The present invention relates to surge arrestors and, more particularly, to T-body elbow arrestors.
As described in U.S. Pat. No. 5,128,824, conventional surge arresters used to protect underground and overhead high voltage electrical systems widely employ metal oxide varistor elements to provide either a high or a low impedance current path between the arrester terminals depending on the voltage appearing across the varistor elements themselves. More particularly, at the system's steady state or normal operating voltage, the varistor elements have a relatively high impedance. As the applied voltage is increased, as in response to a lightening strike, their impedance decreases until the voltage appearing across the elements reaches their breakdown voltage, at which point their impedance rapidly decreases towards zero and the varistor elements become highly conductive. In this highly conductive condition, the varistor elements serve to conduct the resulting transient follow-on current to ground. As the transient overvoltage due to the strike and the follow-on current dissipate, the varistor elements' impedance increases effectively removing the short to ground and restoring the varistor elements and electrical system to their normal steady state condition.
Conventional elbow arresters are designed for 200 A load break application and have a 200 A standard interface (bushing) that is not compatible with the 600 A standard interface (bushing). The interfaces may differ not only in shape but in the method of coupling to the bushing. Such an arrangement is illustrated in
Embodiments of the present invention include a T-body elbow arrestor having an elbow body. The elbow body has a first longitudinally extending portion and a second longitudinally extending portion. The second portion extends from an intermediate section of the first portion in a generally perpendicular direction to define the T-body. A surge arrestor is positioned in the second portion of the elbow body. An end cap assembly is coupled to an end of the second portion of the elbow body displaced from the first portion, which end cap assembly is electrically connected to the surge arrestor. A bushing receiving region is positioned in the first portion of the elbow body extending from the intermediate section towards a first end of the first portion of the elbow body, which busing receiving region being configured to receive a bushing. An insulating plug is positioned in the first portion of the elbow body extending from the intermediate section towards a second, opposite end of the first portion of the elbow body. The insulating plug has an end in the intermediate section configured to be coupled to the bushing to secure the T-body elbow arrestor in an assembled condition when the T-body elbow arrestor is coupled to the bushing.
In further embodiments, the bushing receiving region is configured to conformably receive a 600 A (amp) standard shaped bushing and the surge arrestor is a metal oxide varistor (MOV) arrestor block stack. The first portion may have a length of about twenty-eight centimeters. The end cap assembly may include an end cap that secures the surge arrestor in the second portion and a ground connection having an end in the second portion that is electrically connected to a first end of the surge arrestor and an opposite end extending from the second portion that is configured to be connected to an external ground.
In other embodiments, a second, opposite end of the surge arrestor positioned proximate the intermediate portion of the first portion of the elbow body is electrically connected to the bushing when the elbow arrestor is coupled to the bushing to define an electrical path from the bushing to the ground connection through the surge arrestor. The bushing may include a screw threaded section thereon in the intermediate section. The screw threaded section of the bushing may be an internal thread and the end of the insulating plug configured to be coupled to the bushing may include a mating external thread configured to be threadably received by the internal thread. The insulating plug may include a coupling component and a plug component and the end of the insulating plug configured to be coupled to the bushing may include the coupling component.
In further embodiments, the elbow body is an elastomer. The elbow body may be EPDM rubber. The surge arrestor may be molded in the second portion of the elbow body.
In yet other embodiments, a 600 A (amp) T-body elbow arrestor includes an electrically shielded elbow body having a first longitudinally extending portion and a second longitudinally extending portion. The second portion extends from an intermediate section of the first portion in a generally perpendicular direction to define the T-body. A metal oxide varistor (MOV) arrestor block stack is positioned in the second portion of the elbow body. An end cap assembly is coupled to an end of the second portion of the elbow body displaced from the first portion. The end cap assembly includes an end cap that secures the MOV arrestor block stack in the second portion and a ground connection having an end in the second portion that is electrically connected to and end of the MOV arrestor block stack and an opposite end extending from the second portion that is configured to be connected to an external ground. A 600 A standard shaped bushing receiving portion is positioned in the first portion of the elbow body extending from the intermediate section towards a first end of the first portion of the elbow body. The receiving portion is configured to receive a bushing that includes a screw threaded section thereon. An insulating plug is positioned in the first portion of the elbow body extending from the intermediate section towards a second, opposite end of the first portion of the elbow body. The insulating plug has an end in the intermediate section configured to be coupled to the screw threaded section of the bushing to secure the 600 A T-body elbow arrestor in an assembled condition when the 600 A T-body elbow arrestor is coupled to the bushing.
In some embodiments, the bushing includes a coupling member and the screw threaded section of the bushing is on the coupling member. The insulating plug may include a coupling component and a plug component and the end of the insulating plug configured to be coupled to the bushing may include the coupling component. The screw threaded section of the bushing may be an internal thread and the end of the insulating plug configured to be coupled to the bushing may include a mating external thread configured to be threadably received by the internal thread.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. In the drawings, the relative sizes of regions or features may be exaggerated for clarity. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90° or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Some embodiments of the present invention provide surge arrestors, such as a 600 ampere (600 A) T-Body elbow arrester as illustrated in
Referring now to
The elbow body 105 may be an electrically shielded elbow body. As such, the elbow body may be an elastomer, such as EPDM rubber or the like. More particularly, as seen in the embodiments of
A surge arrestor, shown as a metal oxide varistor (MOV) arrestor block stack 140, is positioned in the second portion 204 of the elbow body 105. The illustrated MOV arrestor block stack includes five MOV blocks with aluminum end fittings 141 on the top and the bottom of the MOV arrestor block stack 140.
An end cap assembly 111 is coupled to an end 212 of the second portion 204 of the elbow body 105. The end cap assembly 111 includes an electrical connection to the surge arrestor and may further help to retain the MOV arrestor block stack 140 in the elbow body 105. In the illustrated embodiments, the end cap assembly 111 includes an end cap 107a, 107b that secures the MOV arrestor stack block 140 in the second portion 204 and a ground connection 109 having an end 109a in the second portion 204 that is electrically connected to a first end 221 of the MOV arrestor stack block 140. An opposite end 109b of the ground connection 109 extends from the second portion 204 and is configured to be connected to an external ground. The ground connection 109 may be a brass ground fitting and the outer section 107b of the end cap 107a, 107b may be stainless steel in some embodiments. The ground connection 109 is electrically connected to the MOV arrestor block stack 140 through the conductive aluminum end fitting 141 on the bottom end (end 212 of the second portion 204) of the MOV arrestor block stack 140. In some embodiments, the MOV arrestor stack block 140 is molded in the second portion 204 of the elbow body 105.
A bushing receiving region 207 is located in the first portion 202 of the elbow body 105 extending from the intermediate section 210 towards a first end 208 of the first portion 202. The bushing receiving region 207, in the illustrated embodiments, is configured to conformably receive a 600 A (amp) standard shaped bushing 120.
An insulating plug 130 is positioned in the first portion 202 of the elbow body 105 extending from the intermediate section 210 towards a second, opposite end 206 of the first portion 202. The insulating plug 130 has an end 130′ in the intermediate section 210 that is configured to be coupled to the bushing 120 to secure the T-body elbow arrestor 100 in an assembled condition when the T-body elbow arrestor 100 is coupled to the bushing 120.
For the illustrated embodiments, a second, opposite end 223 of the MOV arrestor stack block 140 positioned proximate the intermediate portion 210 of the first portion 202 of the elbow body 105 is electrically connected to the bushing 120 when the elbow arrestor 100 is coupled to the bushing 120 to define an electrical path from the bushing 120 to the ground connection 109 through the MOV arrestor block stack 140. More particularly, as shown in the embodiments of
As also shown in
Also shown in
Embodiments of the present invention, such as the illustrated 600 A T-Body elbow arrester 100 of
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
The present application claims the benefit of and priority from U.S. Provisional Application No. 61/121,691 (Attorney Docket No. EN-00130-US/5487-291PR), filed Dec. 11, 2008, the disclosure of which is hereby incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
61121691 | Dec 2008 | US |