The present disclosure is related to a localization system and method for determining a position of an imaging system in a region of interest. The system is contemplated for incorporation into an image or video-based application that can determine the spatial layout of objects in the region of interest. Particularly, the disclosure is contemplated for use in a product facility where the spatial layout of product content is desired, but there is no limitation made herein to the application of such method.
However, the conventional store profile generation system including this navigation and localization capability may not reach the desired accuracy in cases where products are closely laid out. Using retail store displays as one illustrative example, merchandise can be displayed by wall mounts, hang rail displays, and/or peg hooks that are in such close proximity (e.g., one inch or less) that product location information generated by the assembly may be off by a measure.
In other words, when the existing store profile generation system (“robotic system”) is instructed to move the image capture device to a goal position (xG, yG) and pose θG (“coordinates”) in the product facility, it generates a reported position and pose (xR, yR, θR) after it arrives at the instructed location. In a perfect system, the robot's actual position and pose (xA, yA, θA) will be identical to both the goal position and pose (xG, yG, θG) and the reported position and pose (xR, yR, θR). In practice, the actual position and pose will not match the goal position and pose nor the reported position and pose—i.e., small errors are introduced by the statistical nature of the navigation algorithms. Errors have been observed in the range of +/−3 inches in reported position (xR, yR) and up to 4-degrees in pose θR. More accuracy may be achieved in the navigation algorithms by adding very expensive, high accuracy sensors. However, the sensors can make the unit cost-prohibitive.
In practice, the existing system is not accurate enough. For example, a location error can result when the existing system reports an incorrect coordinate after stopping or moving around an obstacle (i.e., (xR, yR, θR)≠(xA, yA, θA)). A navigation error can also result when the existing system's navigation takes the image capture assembly to a proximate location only, i.e., (xA, yA, θA)≠(xG, yG, θG), particularly in one instance when the navigation requires a reroute calculation to reach the destination. Particularly, the existing image capture assembly knows its position and pose by some measure, but that location may not be correct if the navigation calculated a route that ends in proximity to the goal coordinates, but not at the exact goal coordinates.
Although the navigation and localization capabilities are well-studied in the field of robotic systems, there are limitations in practice depending on the sensors, processors, and response time, etc. The existing image capture assembly can provide its coordinates to a user, but the coordinates may not match the goal. Furthermore, depending on the applications the importance of the navigation verses the localization features can be quite different. For the purpose of profiling the layout of a product facility, there exists a need for more accurate localization output. The system may generate errors, in response of which it may choose to weight one requirement more than the other. An algorithm is therefore desired that computes an estimated position and pose (xE, yE, θE) that reflects the actual position of the robotic system with higher accuracy.
That is, the present disclosure further desires to provide an algorithm that can produce the estimated position and pose (xE, yE, θE) such that errors between the estimated position and pose (xE, yE, θE) and the actual position and pose (xA, yA, θA) are smaller than those between the reported position and pose (xR, yR, θR) and the actual position and pose (xA, yA, θA) observed in a conventional robotic system.
The disclosure of co-pending and commonly assigned U.S. Ser. No. 14/303,809, entitled, “STORE SHELF IMAGING SYSTEM”, by Wu et al., is totally incorporated herein by reference.
The disclosure of co-pending and commonly assigned U.S. Ser. No. 14/303,724, entitled, “IMAGE PROCESSING METHODS AND SYSTEMS FOR BARCODE AND/OR PRODUCT LABEL RECOGNITION”, by Wu et al., is totally incorporated herein by reference.
The disclosure of co-pending and commonly assigned U.S. Ser. No. 14/303,735, entitled, “METHOD AND SYSTEM FOR SPATIAL CHARACTERIZATION OF AN IMAGING SYSTEM”, by Wu et al., is totally incorporated herein by reference.
The disclosure of co-pending and commonly assigned U.S. Ser. No. 14/557,677, entitled, “SYSTEM AND METHOD FOR PRODUCT IDENTIFICATION”, by Sulc et al., is totally incorporated herein by reference.
The disclosure by Bay, Ess, Tuytelaars, and Van Gool in “SURF: Speeded Up Robust Features”, Computer Vision and Image Understanding, Vol. 110, No. 3, pgs. 346-359 (2008), the content of which is fully incorporated herein by reference.
One embodiment of the disclosure relates to a profiling system for determining a location of an image capture device in a region of interest. The system includes a non-transitory computer readable memory storing instructions that are executable by a processor. The processor is adapted to acquire an image captured by an image capture device. The processor is further adapted to acquire a reported position and pose of the image capture device. The processor is further adapted to process the captured image to detect an object in the captured image. The processor is further adapted to identify a set of interest points characterizing the captured object. The processor is further adapted to generate a relative position of the interest points based on dimensional information associated with the captured object. The processor is adapted to compute an estimated position and pose of the image capture device to the object using the reported position and pose of the image capture device and the relative position of the interest points. The processor is adapted to compute the estimated position and pose of the mobile imaging device based on the estimated position and pose. The processor is adapted to update the reported position and pose of the image capture device to the estimated position and pose.
Another embodiment of the present disclosure relates to a method for profiling a location of an image capture device in a region of interest. The method comprises acquiring an image captured by an image capture device. The method comprises acquiring a reported position and pose of the image capture device. The method comprises processing the captured image to detect an object in the captured image. The method comprises identifying a set of interest points characterizing the captured object. The method comprises generating a relative position of the interest points based on dimensional information associated with the captured object. The method comprises computing an estimated position and pose of the image capture device to the object using the reported position and pose of the image capture device and the relative position and pose of the interest points. The method comprises computing the estimated position and pose of the mobile imaging device based on the estimated distance. The method comprises updating the reported position and pose of the image capture device to the estimated position and pose.
The present disclosure is related to a localization system and method for determining a position and pose of an imaging system in a region of interest. The present disclosure is contemplated for use, in one embodiment, for profiling a product facility using object recognition via image analysis and a database storing object dimensions. As used herein, the terms “location”, “position and pose”, “location and pose”, and “location and orientation” are synonymous and interchangeable are each represented by (x, y, θ).
The location profiling unit 102 illustrated in
The memory 114 may represent any type of tangible computer readable medium such as random access memory (RAM), read only memory (ROM), magnetic disk or tape, optical disk, flash memory, or holographic memory. In one embodiment, the memory 114 comprises a combination of random access memory and read only memory. The digital processor 112 can be variously embodied, such as by a single-core processor, a dual-core processor (or more generally by a multiple-core processor), a digital processor and cooperating math coprocessor, a digital controller, or the like. The digital processor, in addition to controlling the operation of the location profiling unit 102, executes instructions stored in memory 114 for performing the parts of the method outlined in
The location profiling unit 102 may be embodied in a networked device, such as an image capture device 105 supported by the image capture assembly 104, although it is also contemplated that the location profiling unit 102 may be located elsewhere on a network to which the system 100 is connected, such as on a central server, a networked computer, or the like, or distributed throughout the network or otherwise accessible thereto. In other words, the processing can be performed within the image capture device 105 on site or, as illustrated in
The image capture device 105 is in communication with the controller 110 containing the processor 112 and memory 114.
The stages disclosed herein are performed by the processor 112 according to the instructions contained in the memory 114. In particular, the memory 114 stores an image buffer 116, which acquires an image 130 captured by an image capture device 105; a product recognition module 118, which processes the captured image to detect and identify the object recognized in the image; a reference marker generation module 120, which generates a set of relative reference markers with known relative positions in physical units and corresponding points in the acquired image; and an imager coordinate estimation module 122, which estimates the position and pose of the image capture assembly 104 using matching pairs of points between the reference markers and the corresponding points. Embodiments are contemplated wherein these instructions can be stored in a single module or as multiple modules embodied in different devices. The modules 116-122 will be later described with reference to the exemplary method.
The software modules as used herein, are intended to encompass any collection or set of instructions executable by the location profiling unit 102 or other digital system so as to configure the computer or other digital system to perform the task that is the intent of the software. The term “software” as used herein is intended to encompass such instructions stored in storage medium such as RAM, a hard disk, optical disk, or so forth, and is also intended to encompass so-called “firmware” that is software stored on a ROM or so forth. Such software may be organized in various ways, and may include software components organized as libraries, internet-based programs stored on a remote server or so forth, source code, interpretive code, object code, directly executable code, and so forth. It is contemplated that the software may invoke system-level code or calls to other software residing on a server (not shown) or other location to perform certain functions. The various components of the location profiling unit 102 may be all connected by a bus 124.
With continued reference to
The location profiling unit 102 may include one or more special purpose or general purpose computing devices, such as a server computer, controller, or any other computing device capable of executing instructions for performing the exemplary method.
Continuing with
Furthermore, the location profiling unit 102 can provide the occupancy data to the output device 106, which can display the estimated coordinate information and/or desired output in a suitable form on a graphic user interface (GUI) 134. The GUI 134 can include a display for displaying the information, to users, and a user input device, such as a keyboard or touch or writable screen, for receiving instructions as input, and/or a cursor control device, such as a mouse, touchpad, trackball, or the like, for communicating user input information and command selections to the processor 112, which can display pricing strategy to a user, such as a parking area management company. Furthermore, in one contemplated embodiment, the output estimated coordinate information can be transmitted to another computer application, which can perform additional processing on the information to generate an ordered list of objects located in the region of interest.
With continued reference to
As mentioned, supra, the reported location coordinates may not reflect the assembly's actual coordinates (xA, yA, θA). Therefore, in response to the image capture assembly 104 reaching the desired location of the goal coordinates (for example, a retail store display in a region of interest), the image capture device 105 can capture an image(s) of the region. An approach for acquiring the images is disclosed in co-pending and commonly assigned U.S. Ser. No. 14/303,809, entitled, “STORE SHELF IMAGING SYSTEM”, by Wu et al., is totally incorporated herein by reference. In the illustrative example, the target images may include a portion of a product, a product, or products offered for sale on the display; however, embodiments are contemplated where any object can be captured in any desired region of interest, which are not limited to product facilities.
The image buffer 116 can acquire the image transmitted from the image capture device 105 at S510. The acquired images are further analyzed to determine an object located in the image at S512. In one embodiment, information, such as features, extracted by the image buffer 116 can be compared against object description information stored in a database 136 to identify the object in the image. In other words, the captured image is compared against stored information to identify the captured object(s).
At S514, the product recognition module 118 processes the captured image to detect and identify the object(s) recognized in the image. Particularly, the module 118 can analyze a full or portion of acquired images using one of multiple contemplated methods. In one embodiment, the module 118 can detect a barcode, such as the SKU, in the image.
An SKU is a specific number assigned by the store or the company/facility for keeping a tab on the stock and also the price of the various products. In one embodiment, the module 118 analyzes the portion of the image that includes the shelf tag 66 to identify the captured image.
The object database 136 contains object description information, such as SKU numbers. The module 118 can compare the extracted SKU with the SKUs stored in the database to identify the object captured in the image. The object database 136 can also, or alternately, store as object description information the manufacture, name, and a short description of the object associated with the SKU. In one contemplated embodiment, the object description information can include the SKU of a product, a price, a description (e.g., name or trademarked name of the product), the retailer/manufacturer/distributor, and segment information. In another contemplated embodiment, the stored object description information can also include dimensional information, such as the known height, width, or depth.
The disclosure of co-pending and commonly assigned U.S. Ser. No. 14/303,724, entitled, “IMAGE PROCESSING METHODS AND SYSTEMS FOR BARCODE AND/OR PRODUCT LABEL RECOGNITION”, by Wu et al., is totally incorporated herein by reference, discloses a method for identifying the captured product using a barcode extracted from the image and is fully incorporated herein. The advantage of using this approach is that there is no additional computational need to test all thumbnail images of products stored in the database. However, this approach only recognizes the object that should be displayed on the display, and may error when products are misplaced and associated with the wrong barcode. Furthermore, systems are contemplated which do not use high resolution imaging systems. Therefore, the present disclosure also teaches an alternative or verification approach should the wrong product be displayed above the shelf tag. An approach is disclosed which can verify that the correct object is captured and, in the illustrative example, the correct product is displayed next to the shelf tag.
In such embodiment, the object database 136 can store image thumbnails of objects.
Returning to
The reference marker generation module 120 and the imager coordinate estimation module 122 use this information to improve the localization of the image capture assembly.
At S516, the reference marker generation module 120 generates a set of relative reference markers with known relative positions in physical units based on the dimensional information of the recognized object. In response to recognizing the object in the captured image, image analysis is performed on the object shown in the thumbnail image (hereinafter “the pictured object”) to bound the pictured object in a virtual bounding box. The four corners of the bounding boxes are detected at S518. First, a set of points (at least two are needed) are selected from analyzing the thumbnail image of the recognized product. In one embodiment, the points are four (4) corners of a bounding box of the product.
Because the object may not be rectangular or box-shaped, the four corners detected in the thumbnail image may be challenging to match against the captured image. Therefore, the present disclosure provides an algorithm for matching distinct feature points between the recognized and pictured objects (or, in the illustrative example, product packaging).
Particularly, an interest point detection is performed on the pictured object in the thumbnail image. Any known computer-vision approach can be used to perform the interest point detection. One approach uses Speeded Up Robust Features (“SURF”) and is explained by Bay, Ess, Tuytelaars, and Van Gool in the publication titled “SURF: Speeded Up Robust Features”, Computer Vision and Image Understanding, Vol. 110, No. 3, pgs. 346-359 (2008), the content of which is fully incorporated herein by reference.
In another embodiment, the points are interest points detected using computer vision technologies such as Corner detectors, Harris corner detector, SIFT, LoG, DoG and DoH scale-space interest points, and SUSAN detector, etc. The set of points can be a union of points from multiple methods if more points are desired.
Next, height and width (dimensional) measurements are computed using the corners at S520. However, certain embodiments contemplate that the height and width corresponding to the pictured object in the thumbnail image may be known and previously stored in the database. The height and width information is used to generate a set of relative reference markers. Mainly, one of the points is selected as the reference and then relative position is computed, in physical units, between all other points relative to the selected reference point based on the dimensional information of the recognized product. This computation yields a first set of relative reference markers with known relative positions in physical units at S522. This first set of relative reference markers with known relative positions in physical units only needs to be computed once for each product and the information can be stored in the database. In some applications, this analysis can be performed every time an image is analyzed to avoid the need for storage.
Returning to
The relative pixel location (in coordinates) of each detected interest point is computed relative to a select point, such as one of the corners of the bounding box.
For example, where the image analysis at S514, supra, determined N recognized objects (e.g., the same or different objects), Ml interest points and thus Ml reference markers are determined for the k-th recognized object. If (xkl, ykl, zkl) is the position of the l-th interest point from the k-th recognized item, then the relative positions using the first interest point as a reference can be described using the equation:
(ykl,zkl)−(yk1,zk1)=(βkl,γkl)k=1˜N,l=2˜Mk (1)
where the position of the l-th interest point from the k-th recognized item, (xkl, ykl, zkl), is known up to an arbitrary reference point since the dimensional information is known and the image thumbnail is available. Once one of the detected interest point is selected as a reference, the relative positions of the reference markers are determined as described in Eq. (1).
This output provides Σi=1N(Mi−1) constraints/known-relationships that can be used to refine (xR, yR, θR) to a better estimate, (xE, yE, θE).
As illustrated in
In other words, the relative pixel location of an interest point can be computed using the equation (yin, zin)−(yc, zc)=(ydn, zdn) where z is the height of the object above ground; y is the direction orthogonal to the field of view; (yc, zc) is a select point, which may be a corner in one embodiment; and (yin, zin) is the coordinates of one of n number interest points; and (ydn, zdn) is the relative dimension of the interest point against the corner. In other words, the dimensional information (e.g., height and width information) computed for the recognized object and the relative pixel coordinates of the detected interest points to one or more corners is used to derive a relative dimension between detected interest points. The number of interest points generated for the set should be sufficient enough to consider that not all points may be matched on a given acquired image.
Next, at S526, the set of relative dimensions corresponding to the set of interest points is used by the imager coordinate estimation module 122 to estimate the coordinates of the image capture assembly. As part of this process, the characteristics of the image capture assembly are also determined. The disclosure of co-pending and commonly assigned U.S. Ser. No. 14/303,735, entitled, “METHOD AND SYSTEM FOR SPATIAL CHARACTERIZATION OF AN IMAGING SYSTEM”, by Wu et al., which is totally incorporated herein by reference, explains that in order to determine the spatial layout of the product facility, and particularly the object's location in the product facility, the position and pose of the image capture device and the spatial characteristics—i.e., a mapping that converts the pixel coordinate (i, j) to real-world coordinate (x, z))—are needed. The spatial characteristics are a function of the distance d of the image capture device to the object, or the retail store display in the illustrative example, and the angle/pose θ of the imager, which is also a function of the position and pose of the image capture device (xA, yA, θA). In other words, the spatial characteristics (“H”) varies for different pixel location (i, j) and is a function of d and θ, i.e. H(i, j; d, θ). The spatial characteristics of the image capture device enables the module 122 to observe relative changes between expected reference markers to actual reference markers in the acquired image.
Returning to
At S530, the resulting matching pairs of points are then used to estimate the coordinates, including the location and the pose, of the image capture assembly 12 based on information embedded in the matched pair of points.
First, a spatial mapping of the image capture assembly at a nominal distance (See, e.g.,
(x,y,z)=H(i,j;d,θ) (2)
wherein H is a mapping that converts the pixel coordinates (i, j) to real-word coordinates (x, y, z). A real world coordinate system is shown, for example, in
At S904, the estimated distance dE of the image capture assembly to the object, or retail store display in the illustrated sample, based on reported imager position (xR, yR) is initialized such that the estimated coordinates equal the reported coordinates: (xE, yE, θE)=(xR, yR, θR).
At S906, the expected relative position of all detected interest points of all recognized objects is next computed using the equation:
(xkl,ykl,zkl)−(xk1,yk1,zk1)=H(ikl,jkl;dE,θE)−H(ik1,jk1,jk1;dEθE) (3)
wherein k=1˜N, l=2 μMk
At S908, the optimal coordinates (dE, θE) are determined. Any known numerical search approach, such as a gradient descend approach, can be used. More specifically, the optimal coordinates are determined by minimizing the total discrepancies between H(ikl, jkl; dE, θE)−H(ik1, jk1; dE, θE) and (βkl, γkl). Particularly, there may be no direct constraint on the X-direction, but discrepancies can result by constraints caused by the y-direction and the value of the pose θ. The reasoning, as discussed supra, is because the additional constraints/knowledge were utilized regarding the mounting positions of the image capture device(s) (incorporated in H(i, j; d, θ)) while the image capture assembly moves across the floor (fixed z). However, in practice, many objects with many reference markers would be detected while only two parameters d & θ need to be estimated. This creates an over-determined mathematical problem. As a result, a standard robust estimation technique, such as least square, and RANSAC (Random sample consensus), etc., may be employed to yield solutions that are robust against various noises and imperfectness of the acquired image data.
At S910, the optimal estimated position of the image capture assembly is computed (xE, yE) based on the computed optimal (dE, θE). The method ends at S912.
Returning to
One aspect of the present system and method being image and/or video-based is greater capability. Visual information is more extensible when compared to alternate systems that use sensors, such as induction loops or sensors. One example application can include shelf-product identification in retail stores. The present disclosure can be implemented in retail applications where, for example, the present system can assist a mobile platform, such as a robotic imaging device, in automatically identifying products' locations on store shelves. The improvements to the localization capability of a store profile generation system disclosed herein provides a more accurate estimate of the distance between the image capture device to the retail display shelf and an improved estimate of the image capture device's pose (angle) to the display. Particularly, improvements to the localization aspects of the present disclosure enable a better estimation of the distance between the camera to the retail store display, and it provides better estimates for the angle of the camera to the shelf.
Further processing is contemplated which can generate an ordered list of the products based on the respective locations. Globally, retail chains—s.a., e.g.—grocers, pharmacies, etc.—share sale advertising and merchandising in common. One aspect of the presently disclosed system is an approach for determining product locations across a store such that sale item signage can be printed and packed in the order in which a store employee posts the signs on the shelves, thus eliminating the step of having to manually pre-sort the signage. The present disclosure is contemplated for use in any region of interest, not limited to stores, and is adapted to automatically collect object location data across the region of interest. One aspect of the presently disclosed method is that the output enables a user to automatically determine a spatial layout of the objects in the region of interest.
Although the control method is illustrated and described above in the form of a series of acts or events, it will be appreciated that the various methods or processes of the present disclosure are not limited by the illustrated ordering of such acts or events. In this regard, except as specifically provided hereinafter, some acts or events may occur in different order and/or concurrently with other acts or events apart from those illustrated and described herein in accordance with the disclosure. It is further noted that not all illustrated steps may be required to implement a process or method in accordance with the present disclosure, and one or more such acts may be combined. The illustrated methods and other methods of the disclosure may be implemented in hardware, software, or combinations thereof, in order to provide the control functionality described herein, and may be employed in any system including but not limited to the above illustrated system 100, wherein the disclosure is not limited to the specific applications and embodiments illustrated and described herein.
It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5512739 | Chandler et al. | Apr 1996 | A |
6473122 | Kanekal | Oct 2002 | B1 |
6814290 | Longacre | Nov 2004 | B2 |
7066291 | Martins et al. | Jun 2006 | B2 |
7290707 | Sawasaki | Nov 2007 | B2 |
7386163 | Sabe et al. | Jun 2008 | B2 |
7574378 | Lipowitz et al. | Aug 2009 | B2 |
7693757 | Zimmerman | Apr 2010 | B2 |
8189855 | Opalach | May 2012 | B2 |
8296259 | Trandal et al. | Oct 2012 | B1 |
8326069 | Maslov et al. | Dec 2012 | B2 |
8429004 | Hamilton et al. | Apr 2013 | B2 |
8630924 | Groenevelt | Jan 2014 | B2 |
9015072 | Wu et al. | Apr 2015 | B2 |
9443164 | Sulc et al. | Sep 2016 | B2 |
9524486 | Wu et al. | Dec 2016 | B2 |
9619686 | Wu et al. | Apr 2017 | B2 |
9646384 | Lee | May 2017 | B2 |
20020141640 | Kraft | Oct 2002 | A1 |
20020165790 | Bancroft et al. | Nov 2002 | A1 |
20020196979 | Yen et al. | Dec 2002 | A1 |
20030154141 | Capazario et al. | Aug 2003 | A1 |
20040013295 | Sabe et al. | Jan 2004 | A1 |
20040233278 | Prudhomme et al. | Nov 2004 | A1 |
20060072176 | Silverstein | Apr 2006 | A1 |
20060202032 | Kricorissian | Sep 2006 | A1 |
20080077511 | Zimmerman | Mar 2008 | A1 |
20080306787 | Hamilton et al. | Dec 2008 | A1 |
20090059270 | Opalach et al. | Mar 2009 | A1 |
20090212113 | Chiu et al. | Aug 2009 | A1 |
20100070365 | Siotia et al. | Mar 2010 | A1 |
20100171826 | Hamilton | Jul 2010 | A1 |
20130030915 | Statler et al. | Jan 2013 | A1 |
20130103608 | Scipioni et al. | Apr 2013 | A1 |
20130193211 | Baqai et al. | Aug 2013 | A1 |
20130229517 | Kozitsky et al. | Sep 2013 | A1 |
20130278761 | Wu | Oct 2013 | A1 |
20130300729 | Grimaud | Nov 2013 | A1 |
20130342706 | Hoover | Dec 2013 | A1 |
20140003727 | Lortz et al. | Jan 2014 | A1 |
20140218553 | Deever | Aug 2014 | A1 |
20140304107 | McAllister | Oct 2014 | A1 |
20150046299 | Yan | Feb 2015 | A1 |
20150071524 | Lee | Mar 2015 | A1 |
20150178565 | Rivlin | Jun 2015 | A1 |
20150363625 | Wu et al. | Dec 2015 | A1 |
20150363758 | Wu et al. | Dec 2015 | A1 |
20150365660 | Wu et al. | Dec 2015 | A1 |
20150365669 | Wu et al. | Dec 2015 | A1 |
20160110633 | Moore et al. | Apr 2016 | A1 |
20160119540 | Wu | Apr 2016 | A1 |
20160163091 | Wang | Jun 2016 | A1 |
20170032311 | Rizzolo et al. | Feb 2017 | A1 |
20170330334 | Takakura | Nov 2017 | A1 |
Entry |
---|
U.S. Appl. No. 15/295,634, filed Oct. 17, 2016, Venable et al. |
U.S. Appl. No. 15/295,498, filed Oct. 17, 2016, Wu et al. |
U.S. Appl. No. 15/295,031, filed Oct. 17, 2016, Rizzolo et al. |
U.S. Appl. No. 15/066,392, filed Mar. 10, 2016, Venable et al. |
Adelmann et al., “Toolkit for Bar Code Recognition and Resolving on Camera Phones—Jump-Starting the Internet of Things”, Informatik Workshop on Mobile and Embedded Interactive Systems, pp. 1-7 (2006). |
Bailey, “Super-Resolution of Bar Codes”, Journal of Electronic Imaging, vol. 10, No. 1, pp. 213-220 (2001). |
Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes”, Pattern Recognition, vol. 13, No. 2, pp. 111-122 (1981). |
Bodnár et al., “Barcode Detection With Uniform Partitioning and Morphological Operations”, Conf. of PhD Students in Computer Science, pp. 4-5 (2012). |
Bodnár et al., “Improving Barcode Detection With Combination of Simple Detectors”, Int'l Conf. on Signal Image Technology and Internet Based Systems, pp. 300-306 (2012). |
Canny, “A Computational Approach to Edge Detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, No. 6, pp. 679-698 (1986). |
Ebner et al., “Development and Testing of a Color Space (IPT) With Improved Hue Uniformity”, Proceedings of IS&T/SID's Sixth Color Imaging Conf., pp. 8-13 (1998). |
Felzenszwalb et al., “Distance Transforms of Sampled Functions”, Cornell Computing and Information Science, Tech. Rep., pp. 1-15 (2004). |
Gonzalez et al., “Digital Image Processing”, 3rd Edition, Prentice Hall, pp. 1-22 (2008). |
Hodges, “An Introduction to Video and Audio Measurement”, Elsevier, p. 173-185 (2004). |
Hunt, “The Reproduction of Colour”, John Wiley & Sons, p. 48 (2004). |
Jain et al., “Bar Code Localization Using Texture Analysis”, Proceedings of the Second Int'l Conf. on Document Analysis and Recognition, pp. 41-44 (1993). |
Joseph et al., “Bar Code Waveform Recognition Using Peak Locations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, No. 6, pp. 630-640 (1994). |
Juett, “Barcode Localization Using a Bottom Hat Filter”, NSF Research Experience for Undergraduates, pp. 1-26 (2005). |
Katona et al., “A Novel Method for Accurate and Efficient Barcode Detection With Morphological Operations”, Eighth Int'l Conf. on Signal Image Technology and Internet Based Systems, pp. 307-314 (2012). |
Kiryati et al., “A Probabilistic Hough Transform”, Pattern Recognition, vol. 24, No. 4, pp. 303-316 (1991). |
Kuroki et al., “Bar Code Recognition System Using Image Processing”, Hitachi Process Computer Engineering, Inc., pp. 568-572 (1990). |
Lin et al., “Multi-Symbology and Multiple 1D/2D Barcodes Extraction Framework”, Advances in Multimedia Modeling, pp. 401-410 (2011). |
Lin et al., “Real-Time Automatic Recognition of Omnidirectional Multiple Barcodes and DSP Implementation”, Machine Vision and Applications, vol. 22, pp. 409-419 (2011). |
Liyanage, “Efficient Decoding of Blurred, Pitched, and Scratched Barcode Images”, Second Int'l Conf. on Industrial and Information Systems, pp. 1-6 (2007). |
McKesson, “Linearity and Gamma—Chapter 12—Dynamic Range”, arcsynthesis.org, pp. 1-7 (retrieved Jul. 11, 2013). |
Muniz et al., “A Robust Software Barcode Reader Using the Hough Transform”, Int'l Conf. on Information Intelligence and Systems, pp. 313-319 (1999). |
Normand et al., “A Two-Dimensional Bar Code Reader”, 12th Int'l Conf. on Pattern Recognition, vol. 3, pp. 201-203 (1994). |
Ohbuchi et al., “Barcode Readers Using the Camera Device in Mobile Phones”, Proceedings of the 2004 Int'l Conf. on Cyberworlds, pp. 1-6 (2004). |
Oktem et al., “A Superesolution Approach for Bar Code Reading”, Electrical and Engineering Department, Atilim University, Turkey, pp. 1-4 (2002). |
Oktem, “Bar Code Localization in Wavelet Domain by Using Binary”, Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference, pp. 499-501 (2004). |
Pavlidis et al., “Fundamentals of Bar Code Information Theory”, Symbol Technologies, IEEE, pp. 74-86 ( Apr. 1990). |
Poynton, “Digital Video and HDTV: Algorithms and Interfaces” Morgan Kaufman Publishers, pp. 260 and 630 (2003). |
Poynton, “Frequently Questioned Answers About Gamma”, poynton.com, pp. 1-3 (2010). |
Reinhard et al., “High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting”, Morgan Kaufmann Publishers, p. 82 (2010). |
Tuinstra, “Reading Barcodes From Digital Imagery”, Ph.D. dissertation, Cedarville University, pp. 1-18 (2006). |
Wittman et al., “Super-Resolution of 1D Barcode Images”, University of Minnesota, pp. 1-41 (2004). |
Wu et al., “Automatic Thresholding of Gray-Level Using Multi-Stage Approach”, Proceedings of the Seventh Int'l Conf. on Document Analysis and Recognition, pp. 493-497 (2003). |
Youssef et al., “Automated Barcode Recognition for Smart Identification and Inspection Automation”, Expert Systems with Applications, vol. 33, No. 4, pp. 968-977 (2007). |
Zhang, “Flexible Camera Calibration by Viewing a Plane From Unknown Orientations”, Int'l Conf. on Computer Vision, Corfu, Greece, pp. 666-673 (1999). |
Husky et al., “Unmanned Ground Vehicle, Clearpath Robotics,” pp. 1-2 (2013). |
Bay, H., A. Ess, T. Tuytellaars, and L. Van Gool. “SURF: Speeded Up Robust Features.” Computer Vision and Image Understanding (CVIU). vol. 110. No. 3, pp. 346-359, 2008. |
Number | Date | Country | |
---|---|---|---|
20170262724 A1 | Sep 2017 | US |