Reliability of electronic parts decreases with increased temperature. Light emitting diode (LED) lights often incorporate schemes whereby LED current is reduced at high operating temperatures in order to reduce internal temperatures at higher ambient temperatures and, thereby, improving reliability. But such schemes result in reduced light output at high operating temperatures. In addition, LED light output reduces as die temperature increases, which results in further reducing light output.
In addition, at ambient temperatures that are low, the brightness of an LED increases. Thus a cold LED light can produce excessive light output. The forward voltage of an LED rises at low temperatures, which causes the power consumption to increase significantly under cold conditions.
The present disclosure relates generally to a method for powering a light fixture to provide a constant light output. In one embodiment, the method comprises providing a current to one or more light emitting diodes (LEDs), monitoring an external ambient temperature and increasing the current to the one or more LEDs as the external ambient temperature rises to maintain the constant light output.
The present disclosure also provides an LED luminaire. In one embodiment, LED luminaire comprises one or more LEDs, a housing enclosing the one or more LEDs, a temperature sensor located on an exterior side of the housing and coupled indirectly to the exterior side of the housing and an LED driver with a current control coupled to each one of the one or more LEDs and in communication with the temperature sensor, wherein the current control increases a current delivered to the each one of the one or more LEDs as an external ambient temperature increases to maintain a constant light output.
The present disclosure also provides a circuit for maintaining a constant light output of an LED. In one embodiment, the circuit comprises an LED driver with a current control coupled to the LED, wherein the current control increases a current delivered to the LED as an external ambient temperature increases to maintain the constant light output and a temperature sensing device coupled to the LED driver and the LED.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
The present invention overcomes the conflicting trade-off between low light output and reliability at high temperatures, as well as excessive light output and high power consumption at low temperatures. As discussed above, reliability of electronic parts decreases with increased temperature. Light emitting diode (LED) lights often incorporate schemes whereby LED current is reduced at high operating temperatures in order to reduce internal temperatures at higher ambient temperatures and, thereby, improving reliability. But such schemes result in reduced light output at high operating temperatures. In addition, LED light output reduces as die temperature increases, which results in further reducing light output.
In addition, at ambient temperatures that are low, the brightness of an LED increases. Thus, a cold LED light can produce excessive light output. The forward voltage of an LED rises at low temperatures, which causes the power consumption to increase significantly under cold conditions.
In one embodiment, the present disclosure provides a solution that is counter intuitive to the traditional operation of LED lights in a high ambient temperature. For example, a constant light output is maintained by raising the LED current level as the external ambient temperature rises, rather than reducing it as is normal industry practice. Reliability is maintained by a ruggedized design, which only rolls off LED current at extreme temperatures way beyond those ever likely to be encountered. At the same time, by reducing power consumption at lower temperatures, a long term reliability gain is achieved and less energy is consumed.
It is important to monitor and respond to ambient temperature rather than LED or power supply temperature to avoid positive feedback, which would otherwise result in the light quickly heating itself to a high temperature irrespective of ambient temperature.
In one embodiment, the LED light fixture 100 may be configured with the temperature sensor 102. The temperature sensor 102 is coupled to an adapter 106 comprising wire and shrink tubing. The temperature sensor 102 may be in communication with a driver or controller (illustrated in
In one embodiment, the temperature sensor 102 is also strategically located on a side of the LED light fixture 100. Typically, heat emitted from the LED light fixture 100 will rise vertically upwards directly above the LED light fixture 100. As discussed above, the heat sink fins 108 and the housing 110 are usually designed to dissipate heat vertically upwards. As a result, placing the temperature sensor 102 on a perimeter or side of the LED light fixture 100 also helps to ensure the temperature sensor 102 properly reads the external ambient air temperature and not the temperature of the LED light fixture 100.
As noted above, in one embodiment, to achieve the ability to increase current at higher temperatures to maintain a constant light output, a high powered LED may be implemented in the light fixture but initially powered at a lower current. For example, if an application requires 100 lumens of light output, an LED having the ability to output 200 lumens of light may be used but driven to initially output 100 lumens at an initial temperature.
Using the above example, unlike previous applications that would drive an LED at the full 200 lumens, by driving the LED at only 100 lumens, provides the ability to increase current as the ambient temperature rises to maintain a constant light output. In previous techniques, by driving the LED at the full 200 lumens, as the ambient temperature rises, the current must be reduced to reduce the heat output of the LED to avoid failure. As a result, the light output would be reduced as the ambient temperature rises.
In addition, as noted above, using a high powered LED and initially powering it at a lower current provides additional advantages. For example, lower power is consumed, the LED may have a longer life, reliability of the LED is increased, and the like.
In one embodiment, the circuit 500 includes an LED driver 502 having a current control, one or more LEDs 506 coupled to the LED driver 502 and one or more temperature sensing devices 504 coupled to the LED driver 502 and the LEDs 506. The temperature sensing device 504 may be, for example, a positive temperature coefficient (PTC) thermistor, a negative temperature coefficient (NTC) thermistor, and the like.
In one embodiment, the external ambient temperature reading is fed to the LED driver 502 as in an input 508. In addition, power inputs 510 are provided to the LED driver 502.
In one embodiment, the LED driver 502 may include a processor and a computer readable storage medium for storing information to control the current delivered to the LEDs 506. For example, data relating to a relationship between the current and external ambient temperature may be stored in the computer readable storage medium such that the LED driver may know how to adjust the current based upon the external ambient temperature received at input 508. In one embodiment, the relationship between the current and the external ambient temperature may be linear, exponential, a step function, and the like.
In one embodiment, the LED driver 502 may have a resistor programming feature that allows the current delivered to the LED 506 to be set by means of the temperature sensing device 504, e.g., a PTC thermistor. Higher resistor values give higher LED current. In one embodiment, the current may be set in accordance with a function or a predefined relationship of makeup current required to maintain a constant LED light output versus various external ambient temperatures. For example, the relationship may be linear in one embodiment. In another embodiment, the relationship may be logarithmic or may be a step function. Thus, at a given ambient temperature, the LED driver may know exactly how much current to provide to maintain a constant light output for the LED 506.
In other words, as the external ambient temperature rises, the light output of the LED 506 will decrease. Thus, the function will define how much the light output will decrease based upon the higher external ambient temperature. The additional current that is required may then be calculated based upon the predicted light output in accordance with the function or relationship between the light output versus the external ambient temperatures.
In operation that uses a PTC thermistor as the temperature sensing device 504, as ambient temperature rises the resistance of the PTC thermistor increases, thereby, causing the LED driver 502 to deliver more current to the LED 506. In one embodiment, the PTC thermistor may be several in series and may be combined with one or more additional PTC thermistors or other types of resistors to create the desired LED current/LED light output versus temperature characteristic.
In one embodiment, the circuit 500 may be used to allow the light fixture 100 to automatically adjust the current to the LEDs based upon the external ambient temperature that is measured. It should also be noted that
The method 600 begins at step 602. At step 604, the method 600 provides a current to one or more LEDs. In one embodiment, the LEDs have a higher maximum light output than the light output required for a particular application. For example, if the application requires 100 lumens of light, the LEDs that are used may be LEDs with a maximum light output of 200 lumens.
As a result, the initial current that is provided to the LEDs may be reduced or lower than the maximum required current (e.g., half of the maximum current) to power the LEDs to produce 100 lumens of light. As a result, the LEDs would consume less power, the LEDs would have a longer life and the reliability of the LEDs would be increased.
At step 606, the method 600 monitors an external ambient temperature. For example, a temperature sensor on an external side of a housing of the light fixture may continuously measure the external ambient temperature. In one embodiment, the temperature sensor may be located on a side or a perimeter of the housing. This may be to avoid the heat that rises like a plume vertically above the light fixture from affecting the external ambient temperature measurement. In addition, the temperature sensor may be located away from the external side of the housing via a non-conductive spacer to avoid the housing from affecting the external ambient temperature measurement.
At step 608, the method 600 determines if the external ambient temperature is increasing. If the external ambient temperature is not increasing, the method 600 returns to step 606 to continue monitoring the external ambient temperature. However, if the external ambient temperature is increasing at step 608, the method 600 proceeds to step 610.
At step 610, the method 600 increases the current to the one or more LEDs as the external ambient temperature rises to maintain a constant light output. For example, an LED driver with a current control inside of the light fixture may adjust the current delivered to the LEDs based upon the external ambient temperature. Counter intuitively, the method 600 may increase the current as the external ambient temperature rises to maintain a constant light output, rather than decrease the current as traditionally done in previous methods.
In one embodiment, the current may be controlled by a resistor, for example a PTC thermistor, that is coupled to the LEDs and the LED driver. As the external ambient temperature rises, the resistance of the PTC thermistor increases. As a result, the LED driver delivers more current to the LEDs as the resistance of the PTC thermistor increases.
In one embodiment, the makeup amount of current required to maintain a constant light output of the LED as the external ambient temperature rises may be a function of a relationship between a makeup current required to maintain the constant light output versus the external ambient temperature. In one embodiment, the relationship may be linear. At step 612, the method 600 ends.
In one embodiment, the method 600 may continue to monitor the external ambient temperature to continually adjust the current delivered to the LEDs based upon any changes to the external ambient temperature (e.g., additional increases or decreases in the external ambient temperature). Thus, in one embodiment, the method 600 may not end but continually loop between steps 606, 608 and 610 and adjust the current (e.g., increase or decrease the current) in accordance with any increase or decrease in the external ambient temperature.
It should be noted that although not explicitly specified, one or more steps, functions, or operations of the method 600 described above may include a storing, displaying and/or outputting step as required for a particular application. In other words, any data, records, fields, and/or intermediate results discussed in the methods can be stored, displayed, and/or outputted to another device as required for a particular application. Furthermore, steps, functions, or operations in
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application is a divisional of U.S. patent application Ser. No. 13/939,385, filed on Jul. 11, 2013, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application Ser. No. 61/672,977, filed on Jul. 18, 2012, which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61672977 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13939385 | Jul 2013 | US |
Child | 15970458 | US |