by the language of the following claims.
This application is a continuation application of and claims priority from U.S. patent application Ser. No. 14/927,280, filed Oct. 29, 2015.
Number | Name | Date | Kind |
---|---|---|---|
5524240 | Barbara | Jun 1996 | A |
5706210 | Kumano et al. | Jan 1998 | A |
5799200 | Brant et al. | Aug 1998 | A |
5933598 | Scales et al. | Aug 1999 | A |
6012032 | Donovan et al. | Jan 2000 | A |
6085333 | DeKoning et al. | Jul 2000 | A |
6141680 | Cucchiara | Oct 2000 | A |
6370548 | Bauer | Apr 2002 | B1 |
6389433 | Bolosky | May 2002 | B1 |
6430614 | Cucchiara | Aug 2002 | B1 |
6549916 | Sedlar | Apr 2003 | B1 |
6636982 | Rowlands | Oct 2003 | B1 |
6643641 | Snyder | Nov 2003 | B1 |
6647514 | Umberger et al. | Nov 2003 | B1 |
6789162 | Talagala et al. | Sep 2004 | B1 |
6950855 | Sampathkumar | Sep 2005 | B2 |
7089272 | Garthwaite et al. | Aug 2006 | B1 |
7107389 | Inagaki et al. | Sep 2006 | B2 |
7111194 | Schoenthal | Sep 2006 | B1 |
7136923 | Yamaguchi | Nov 2006 | B2 |
7146521 | Nguyen | Dec 2006 | B1 |
7334124 | Pham et al. | Feb 2008 | B2 |
7437530 | Rajan | Oct 2008 | B1 |
7457236 | Cheng | Nov 2008 | B2 |
7457914 | Cordelia | Nov 2008 | B2 |
7487381 | Beaman | Feb 2009 | B1 |
7493424 | Bali et al. | Feb 2009 | B1 |
7565519 | Kumar | Jul 2009 | B1 |
7609651 | McBride | Oct 2009 | B1 |
7627547 | Jain | Dec 2009 | B2 |
7669029 | Mishra et al. | Feb 2010 | B1 |
7689609 | Lango et al. | Mar 2010 | B2 |
7711820 | Sharma | May 2010 | B2 |
7743191 | Liao | Jun 2010 | B1 |
7788530 | Kahler | Aug 2010 | B2 |
7886121 | Kito | Feb 2011 | B2 |
7899780 | Shmuylovich et al. | Mar 2011 | B1 |
7962915 | Eshel | Jun 2011 | B2 |
8037305 | Rahman | Oct 2011 | B2 |
8042163 | Karr et al. | Oct 2011 | B1 |
8086585 | Brashers et al. | Dec 2011 | B1 |
8099727 | Bahat | Jan 2012 | B2 |
8200887 | Bennett | Jun 2012 | B2 |
8209415 | Wei | Jun 2012 | B2 |
8271700 | Annem et al. | Sep 2012 | B1 |
8271992 | Chatley | Sep 2012 | B2 |
8315999 | Chatley | Nov 2012 | B2 |
8332375 | Chatley | Dec 2012 | B2 |
8387136 | Lee et al. | Feb 2013 | B2 |
8437189 | Montierth et al. | May 2013 | B1 |
8457130 | Kumar | Jun 2013 | B2 |
8465332 | Hogan et al. | Jun 2013 | B2 |
8498967 | Chatterjee | Jul 2013 | B1 |
8522252 | Chatley | Aug 2013 | B2 |
8527544 | Colgrove et al. | Sep 2013 | B1 |
8566546 | Marshak et al. | Oct 2013 | B1 |
8578442 | Banerjee | Nov 2013 | B1 |
8583616 | Chatley | Nov 2013 | B2 |
8607233 | Ryman | Dec 2013 | B2 |
8613066 | Brezinski et al. | Dec 2013 | B1 |
8620970 | English et al. | Dec 2013 | B2 |
8650374 | Kito | Feb 2014 | B2 |
8751463 | Chamness | Jun 2014 | B1 |
8762642 | Bates et al. | Jun 2014 | B2 |
8769622 | Chang et al. | Jul 2014 | B2 |
8769644 | Eicken | Jul 2014 | B1 |
8800009 | Beda, III et al. | Aug 2014 | B1 |
8812860 | Bray | Aug 2014 | B1 |
8850114 | Rosenband | Sep 2014 | B2 |
8850546 | Field et al. | Sep 2014 | B1 |
8863226 | Bailey, Jr. | Oct 2014 | B1 |
8897792 | Saatchi | Nov 2014 | B1 |
8898346 | Simmons | Nov 2014 | B1 |
8909854 | Yamagishi et al. | Dec 2014 | B2 |
8930537 | Basham | Jan 2015 | B2 |
8931041 | Banerjee | Jan 2015 | B1 |
8943265 | Rosenband | Jan 2015 | B2 |
8949863 | Coatney et al. | Feb 2015 | B1 |
8984602 | Bailey et al. | Mar 2015 | B1 |
8990905 | Bailey et al. | Mar 2015 | B1 |
9081713 | Bennett | Jul 2015 | B1 |
9124569 | Hussain et al. | Sep 2015 | B2 |
9134922 | Rajagopal et al. | Sep 2015 | B2 |
9171172 | Goldschlag | Oct 2015 | B2 |
9189334 | Bennett | Nov 2015 | B2 |
9209973 | Aikas et al. | Dec 2015 | B2 |
9250823 | Kamat et al. | Feb 2016 | B1 |
9294508 | Goldschlag | Mar 2016 | B2 |
9300660 | Borowiec et al. | Mar 2016 | B1 |
9311182 | Bennett | Apr 2016 | B2 |
9336233 | Chatley | May 2016 | B2 |
9444822 | Borowiec et al. | Sep 2016 | B1 |
9467821 | Saatchi | Oct 2016 | B1 |
9507532 | Colgrove et al. | Nov 2016 | B1 |
9516028 | Andruschuk | Dec 2016 | B1 |
9563380 | Basham | Feb 2017 | B2 |
9588691 | Seppanen | Mar 2017 | B2 |
9632870 | Bennett | Apr 2017 | B2 |
9705979 | Chatley | Jul 2017 | B2 |
9720601 | Gupta | Aug 2017 | B2 |
9875029 | Bromley | Jan 2018 | B2 |
9984140 | Sukumaran | May 2018 | B1 |
10073878 | Han | Sep 2018 | B1 |
10313394 | Goldschlag | Jun 2019 | B2 |
10374868 | Bernat | Aug 2019 | B2 |
10565227 | Chen | Feb 2020 | B1 |
10649685 | Tamborski | May 2020 | B2 |
10733201 | Chen | Aug 2020 | B1 |
10824512 | Resnik | Nov 2020 | B2 |
10833935 | Moats | Nov 2020 | B2 |
20020013802 | Mori et al. | Jan 2002 | A1 |
20020019864 | Mayer | Feb 2002 | A1 |
20020095487 | Day | Jul 2002 | A1 |
20020186260 | Young | Dec 2002 | A1 |
20030145172 | Galbraith et al. | Jul 2003 | A1 |
20030191783 | Wolczko et al. | Oct 2003 | A1 |
20030225961 | Chow et al. | Dec 2003 | A1 |
20040080985 | Chang et al. | Apr 2004 | A1 |
20040111573 | Garthwaite | Jun 2004 | A1 |
20040153844 | Ghose et al. | Aug 2004 | A1 |
20040193814 | Erickson et al. | Sep 2004 | A1 |
20040260967 | Guha et al. | Dec 2004 | A1 |
20050097132 | Cochran | May 2005 | A1 |
20050160416 | Jamison | Jul 2005 | A1 |
20050188246 | Emberty et al. | Aug 2005 | A1 |
20050216800 | Bicknell et al. | Sep 2005 | A1 |
20050246436 | Day | Nov 2005 | A1 |
20060015771 | Van Gundy et al. | Jan 2006 | A1 |
20060041580 | Ozdemir et al. | Feb 2006 | A1 |
20060129817 | Borneman et al. | Jun 2006 | A1 |
20060161726 | Lasser | Jul 2006 | A1 |
20060230245 | Gounares et al. | Oct 2006 | A1 |
20060239075 | Williams et al. | Oct 2006 | A1 |
20070022227 | Miki | Jan 2007 | A1 |
20070028068 | Golding et al. | Feb 2007 | A1 |
20070055702 | Fridella et al. | Mar 2007 | A1 |
20070100830 | Beedubail | May 2007 | A1 |
20070109856 | Pellicone et al. | May 2007 | A1 |
20070150689 | Pandit et al. | Jun 2007 | A1 |
20070168321 | Saito et al. | Jul 2007 | A1 |
20070220227 | Long | Sep 2007 | A1 |
20070294563 | Bose | Dec 2007 | A1 |
20070294564 | Reddin et al. | Dec 2007 | A1 |
20080005587 | Ahlquist | Jan 2008 | A1 |
20080016546 | Li | Jan 2008 | A1 |
20080077825 | Bello et al. | Mar 2008 | A1 |
20080133767 | Birrer | Jun 2008 | A1 |
20080162674 | Dahiya | Jul 2008 | A1 |
20080195833 | Park | Aug 2008 | A1 |
20080205295 | Saba | Aug 2008 | A1 |
20080270678 | Cornwell et al. | Oct 2008 | A1 |
20080282045 | Biswas et al. | Nov 2008 | A1 |
20090077340 | Johnson et al. | Mar 2009 | A1 |
20090100115 | Park et al. | Apr 2009 | A1 |
20090198815 | Saba | Aug 2009 | A1 |
20090198889 | Ito et al. | Aug 2009 | A1 |
20100052625 | Cagno et al. | Mar 2010 | A1 |
20100211723 | Mukaida | Aug 2010 | A1 |
20100246266 | Park et al. | Sep 2010 | A1 |
20100257142 | Murphy et al. | Oct 2010 | A1 |
20100262764 | Liu et al. | Oct 2010 | A1 |
20100281060 | Ahmed | Nov 2010 | A1 |
20100325345 | Ohno et al. | Dec 2010 | A1 |
20100332754 | Lai et al. | Dec 2010 | A1 |
20110072290 | Davis et al. | Mar 2011 | A1 |
20110125955 | Chen | May 2011 | A1 |
20110131231 | Haas et al. | Jun 2011 | A1 |
20110167221 | Pangal et al. | Jul 2011 | A1 |
20120023144 | Rub | Jan 2012 | A1 |
20120054264 | Haugh et al. | Mar 2012 | A1 |
20120079318 | Colgrove et al. | Mar 2012 | A1 |
20120131253 | McKnight et al. | May 2012 | A1 |
20120303919 | Hu et al. | Nov 2012 | A1 |
20120311000 | Post et al. | Dec 2012 | A1 |
20130007845 | Chang et al. | Jan 2013 | A1 |
20130031414 | Dhuse et al. | Jan 2013 | A1 |
20130036272 | Nelson | Feb 2013 | A1 |
20130071087 | Motiwala et al. | Mar 2013 | A1 |
20130145447 | Maron | Jun 2013 | A1 |
20130191555 | Liu | Jul 2013 | A1 |
20130198459 | Joshi et al. | Aug 2013 | A1 |
20130205173 | Yoneda | Aug 2013 | A1 |
20130219164 | Hamid | Aug 2013 | A1 |
20130227201 | Talagala et al. | Aug 2013 | A1 |
20130232152 | Dhuse et al. | Sep 2013 | A1 |
20130290607 | Chang et al. | Oct 2013 | A1 |
20130311434 | Jones | Nov 2013 | A1 |
20130318297 | Jibbe et al. | Nov 2013 | A1 |
20130332614 | Brunk et al. | Dec 2013 | A1 |
20130332700 | Kopylovitz | Dec 2013 | A1 |
20140020083 | Fetik | Jan 2014 | A1 |
20140074850 | Noel et al. | Mar 2014 | A1 |
20140082715 | Grajek et al. | Mar 2014 | A1 |
20140086146 | Kim et al. | Mar 2014 | A1 |
20140090009 | Li et al. | Mar 2014 | A1 |
20140096220 | Da Cruz Pinto et al. | Apr 2014 | A1 |
20140101434 | Senthurpandi et al. | Apr 2014 | A1 |
20140122918 | Tsao | May 2014 | A1 |
20140129771 | Qi | May 2014 | A1 |
20140164774 | Nord et al. | Jun 2014 | A1 |
20140173232 | Reohr et al. | Jun 2014 | A1 |
20140195636 | Karve et al. | Jul 2014 | A1 |
20140201512 | Seethaler et al. | Jul 2014 | A1 |
20140201541 | Paul et al. | Jul 2014 | A1 |
20140208155 | Pan | Jul 2014 | A1 |
20140215590 | Brand | Jul 2014 | A1 |
20140229654 | Goss et al. | Aug 2014 | A1 |
20140230017 | Saib | Aug 2014 | A1 |
20140258526 | Le Sant et al. | Sep 2014 | A1 |
20140282983 | Ju et al. | Sep 2014 | A1 |
20140285917 | Cudak et al. | Sep 2014 | A1 |
20140325262 | Cooper et al. | Oct 2014 | A1 |
20140344401 | Varney et al. | Nov 2014 | A1 |
20140351627 | Best et al. | Nov 2014 | A1 |
20140373104 | Gaddam et al. | Dec 2014 | A1 |
20140373126 | Hussain et al. | Dec 2014 | A1 |
20150026387 | Sheredy et al. | Jan 2015 | A1 |
20150074463 | Jacoby et al. | Mar 2015 | A1 |
20150089569 | Sondhi et al. | Mar 2015 | A1 |
20150095515 | Krithivas et al. | Apr 2015 | A1 |
20150113203 | Dancho et al. | Apr 2015 | A1 |
20150121003 | Rosenband | Apr 2015 | A1 |
20150121137 | McKnight et al. | Apr 2015 | A1 |
20150134920 | Anderson et al. | May 2015 | A1 |
20150149822 | Coronado et al. | May 2015 | A1 |
20150186229 | Bortnikov | Jul 2015 | A1 |
20150193169 | Sundaram et al. | Jul 2015 | A1 |
20150199535 | Wilson | Jul 2015 | A1 |
20150378888 | Zhang et al. | Dec 2015 | A1 |
20160098323 | Mutha et al. | Apr 2016 | A1 |
20160098882 | Holdych | Apr 2016 | A1 |
20160337365 | Beiter | Nov 2016 | A1 |
20160350009 | Cerreta et al. | Dec 2016 | A1 |
20160352720 | Hu et al. | Dec 2016 | A1 |
20160352830 | Borowiec et al. | Dec 2016 | A1 |
20160352834 | Borowiec et al. | Dec 2016 | A1 |
20170109053 | Bromley | Apr 2017 | A1 |
20170126470 | Bernat et al. | May 2017 | A1 |
20190324898 | Prohofsky | Oct 2019 | A1 |
20200233840 | Chakankar | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
0725324 | Aug 1996 | EP |
WO-2012087648 | Jun 2012 | WO |
WO-2013071087 | May 2013 | WO |
WO-2014110137 | Jul 2014 | WO |
WO-2016015008 | Dec 2016 | WO |
WO-2016190938 | Dec 2016 | WO |
WO-2016195759 | Dec 2016 | WO |
WO-2016195958 | Dec 2016 | WO |
WO-2016195961 | Dec 2016 | WO |
WO-2017075149 | May 2017 | WO |
Entry |
---|
Paul Sweere, Creating Storage Class Persistent Memory with NVDIMM, Published in Aug. 2013, Flash Memory Summit 2013, <http://ww.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130814_T2_Sweere.pdf>, 22 pages. |
PCMAG, Storage Array Definition, Published May 10, 2013. <http://web.archive.org/web/20130510121646/http://www.pcmag.com/encyclopedia/term/52091/storage-array>, 2 pages. |
Google Search of “storage array define” performed by the Examiner on Nov. 4, 2015 for U.S. Appl. No. 14/725,278, Results limited to entries dated before 2012, 1 page. |
Techopedia, What is a disk array, techopedia.com (online), Jan. 13, 2012, 1 page, URL: web.archive.org/web/20120113053358/http://www.techopedia.com/definition/1009/disk-array. |
Webopedia, What is a disk array, webopedia.com (online), May 26, 2011, 2 pages, URL: web/archive.org/web/20110526081214/http://www.webopedia.com/TERM/D/disk_array.html. |
Li et al., Access Control for the Services Oriented Architecture, Proceedings of the 2007 ACM Workshop on Secure Web Services (SWS '07), Nov. 2007, pp. 9-17, ACM New York, NY. |
Hota et al., Capability-based Cryptographic Data Access Control in Cloud Computing, International Journal of Advanced Networking and Applications, col. 1, Issue 1, Aug. 2011, 10 pages, Eswar Publications, India. |
Faith, Dictzip file format, GitHub.com (online), accessed Jul. 28, 2015, 1 page, URL: github.com/fidlej/idzip. |
Wikipedia, Convergent Encryption, Wikipedia.org (online), accessed Sep. 8, 2015, 2 pages, URL: en.wikipedia.org/wiki/Convergent_encryption. |
Storer et al., Secure Data Deduplication, Proceedings of the 4th ACM International Workshop on Storage Security and Survivability (StorageSS'08), Oct. 2008, 10 pages, ACM New York, NY. USA, DOI: 10.1145/1456469.1456471. |
ETSI, Network Function Virtualisation (NFV); Resiliency Requirements, ETSI GS NFCV-REL 001, V1.1.1, Jan. 2015, 82 pages, etsi.org (online), URL: www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_NFV-REL001v010101p.pdf. |
Microsoft, Hybrid for SharePoint Server 2013—Security Reference Architecture, Microsoft (online), Oct. 2014, 53 pages, URL: hybrid.office.com/img/Security_Reference_Architecture.pdf. |
Microsoft, Hybrid Identity, Microsoft (online), Apr. 2014, 36 pages, URL: www.aka.ms/HybridIdentityWp. |
Microsoft, Hybrid Identity Management, Microsoft (online), Apr. 2014, 2 pages, URL: download.microsoft.com/download/E/A/E/EAE57CD1-A80B-423C-96BB-142FAAC630B9/Hybrid_Identity_Datasheet.pdf. |
Bellamy-McIntyre et al., OpenID and the Enterprise: A Model-based Analysis of Single Sign-On Authentication, 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), Aug. 29, 2011, pp. 129-138, IEEE Computer Society, USA, DOI: 10.1109/EDOC.2011.26, ISBN: 978-1-4577-0362-1. |
Kong, Using PCI Express as the Primary System Interconnect in Multiroot Compute, Storage, Communications and Embedded Systems, White Paper, IDT.com (online), Aug. 28, 2008, 12 pages, URL: www.idt.com/document/whp/idt-pcie-multi-root-white-paper. |
Hu et al., Container Marking: Combining Data Placement, Garbage Collection and Wear Levelling for Flash, 19th Annual IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunications Systems, Jul. 25-27, 2011, 11 pages, ISBN: 978-0-7695-4430-4, DOI: 10.1109/MASCOTS.2011.50. |
International Search Report and Written Opinion, PCT/US2016/015006, dated Jul. 18, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/015008, dated May 4, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/020410, dated Jul. 8, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/032084, dated Jul. 18, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/016333, dated Jun. 8, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/032052, dated Aug. 30, 2016, 17 pages. |
International Search Report and Written Opinion, PCT/US2016/035492, dated Aug. 17, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/036693, dated Aug. 29, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/038758, dated Oct. 7, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/040393, dated Sep. 22, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/044020, dated Sep. 30, 2016, 11 pages. |
International Search Report and Written Opinion, PCT/US2016/044874, dated Oct. 7, 2016, 11 pages. |
International Search Report and Written Opinion, PCT/US2016/044875, dated Oct. 5, 2016, 13 pages. |
International Search Report and Written Opinion, PCT/US2016/044876, dated Oct. 21, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/044877, dated Sep. 29, 2016, 13 pages. |
International Search Report and Written Opinion, PCT/US2016/059012, dated Jan. 19, 2017, 12 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 14927280 | Oct 2015 | US |
Child | 16508831 | US |