The disclosed embodiments relate generally to networking and more particularly to techniques for providing reliable networking functionality and high availability.
In order to reduce down-time and provide high availability, several network devices provide redundant components such as redundant processors that are configured to facilitate data routing functions performed by the network device. In a network device with redundant processors, at any point in time, one of the processors may be configured to operate in active mode while the other processor may operate in standby mode where the active processor is configured to perform certain functions that are not performed by the standby processor. The processor operating in the active mode is sometimes referred to as the active processor and the processor operating in standby mode is referred to as the standby processor. Processors operating according to the active/standby mode model provide redundancy such that, when the active processor fails, the standby processor becomes the active processor and starts performing the functions performed in active mode. Various events may cause a switchover (also sometimes referred to as a failover) in the network device, wherein the standby processor starts operating in the active mode and takes over routing functionality, from the previous active processor. The previously active processor may become the standby processor, as a result of the switchover.
When a switchover occurs, the new active processor rebuilds its processing and routing state information. This rebuilding or restoring of the processing and/or routing state can take several seconds or even minutes, until the new active processor has rebuilt the processing and routing state information, during which routing of traffic may be interrupted.
Certain embodiments of the present invention provide techniques for providing reliable networking functionality and high availability using transactional memory.
Supporting high availability may be desirable for networking equipment vendors. High availability refers to a system design that ensures a high level of reliance and low down-time associated with the system. In some embodiments, high availability is facilitated by providing redundant processing entities (e.g., two or more processors, two or more cores, etc.) with active components and standby components. Providing redundancy may reduce instances where the networking device encounters unrecoverable errors and has to be fully rebooted or becomes completely non-functional and needs to be manually replaced. Such instances result in long network outages that are not acceptable for many mission-critical applications and are expensive to maintain. However, even with redundancy, switching over from the active components to the standby components may require time for rebuilding and reinitializing the processing and routing state of the new active components.
Embodiments of the invention generally describe techniques for reducing the down-time during switching over from the active processing entity to the standby processing entity by sharing memory between the active processing entity and standby processing entity and maintaining consistency of the shared memory for a transaction comprising a plurality of operations.
In certain embodiments, a network device may include a memory, a first processing entity, a second processing entity and a transactional memory system comprising a memory shareable between the first processing entity and the second processing entity. The first processing entity may operate in a first mode, such as an active mode. The first processing entity may perform a first set of tasks in the first mode. An example of a first set of tasks may include, but is not limited to, routing of packets from one device to another device at the network device. In certain embodiments, the second processing entity may operate in a second mode when the first processing entity is operating in the first mode. The second processing entity may not perform the first set of tasks in the second mode.
The first processing entity may commence execution of a transaction while operating in the first mode. The transaction may be a plurality of operations. A portion of the memory may be in a first state prior to commencing execution of the transaction by the first processing entity. In one scenario, the first processing entity may stop executing the transaction on the first processing entity in the first mode after execution of a subset of the plurality of operations from the transaction. In one embodiment, at least one from the plurality of operations may not be included in the subset of the plurality of operations. The subset of operations may be operable to change the state of the portion of the memory from the first state to a different state when committed to the portion of the memory. In some embodiments, the first processing entity may stop executing the transaction in the first mode in response to detecting a failure condition during the executing of the transaction. In other embodiments, the first processing entity may stop executing the transaction in the first mode in response to a signal. A signal may be generated due to a request to upgrade the software executing on the first processing entity.
In some embodiments, after the first processing entity stops executing the transaction in the first mode, the network device may cause the second processing entity to operate in the first mode instead of the first processing entity. In some implementations, the first processing entity operates in the second mode after stopping execution of the transaction on the first processing entity in the first mode. Furthermore, the second processing entity may commence the execution of the transaction. In one implementation, the transactional memory system may cause the state of the portion of memory to be in the first state prior to commencement of the execution of the transaction by the second processing entity.
In one example implementation, components of the network device perform processing to cause the state of the portion of memory to be in the first state by tracking changes to the portion of the memory by the first processing entity during the executing of the transaction on the first processing entity and reverting the changes back to the first state prior to commencement of the execution of the transaction by the second processing entity. In another example implementation, components of the network device perform processing to cause the state of the portion of memory to be in the first state by buffering changes directed to the portion of the memory during executing of the transaction in a memory buffer, and discarding the buffered changes in the memory buffer.
In certain embodiments, the portion of memory may be implemented using persistent memory that does not change from the time when the first processing entity stops executing the transaction in the first mode and the second processing entity starts operating the first mode. In certain embodiments, persistent memory may be implemented by maintaining power to the portion of memory. In other embodiments, persistent memory may be implemented by using non-volatile memory that does not change when it is not powered.
The foregoing has outlined rather broadly features and technical advantages of examples in order that the detailed description that follows can be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the spirit and scope of the appended claims. Features which are believed to be characteristic of the concepts disclosed herein, both as to their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purpose of illustration and description only and not as a definition of the limits of the claims.
In the following description, for the purposes of explanation, specific details are set forth in order to provide a thorough understanding of embodiments of the invention. However, it will be apparent that various embodiments may be practiced without these specific details. The figures and description are not intended to be restrictive.
The availability of a system is generally measured as the proportion of time that the system is available to perform its intended function. High availability refers to the system's ability to ensure low down-time and high up-time. In many systems, including in network devices, high availability is facilitated by providing redundancies, for example, by providing redundant processing entities. A processing entity may be a physical processor, a group of physical processors, a core, a group of cores, and the like or a virtual machine operating on any such processing logic. One processing entity is configured to operate in the active mode while the other redundant processing entity operates in the standby mode. The processing entity operating in active mode is referred to as the active processing entity and the processing entity operating in standby mode is referred to as the standby processing entity. For example, a network device may provide redundant processors with one of the processors operating in active mode (referred to as the active processor) while the other processor operates in standby mode (referred to as the standby processor).
Typically, the active processing entity is configured to perform a certain set of functions that are not performed by the standby processing entity. For example, in a network device, the active processing entity may be configured to perform functions performed by the network device such as one or more functions related to forwarding and routing of network data. These functions may not be performed by the standby processing entity. In response to certain events, the standby processing entity is configured to start operating in the active mode and become the new active processing entity and take over performance of the functions performed in active mode, hopefully without any interruption to the functions being performed. The event that causes the previous standby processing entity to become the new active processing entity may also cause the previous active processing entity to operate in the standby mode and become the new standby processing entity.
The process of a previous standby processing entity becoming the new active processing entity and the previous active processing entity becoming the new standby processing entity is sometimes referred to as a switchover or a failover. Network devices strive to perform a switchover with minimal, and preferably no, impact or interruption of the functions being performed by the network device. A switchover thus reduces the downtime of a network device and increases its availability.
A switchover may be caused by various different events, including anticipated or voluntary events and/or unanticipated or involuntary events. A voluntary or anticipated event is typically a voluntary user-initiated event that is intended to cause the active processing entity to voluntarily yield control to the standby processing entity. An instance of such an event is a command received by the network device from a network administrator to perform a switchover. There are various situations when a network administrator may cause a switchover to occur on purpose, such as when software for the active processing entity needs to be upgraded to a newer version. As another example, a switchover may be voluntarily initiated by the system administrator upon noticing performance degradation on the active processing entity or upon noticing that software executed by the active processing entity is malfunctioning. In such scenarios, the network administrator may voluntarily issue a command to the network device that causes a switchover, with the hope that problems associated with the current active processing entity will be remedied when the standby processing entity becomes the new active processing entity. A command to cause a voluntary switchover may also be initiated as part of scheduled maintenance. Various interfaces, including, but not limited to, a command line interface (CLI), may be provided for initiating a voluntary switchover.
An involuntary or unanticipated switchover (also sometimes referred to as a failover) may occur due to some critical failure (e.g., a problem with the software executed by the active processing entity, failure in the operating system loaded by the active processing entity, hardware-related errors on the active processing entity or other router component, and the like) in the active processing entity.
While operating in active mode, the active processing entity may use information (referred to as “operational state information”) that the active processing entity uses to perform the set of functions performed in active mode. For example, an active processing entity in a network device performing forwarding functions may use information such as routing tables, spanning tree tables, networking metrics, and the like. As part of performing the active mode functions, the active processing entity may build and/or make changes to the operational state information to, for example, reflect changes in the network topology. When a switchover occurs, the operational state information is also needed by the new active processing entity in order to perform the set of functions performed in active mode. The operational state information available to the new active processing entity thus needs to be synchronized with the latest state of the operational state information accessible to the previous active processing entity. The information used by the previous active processing entity needs to be synchronized to the information used by the new active processing entity.
In certain embodiments, the new active processing entity has to first build the operational state information before it can start performing the active mode set of functions. This, however, can take some time during which the active mode set of functions is not performed by the new active processing entity and translates to down-time of the device, thereby reducing availability. It is thus desirable that the new active processing entity be able to access the operational state information as soon as possible upon a switchover to reduce or even prevent any down time for the network device.
In certain embodiments, to facilitate quick synchronization of the operational state information between the previous active processing entity and the new active processing entity, the network device provides a memory that is shared between the two redundant processing entities. In one embodiment, while operating in active mode, the active processing entity is configured to store the operational state information, which it uses for performing the set of functions performed in active mode, to this the shared memory. When a switchover occurs that causes the previous active processing entity to become the new standby processing entity and the previous standby processing entity to become the new active processing entity, the new active processing entity can have immediate access to the operational state information stored in the shared memory by the previous active processing entity, which may now operate in standby mode.
The use of shared memory provides a quick way for the new active processing entity to gain access to operational state information built, maintained, and used by the previous active processing entity. The time and processing overhead and complexity of having to synchronize data from the active to the standby processing entity is reduced. Further, the overall memory required by processing entities for providing high availability can also be reduced since separate memories are not needed for each of the processing entities.
Whenever memory is shared between two or more processing entities, such as between the active and standby processing entities, problems associated with data inconsistency and data corruption need to be closely monitored. Since an event that causes a switchover can occur without any forewarning, for example, in the middle of a memory write operation, there is no way to ensure whether the data stored in the shared memory by the active processing entity is in a consistent state at the point of the switchover. For example, if the switchover occurred as the active processing entity (i.e., the active processing entity prior to the switchover) was writing data to the shared memory, there is no way to ensure whether or not the write operation was successfully completed or whether it was interrupted in the middle, leading possibly to an inconsistent or indeterminate or even corrupted memory state. In such a scenario, when the previous standby processing entity becomes the active entity as a result of the switchover, it may be difficult, if even possible, for the new active processing entity to be able to detect the data inconsistency or corruption in the shared memory and even more difficult for it to recover from this situation without having to rebuild all of the operational state data from scratch—a task that can be very processing—and memory resource-intensive and may adversely affect the availability of the network device.
In certain embodiments, the data inconsistency problems resulting from the use of shared memory, as discussed above, are resolved by using a transactional memory system. In one embodiment, the transactional memory system comprises a memory that can be shared between multiple processing entities, such as between an active processing entity and a standby processing entity. Additionally, the transactional memory system comprises an architecture or framework that guarantees consistency of data stored in the shared memory at the atomicity of a transaction.
For purposes of this disclosure, a transaction is defined as a finite sequence of one or more operations. A transaction may include one or more operations that cause the state of memory to be impacted. These include operations that cause data to be written to the memory (a write operation) and/or an update operation that causes data written to be memory to be updated. An update operation includes a delete operation that deletes data written to memory or an update operation that changes the data written to memory.
In certain embodiments, the transactional memory system ensures the consistency of data stored in the shared memory at a transaction level, where the transaction may comprise one or more operations. The transactional memory system guarantees that changes to the shared memory caused by write and/or update operations are kept consistent at the level or atomicity of a transaction. The transactional memory system treats a transaction as a unit of work; either a transaction completes or does not. The execution of a transaction is considered to be completed if all the sequential operations defined for that transaction are completed. The execution of a transaction is considered not to be completed, i.e., considered to be incomplete, if all the sequential operations defined for that transaction are not completed. In terms of software code, a transaction represents a block of code and the transactional memory system ensures that this block of code is executed atomically. The transactional memory system ensures that changes to memory resulting from execution of the operations in a transaction are committed to the shared memory only upon completion of the transaction. If a transaction starts execution but does not complete, i.e., all the operations in the transaction do not complete, the transactional memory system ensures that any memory changes made by the operations of the incomplete transaction are not committed to the shared memory. Accordingly, the transactional memory system ensures that an incomplete transaction does not have any impact on the data stored in the shared memory. The transactional memory system thus ensures the consistency of the data stored in the shared memory at the boundary or granularity of a transaction.
For example, if the active processing entity receives a switchover-causing event during the execution of a transaction that prevents the active processing entity from completing the transaction (i.e., prevents the active processing entity from completing all the operations in the transaction), the transactional memory system prevents the changes to memory caused by the incomplete transaction from being committed to the shared memory; the shared memory remains in a state as if the partial execution of the transaction did not occur. After the switchover, the new active processing entity can restart the transaction, with a memory state consistent with a state prior to the execution of any of the operations from the transaction by the previously active processing entity. The transactional memory system thus not only enables memory to be shared between an active processing entity and a standby processing entity but also ensures that the new active processing entity, upon a switchover, is guaranteed consistency of the data stored in the shared memory such that the new processing entity can then start performing the set of functions performed in active mode using the data stored in the shared memory. The transactional memory system thus facilitates the synchronization of data between the active processing entity and the standby processing entity in a simple and efficient manner while also ensuring the consistency of the data after a switchover. This helps to reduce the impact on the functions performed by the device upon a switchover and reduces or eliminates the down-time of the device, leading to higher availability.
A transactional memory system may use different techniques to ensure that any memory changes caused by operations of a transaction are committed to the shared memory only upon completion of the transaction, or alternatively, to ensure that any memory changes caused by operations of an incomplete transaction are not committed to the shared memory.
Traditionally, transaction memory has been used for simplifying the concurrent computing problem, where multiple threads executing within the same process are vying for execution of a critical segment of code. These types of problems have been previously addressed using lock-based synchronization methods. However, lock based schemes can be very complex and error prone and require developers to be fully aware of all potential synchronization issues. Transactional memory solves this by abstracting the concurrency issues into atomic transactions. The transactional memory infrastructure may guarantee that transactions are handled properly in a concurrent environment.
As shown in
For example, in one embodiment, a processing entity of computing device 100 (e.g., first processing entity 102 or second processing entity 104) may be a physical processor, such as an Intel, AMD, or TI processor, or an ASIC. In another embodiment, a processing entity may be a group of processors. In another embodiment, a processing entity may be a processor core of a multicore processor. In yet another embodiment, a processing entity may be a group of cores from one or more processors. A processing entity can be any combination of a processor, a group of processors, a core of a processor, or a group of cores of one or more processors.
In certain embodiments, the processing entity may be a virtual processing unit or a software partitioning unit such as a virtual machine, hypervisor, software process or an application running on a processing unit, such as a physical processing unit, core or logical processor. For example, the two or more processing entities may be virtual machines executing or scheduled for execution on one or more physical processing units, one or more cores executing within the same physical processing unit or different physical processing units, or one or more logical processors executing on one or more cores on the same physical processing unit or separate physical processing units.
In certain embodiments, computing device 100 may be configured to operate according to the active/standby model for providing high availability. For example, one or more processing entities may operate in a first mode (e.g., active mode) while one or more other processing entities operate in a second mode (e.g., standby mode). For example, as shown in
Upon a switchover, caused by a voluntary or an involuntary event, the standby processing entity is configured to start operating in the active mode and become the new active processing entity and take over performance of the functions performed in active mode. The previous active processing entity may operate in the standby mode and become the new standby processing entity. In this manner, the active-standby model uses redundant processing entities to reduce interruptions in data processing and forwarding and thus provides higher availability for the network device.
In certain implementations, each processing entity may have a dedicated portion of memory assigned to or associated with the processing entity. In one embodiment, the memory assigned to a processing entity is random access memory (RAM). Non-volatile memory may also be assigned in other embodiments. For example, in the embodiment depicted in
Software instructions (e.g., software code or program) that are executed by a processing entity may be loaded into the memory coupled to that processing entity. This software may be, for example, loaded into the memory upon initiation or boot-up of the processing entity. In one embodiment, as depicted in
As depicted in
As previously described, computing device 100 may be configured to operate according to the active/standby model. For example, first processing entity 102 may operate in active mode while second processing entity 104 operates in standby (or passive) mode. When the first processing entity 102 operates in active mode, one or more applications or processes may be loaded into memory 106 associated with first processing entity 102 and executed by first processing entity 102. These applications and processes, when executed by first processing entity 102, may perform a certain set of functions that are performed in the active mode (and not performed in the standby mode).
In certain embodiments, when first processing entity 102 is operating in the active mode, second processing entity 104 may operate in the standby mode. When the second processing entity 104 operates in standby mode, one or more applications or processes may be loaded into memory 108 associated with second processing entity 104 and executed by second processing entity 104. These applications and processes, when executed by first processing entity 104, may perform a set of functions that are performed in the standby mode.
In certain embodiments, a transactional memory system (TMS) 110 is provided to facilitate communication of data between first processing entity 102 and second processing entity 104 (or, in general, between any two processing entities of computing device 100). As depicted in
In certain embodiments, shared memory 112 can be shared between multiple processing entities of computing device 100. For purposes of this disclosure, sharing a memory between two processing entities, such as between a first processing entity and a second processing entity, implies that the memory can be shared between at least one process or application executed by the first processing entity and at least one process or application executed by the second processing entity. For example, in
First memory 106, second memory 108, and shared memory 112 may be physically configured in a variety of ways without departing from the scope of the invention. For example, first memory 106, second memory 108, and shared memory 110 may reside one or more memory banks connected to the processing entities using shared or dedicated busses in computing device 100.
As shown in
Transactional memory system 110 may be implemented using several software or hardware components, or combinations thereof. In one embodiment, infrastructure 113 may be implemented in software, for example, using the software transactional memory support provided by GNU C Compiler (GCC) (e.g., libitm runtime library provided by GCC 4.7). Infrastructure 113 may also be implemented in hardware using transactional memory features provided by a processor. Transactional memory system 110 may also be provided using a hybrid (combination of software and hardware) approach.
In certain embodiments, a process executed by a processing entity may make use of transactional memory system 110 by linking to and loading a runtime library (132 and 134) (e.g., the libitm library provided by GCC (128 and 130)) that provides various application programming interfaces (APIs) that make use of transactional memory system 110. Operations that belong to a transaction may make use of the APIs provided by such a library such that any memory operations performed by these operations use transactional memory system 110 instead of non-transactional memory. Operations that do not want to use transactional memory system 100 may use APIs provided by non-transactional libraries such that any memory operations performed using these non-transactional memory APIs use data space 120 instead of transactional memory system 110. For example, as shown in
In certain implementations, transactional memory system 110 uses TM logs 114 to guarantee consistency of data stored in shared memory 112 on a per transaction basis. In one embodiment, for a sequence of operations in a transaction, information tracking changes to shared memory 112, due to execution of the operations of the transaction, is stored in TM logs 114. The information stored is such that it enables transactional memory system 110 to reverse the memory changes if the transaction cannot be completed. In this manner, the information stored in TM logs 114 is used by transactional memory system 110 to reverse or unwind any memory changes made due to execution of operations of an incomplete transaction.
For example, for a transaction that comprises an operation that writes data to a memory location in shared memory 112, information may be stored in a TM log 114 related to the operation and the memory change caused by the operation. For example, the information logged to a TM log 114 by transactional memory system 110 may include information identifying the particular operation, the data written by the operation or the changes to the data at the memory location resulting from the particular operation, the memory location in shared memory 112 where the data was written, and the like. If for some reason the transaction could not be completed, transactional memory system 110 then uses the information stored in TM log 114 for the transaction to reverse the changes made by the write operation and restore the state of transactional memory 112 to a state prior to the execution of any operation in the transaction as if the transaction was never executed. For an incomplete transaction, the TM log information is thus used to rewind or unwind the shared memory changes made by any executed operations of an incomplete transaction. The memory changes made by operations of an incomplete transaction are not committed to memory 112. The memory changes are finalized or committed to memory only after the transaction is completed. TM logs 114 themselves may be stored in shared memory 112 or in some other memory in or accessible to transactional memory system 110.
The operations that make up a transaction are generally preconfigured. In one embodiment, a system programmer may indicate what operations or portions of code constitute a transaction. A piece of code may comprise one or more different transactions. The number of operations in one transaction may be different from the number of operations in another transaction. For example, a programmer may define a set of sequential operations related that impact memory as a transaction.
When code 200 is executed due to execution of process 116 by first processing entity 102, operations that are part of a transaction, such as operations 5-15, use the transactional memory APIs provided by TM lib 132 and as a result shared or transactional memory 112 is used for the memory operations. Operations that are not part of a transaction, such as operations 1-4 and 16-19, use a non-transactional memory library and, as a result, any memory operations resulting from these operations are made to data space 120 within the memory portion allocated for process 116 in memory 106.
For a transaction, the block of code corresponding to operations in the transaction is treated as an atomic unit. In one embodiment, the “transaction start” indicator (or some other indicator) indicates the start of a transaction to first processing entity 102 and the “transaction commit” indicator (or some other indicator) indicates the end of the transaction. The operations in a transaction are executed in a sequential manner by first processing entity 102. As each transaction operation is executed, if the operation results in changes to be made to shared memory 112 (e.g., a write or update operation to shared memory 112), then, in one embodiment, the information is logged to a TM log 114. In this manner, as each operation in a transaction is executed, any memory changes caused by the execution operation is logged to TM log 114. If all the operations in the transaction (i.e., operations 5-15 for the transaction shown in
Similarly, in one implementation, the TM log 114 may also be protected in a similar manner as other memory operations using the transactional memory system, wherein the transaction is committed to memory only after the writes to the TM log 114 are completed to memory. In the event that the transaction is interrupted with a switchover event before the writes to the TM log 114 are completed, the transaction may be considered incomplete and the TM log 114 may be discarded.
For example, while executing code 200, first processing entity 102 may receive an event that causes code execution by first processing entity 102 to be interrupted. If the interruption occurs when the transaction comprising operations 5-15 is being executed, then any shared memory 112 changes made by the already executed operations of the incomplete transaction are reversed, using information stored in TM logs 114. For example, if the interruption occurs when operation —9 has been executed and operation —10 is about to be executed, any changes to shared memory 112 caused by execution of operations 5-9 are reversed and not committed to shared memory 112. In this manner, transactional memory system 110 ensures that the state of data stored in shared memory 112 is as if the incomplete transaction was never executed.
As described above, the processing entities in computing device 100 may be configured to operate according to the active/standby model wherein one processing entity operates in active mode performing a set of functions that are performed in active mode, and concurrently, another processing entity operates in standby mode and does not perform the set of functions performed in active mode. For example, in the embodiment depicted in
In certain embodiments, transactional memory system 110 enables operational state information built, maintained, and used by the active processing entity prior to a switchover to be made accessible to the new processing entity after the switchover. Further, by organizing the operations performed in the active mode into transactions, transactional memory system 110 ensures that the data stored in shared memory 112 is in a consistent state at the atomicity of a transaction. The new active processing entity is thus assured about the consistency of the operational state information stored in shared memory 112 and can immediately start using the information to perform the active mode set of functions without any downtime. Transactional memory system 110 thus provides not only a way for the operational state information to be seamlessly made available to the new active processing entity upon a switchover but also ensures consistency of the information at a per transaction level.
In certain embodiments, the transactional memory 112 and the TM log 114 may be implemented using memory that is persistent across a switchover from the first processing entity 102 to the second processing entity 104. In certain example scenarios, the switchover may result in a partial or complete reboot of the system. During the reboot, the power planes associated with the processing entities and the memory may also be rebooted. Rebooting of the power planes may result in losing of the data stored in memory. In certain embodiments, to avoid losing data stored in the shared memory 112 and the TM logs 114, the library may allocate the memory using persistent memory. In one implementation, persistent memory may be implemented using non-volatile memory, such as flash, that retains data even when not powered. In another implementation, persistent memory may be implemented by keeping the memory powered during the period when the computing device 100 reboots. In some implementations, the shared memory 112 and the TM logs 114 may be implemented on a separate power plane so that they do not lose power and consequently data while other entities in the network device, lose power and reboot.
In one embodiment, in addition to changing a portion of the shared memory 112 for each memory operation from the transaction, the TM logs 114 may also be updated to reflect the changes to shared memory 112. In certain implementations, transactional memory system uses TM logs 114 to guarantee consistency of data stored in shared memory 112 on a per transaction basis. In one embodiment, for a sequence of operations in a transaction, information tracking changes to shared memory 112, due to execution of the operations of the transaction, are stored in TM logs 114. The information stored is such that it enables transactional memory system 110 to reverse the memory changes if the transaction cannot be completed. In this manner, the information stored in TM logs 114 is used by transactional memory system 110 to reverse or unwind any memory changes made due to execution of operations of an incomplete transaction.
Committing changes to memory may include an update of the internal state (of the processing hardware and/or library) reflecting that all the operations associated with the transaction have been completed. In addition, in some implementations, committing of the transaction may also update the TM logs 114. In one implementation, the information associated with a completed transaction may be deleted from the TM logs. However, in other implementations, the changes associated with the completed transaction may be buffered for a few transactions for later use for recovering transactions. Once the transaction is completed and committed, the shared memory 112 is in a second consistent state 502. The completion of the transaction and committing of the changes to the shared memory place the allocated memory for the transaction (i.e., memory block 502) in a determinate state. Any switchover occurring between the first processing entity 102 and second processing entity 104 after the completion of the transaction may continue execution of the computer program on the second processing entity 104 from the subsequent operation and/or transaction.
The transactional memory system 110, as shown in
For example, for a transaction that comprises an operation that writes data to a memory location in shared memory 816, information may be stored in a TM log 114 related to the operation and the memory change caused by the operation. For example, the information logged to a TM log 814 by transactional memory system may include information identifying the particular operation, the data written by the operation or the changes to the data at the memory location resulting from the particular operation, the memory location in shared memory where the data was written, and the like. If for some reason the transaction could not be completed, transactional memory system 110 then uses the information stored in TM log 114 for the transaction to reverse the changes made by the write operation and restore the state of portion of the shared memory 816 to a state prior to the execution of any operation in the transaction as if the transaction was never executed. For an incomplete transaction, the TM log information is thus used to rewind or unwind the shared memory changes made by any executed operations of an incomplete transaction. The memory changes made by operations of an incomplete transaction are not committed to memory 812. The memory changes are finalized or committed to memory only after the transaction is completed. TM logs 814 themselves may be stored in shared memory 812 or in some other memory in or accessible to transactional memory system.
As described earlier, the changes to the portion of the shared memory 816 are committed to shared memory 812 at the transaction boundary. For example, in
In one implementation, the buffer 918 shown in
In one implementation of a cache-based transactional memory system, all memory write operations during the execution of the transaction to the memory region reserved as the shared memory 912 region may be written to the processor cache instead of the shared memory 912. The memory write operations during the execution of the transaction to the memory region reserved as the shared memory 912 region may also be tagged as transactional memory stores in the cache. In one implementation, during the execution of the transaction, the stores tagged as transactional memory stores in the processor are preserved in the caches and protected from evictions (i.e., being pushed out to the memory) until the completion of the transaction.
At the completion of the execution of the transaction, all the stores targeted to the shared memory 912 are committed to the memory 916. In the above example implementation, committing of the memory operations to transactional memory 916 may refer to evicting all the transaction memory writes stored in the caches to the shared memory 914.
In
Although
On the other hand, in a scenario similar to
At step 1002, the first processing entity of the network device may operate in an active mode. The first processing entity may be configured to perform a first set of tasks in the active mode. The first set of tasks may include routing network messages from one endpoint to another endpoint in a network. An example of the first mode is an active mode.
At step 1004, the first processing entity commences execution of a transaction while operating in the first mode. The transaction may include a plurality of operations. Some of the operations may be memory operations and operable to perform write transactions on a portion of memory. The portion of the memory may be in a first state prior to commencing execution of the transaction by the first processing entity.
At step 1006, the second processing entity of the network device operates in a second mode when the first processing entity is operating in the first mode. The second processing entity may be configurable to not perform the first set of tasks in the second mode. An example of a second mode may be a standby mode.
At step 1007, the network device may receive an event. In one embodiment, the event is an asynchronous event. The event may be a voluntary event, such as a request for software upgrade for the software executing on the first processing entity or an involuntary event such as an error associated with the first processing entity or the network device itself.
At step 1008, the first processing entity, operating in the first mode, stops execution of the transaction on the first processing entity in the first mode in response to the event (from block 1007) after executing a subset of the plurality of operations from the transaction. In some embodiments, at least one from the plurality of operations may not be included in the subset of the plurality of operations. The subset may be operable to change the state of the portion of the memory from the first state to a different state when the transaction is committed to the portion of the memory. In other words, the subset has fewer operations than all the operations in the transaction.
At step 1010, after the first processing entity stops executing the transaction in the first mode, the second processing entity may operate in the first mode instead of the first processing entity. In one implementation, the first processing entity may operate in the second mode after stopping execution of the transaction on the first processing entity in the first mode. In one implementation, the portion of the memory does not change from the time when the first processing entity stops executing the transaction in the first mode and the second processing entity starts operating in the first mode. In one implementation, the portion of the memory does not change state by maintaining power to the portion of the memory. In another implementation, the portion of the memory does not change state, since the portion of the memory is implemented using non-volatile memory.
At step 1012, a transactional memory system may cause the state of the portion of the memory to be in the first state. In one implementation, as depicted in
In another implementation, as depicted in
At step 1014, the second processing entity commences execution of the transaction in the first mode. In one implementation, the first processing entity, at step 1016, may start operating in the second mode (such as standby mode) while the second processing entity is operating in the active mode.
It should be appreciated that the specific steps illustrated in
As shown in
For example, in one embodiment, a processing entity of computing device 1100 may be a physical processor, such as an Intel, AMD, TI processor or an ASIC. In another embodiment, a processing entity may be a group of processors. In another embodiment, a processing entity may be a processor core of a multicore processor. In yet another embodiment, a processing entity may be a group of cores from one or more processors. A processing entity can be any combination of a processor, a group of processors, a core of a processor, or a group of cores of one or more processors.
In certain embodiments, the processing entity may be a virtual processing unit or a software partitioning entity such as a virtual machine, hypervisor, software process or an application running on a processing unit, such as a physical processing unit, core or logical processor. For example, the two or more processing entities may be virtual machines executing or scheduled for execution on one or more physical processing units, one or more cores executing within the same physical processing unit or different physical processing units, or one or more logical processors executing on one or more cores on the same physical processing unit or separate physical processing units.
In certain implementations, each processing entity may have a dedicated portion of memory assigned to or associated with the processing entity. In one embodiment, the memory assigned to a processing entity is random access memory (RAM). Non-volatile memory may also be assigned in other embodiments. For example, in the embodiment depicted in
Software instructions (e.g., software code or program) that are executed by a processing entity may be loaded into the memory coupled to that processing entity. This software may be, for example, loaded into the memory upon initiation or boot-up of the processing entity. In one embodiment, as depicted in
As depicted in
In certain computing devices, such as network devices supporting high availability may be desirable for networking equipment vendors. In some embodiments, high availability is facilitated by providing robust recovery from errors. As discussed herein, the technique described improve robust recovery of a process 1116 executing on a processing entity 1102.
State recovery of a process has a similar problem to a switchover, wherein, if the process encounters an unrecoverable error during updating of memory, the memory may be left in an inconsistent state. In such a scenario, the process may not be able to recover without going through a full stateless process restart if the memory is in an inconsistent state. On the other hand, if the error condition or corruption is undetected and an attempt is made to restart the process at the point of the error, it is very likely the process may misbehave resulting in data loss or a process crash.
In certain embodiments, the state of the process 1116 executing on the processing entity 1102 may be preserved and restarted upon encountering an unrecoverable error condition resulting in a process 1116 crash during the execution of instructions associated with the process 1116. In one implementation, the changes to memory may be rolled back or reverted to a prior consistent/determinate state and the instructions are re-executed on the processing entity 1102. Using transactional memory techniques with persistent memory (e.g., non-volatile memory) allows the process to recover to a state prior to the execution of the transaction, wherein the transaction comprises a plurality of operations. The changes made during the execution of the operations from the transaction may be reverted back if the transaction is interrupted before the transaction is committed to memory.
As depicted in
Transactional memory system 1110 may be implemented using several software, hardware components, or combinations thereof. In one embodiment, infrastructure 1113 may be implemented in software, for example, using the software transactional memory support (block 1132) provided by GNU C Compiler (GCC) (e.g., libitm runtime library provided by GCC 4.7). Infrastructure 1113 may also be implemented in hardware using transactional memory features provided by a processor. Transactional memory system 1110 may also be provided using a hybrid (combination of software and hardware) approach.
In certain embodiments, a process executed by a processing entity may make use of transactional memory system 1110 by linking to and loading a runtime library 1132 (e.g., the libitm library provided by GCC (1128)) that provides various application programming interfaces (APIs) that make use of transactional memory system 1110. Operations that belong to a transaction may make use of the APIs provided by such a library such that any memory operations performed by these operations use transactional memory system 1110 instead of non-transactional memory. Operations that do not want to use transactional memory system 1100 may use APIs provided by non-transactional libraries such that any memory operations performed using these non-transactional memory APIs use data space 1120 instead of transactional memory system 1110. For example, as shown in
In certain implementations, the transactional memory system uses TM logs 1114 to guarantee consistency of data stored in transactional memory 1112 on a per transaction basis. In one embodiment, for a sequence of operations in a transaction, information tracking changes to transactional memory 1112 due to execution of the operations of the transaction is stored in TM logs 1114. The information stored is such that it enables transactional memory system 1110 to reverse the memory changes if the transaction cannot be completed. In this manner, the information stored in TM logs 1114 is used by transactional memory system 1110 to reverse or unwind any memory changes made due to execution of operations of an incomplete transaction.
For example, for a transaction that comprises an operation that writes data to a memory location in transactional memory 1112, information may be stored in a TM log 1114 related to the operation and the memory change caused by the operation. For example, the information logged to a TM log 1114 by transactional memory system 1100 may include information identifying the particular operation, the data written by the operation or the changes to the data at the memory location resulting from the particular operation, the memory location in transactional memory 1112 where the data was written, and the like. If, for some reason, the transaction could not be completed, transactional memory system 1110 then uses the information stored in TM log 1114 for the transaction to reverse the changes made by the write operation and restore the state of transactional memory 1112 to a state prior to the execution of any operation in the transaction as if the transaction was never executed. For an incomplete transaction, the TM log 1114 information is thus used to rewind or unwind the shared memory changes made by any executed operations of an incomplete transaction. The memory changes made by operations of an incomplete transaction are not committed to memory 1112. The memory changes are finalized or committed to memory only after the transaction is completed. TM logs 1114 themselves may be stored in transactional memory 1112 or in some other memory in or accessible to transactional memory system 1110.
In addition to the memory 1106, according to certain embodiments of the invention, the computing device 1100 may have one or more portions of memory that may be persistent across the failure or reboot of the processing entity 1102. In one embodiment, the persistent memory 1110 may be implemented using non-volatile memory. In another embodiment, the persistent memory 1110 may be implemented by maintaining power to the one or more portions of memory while the process 1116 and/or processing entity 1102 recovers or reboots. In one implementation, the persistent memory 1110 may be part of the memory 1106. For example, if the memory 1106 for the processing entity and the memory 1110 were both implemented using non-volatile memory, in one embodiment there may be no need for implementing memories (1106 and 1110) separately.
In certain implementations, such as shown in
In certain implementations, using transactional memory 1112 with TM logs 1114 may allow for a robust recovery from an unrecoverable error in the processing of the process 1116. The processing entity 1102 can restart from the same transaction, even in the event that the processing entity stops after partially completing the transaction that included several memory manipulations, leaving the memory in an indeterminate and/or inconsistent state. Even if the memory is in an indeterminate state, the processing entity 1102 after rebooting can use the TM logs 1114 stored in the persistent memory 1110 and restore the state of the transactional memory 1112 to a state prior to the execution of the transaction at the processing entity 1102. In certain embodiments, the processing entity 1102 may commence the transaction after restoring the transactional memory 1112.
In certain embodiments, the transactional memory 1112 and the TM log 1114 may be implemented in persistent memory 1110 that is persistent across a reboot of the processing entity. During the reboot processes, the power planes associated with the processing entities and the memory may also be rebooted. Rebooting of the power planes may result in losing of the data stored on the memory. In certain embodiments of the invention, to avoid losing the data stored in the transactional memory 1112 and the TM logs 1114 memory may be allocated in persistent memory 1110. In one implementation, persistent memory may be implemented using non-volatile memory, such as flash, that retains data even when not powered. In another implementation, persistent memory may be implemented by keeping the memory powered even when the computing device 1100 reboots. In some implementations, the persistent memory 1110 may be implemented on a separate power plane so that the persistent memory 1110 does not lose power and data while other entities in the network device, lose power and reboot.
Accordingly, as described above, embodiments of the invention may enable the computing device 1100 to recover back to the transaction in a consistent manner without having to rebuild the entire state. This may reduce down-time for the computing device 1100 in high availability network devices.
At step 1202, embodiments of the invention may allocation transaction memory 1112 in persistent memory 1110, as shown in
At step 1204, the processing entity 1112 may commence execution of the transaction on the processing entity 1102. In one implementation, the state of the transaction memory allocated is in a first state prior to the execution of the transaction.
At step 1206, if no failure is detected and the transaction completes (step 1212), then the processing entity 1102 commits changes to the transactional memory 1112, so that the memory is in a second state (step 1214).
On the other hand, if an error is detected or a signal is received to restart the process executing on the processing entity 1112, before the completion of the transaction (i.e., all the operations in the transaction), the processing entity 1112 may restore the state of the transactional memory 1112 to the first state upon restarting the process. At step 1210, the processing entity 1112 may reset the state of the process and the processing entity and restart the transaction at 1204.
It should be appreciated that the specific steps illustrated in
Ports 1302 represent the I/O plane for network device 1300. Network device 1300 is configured to receive and forward data using ports 1302. A port within ports 1302 may be classified as an input port or an output port depending upon whether network device 1300 receives or transmits a data packet using the port. A port over which a data packet is received by network device 1300 is referred to as an input port. A port used for communicating or forwarding a data packet from network device 1300 is referred to as an output port. A particular port may function both as an input port and an output port. A port may be connected by a link or interface to a neighboring network device or network. Ports 1302 may be capable of receiving and/or transmitting different types of data traffic at different speeds including 1 Gigabit/sec, 10 Gigabits/sec, or more. In some embodiments, multiple ports of network device 1300 may be logically grouped into one or more trunks.
Upon receiving a data packet via an input port, network device 1300 is configured to determine an output port for the packet for transmitting the data packet from the network device to another neighboring network device or network. Within network device 1300, the packet is forwarded from the input network device to the determined output port and transmitted from network device 1300 using the output port. In one embodiment, forwarding of packets from an input port to an output port is performed by one or more linecards 1304. Linecards 1304 represent the data forwarding plane of network device 1300. Each linecard 1304 may comprise one or more packet processing entities 1308 that are programmed to perform forwarding of data packets from an input port to an output port. A packet processing entity on a linecard may also be referred to as a line processing entity. Each packet processing entity 1308 may have associated memories to facilitate the packet forwarding process. In one embodiment, as depicted in
Since processing performed by a packet processing entity 1308 needs to be performed at a high packet rate in a deterministic manner, packet processing entity 1308 is generally a dedicated hardware device configured to perform the processing. In one embodiment, packet processing entity 1308 is a programmable logic device such as a field programmable gate array (FPGA). Packet processing entity 1308 may also be an ASIC.
Management card 1306 is configured to perform management and control functions for network device 1300 and thus represents the management plane for network device 1300. In one embodiment, management card 1306 is communicatively coupled to linecards 1304 and includes software and hardware for controlling various operations performed by the linecards. In one embodiment, a single management card 1306 may be used for all the linecards 1304 in network device 1300. In alternative embodiments, more than one management card may be used, with each management card controlling one or more linecards.
A management card 1306 may comprise a processing entity 1314 (also referred to as a management processing entity) that is configured to perform functions performed by management card 1306 and associated memory 1316. As depicted in
In one embodiment, the functions performed by management card processing entity 1314 include maintaining a routing table, creating associations between routes in the routing table and next-hop information, updating the routing table and associated next-hop information responsive to changes in the network environment, and other functions. In one embodiment, management processing entity 1314 is configured to program the packet processing entities and associated memories of linecards 1304 based upon the routing table and associated next-hop information. Programming the packet processing entities and their associated memories enables the packet processing entities to perform data packet forwarding in hardware. As part of programming a linecard packet processing entity and its associated memories, management processing entity 1314 is configured to download routes and associated next-hops information to the linecard and program the packet processing entity and associated memories. Updates to the next-hop information are also downloaded to the linecards to enable the packet processing entities on the linecards to forward packets using the updated information.
The present application is a non-provisional of and claims the benefit and priority under 35 U.S.C. 119(e) of (1) U.S. Provisional Application No. 61/845,934, filed Jul. 12, 2013, entitled TRANSACTIONAL MEMORY LAYER, and (2) U.S. Provisional Application No. 61/864,371, filed Aug. 9, 2013, entitled TRANSACTIONAL MEMORY LAYER. The entire contents of the 61/845,934 and 61/864,371 applications are incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
61845934 | Jul 2013 | US | |
61864371 | Aug 2013 | US |