High-bandwidth, radiation-resistant multimode optical fiber

Information

  • Patent Grant
  • 9405062
  • Patent Number
    9,405,062
  • Date Filed
    Thursday, April 26, 2012
    12 years ago
  • Date Issued
    Tuesday, August 2, 2016
    8 years ago
Abstract
A multimode optical fiber includes a central core and an outer cladding (e.g., an outer optical cladding). Typically, the optical fiber's central core is a depressed, central core having an alpha-index profile (i.e., a graded-index profile), an outer radius r1, and a maximum refractive index difference Δn1 with respect to the outer cladding. The central core's alpha-index profile has a minimum refractive index at the central core's outer radius r1 that corresponds to a refractive index difference Δnend with respect to the outer cladding. Exemplary optical-fiber embodiments may include an inner cladding having an outer radius r2 and a width w2. Exemplary optical-fiber embodiments may include a buried trench having a width w3 and an outer radius r3. Furthermore, exemplary optical-fiber embodiments may include an intermediate cladding having an outer radius r4 and a width w4.
Description
FIELD OF THE INVENTION

The present invention relates to the field of optical fibers and, more specifically, high-bandwidth multimode optical fibers for high radiation applications.


BACKGROUND

An optical fiber (i.e., a glass fiber typically surrounded by one or more coating layers) conventionally includes an optical fiber core, which transmits and/or amplifies an optical signal, and an optical cladding, which confines the optical signal within the core. Accordingly, the refractive index of the core nc is typically greater than the refractive index of the optical cladding ng (i.e., nc>ng).


For optical fibers, the refractive index profile is generally classified according to the graphical appearance of the function that associates the refractive index with the radius of the optical fiber. Conventionally, the distance r to the center of the optical fiber is shown on the x-axis, and the difference between the refractive index (at radius r) and the refractive index of the optical fiber's outer cladding (e.g., an outer optical cladding) is shown on the y-axis. The refractive index profile is referred to as a “step” profile, “trapezoidal” profile, “alpha” profile, or “triangular” profile for graphs having the respective shapes of a step, a trapezoid, an alpha, or a triangle. These curves are generally representative of the optical fiber's theoretical or set profile. Constraints in the manufacture of the optical fiber, however, may result in a slightly different actual profile.


Generally speaking, two main categories of optical fibers exist: multimode fibers and single-mode fibers. In a multimode optical fiber, for a given wavelength, several optical modes are propagated simultaneously along the optical fiber. In a single-mode optical fiber, the signal propagates in a fundamental LP01 mode that is guided in the fiber core, while the higher order modes (e.g., the LP11 mode) are strongly attenuated. The typical diameter of a single-mode or multimode glass fiber is 125 microns. The core of a multimode optical fiber typically has a diameter of between about 50 microns and 62.5 microns, whereas the core of a single-mode optical fiber typically has a diameter of between about 6 microns and 9 microns. Multimode systems are generally less expensive than single-mode systems because multimode light sources, connectors, and maintenance can be obtained at a lower cost.


Multimode optical fibers are commonly used for short-distance applications requiring a broad bandwidth, such as local networks or LAN (local area network). Multimode optical fibers have been the subject of international standardization under the ITU-T G.651.1 recommendations, which, in particular, define criteria (e.g., bandwidth, numerical aperture, and core diameter) that relate to the requirements for optical fiber compatibility. The ITU-T G.651.1 standard is hereby incorporated by reference in its entirety.


In addition, the OM3 standard has been adopted to meet the demands of high-bandwidth applications (i.e., a data rate higher than 1 GbE) over long distances (i.e., distances greater than 300 meters). The OM3 standard is hereby incorporated by reference in its entirety. With the development of high-bandwidth applications, the average core diameter for multimode optical fibers has been reduced from 62.5 microns to 50 microns.


There has been increasing interest in using optical fibers in nuclear power plants and other radiation-rich environments, such as particle acceleration laboratories and satellites. For example, optical fibers may be used in optical data communication links, distributed sensors, plasma diagnostics, and instrumentation systems. In such applications, optical fibers typically transmit signals through noisy electromagnetic environments, high gamma ray dosages and/or dosage rates, and high neutron fluences.


Signals transmitted via optical fibers typically undergo optical losses (i.e., attenuation) that accumulate over the distance traveled. These transmission losses increase substantially when the optical fiber is subjected to ionizing radiation, such as beta, alpha, gamma, and/or X-rays.


Generally speaking, radiation affects the optical properties of an optical fiber in two ways.


The first is referred to as “radiation-induced attenuation” (RIA), which occurs when radiation creates defects in the silica of the optical fiber. These defects absorb the transmitted electromagnetic signals. Radiation-induced absorption, therefore, increases the attenuation experienced by an optical signal as it is transmitted along an optical fiber's length.


The second is referred to as a radiation-induced refractive index change, which occurs when radiation induces refractive index changes in portions of the optical fiber. These refractive index changes can compromise the bandwidth of the optical fiber, in turn compromising the reliability of an optical transmission system. Accordingly, optical fibers used in radiation-rich environments should exhibit good radiation resistance.


Therefore, a need exists for a multimode optical fiber having a high bandwidth and good radiation resistance. More particularly, a need exists for a high bandwidth multimode optical fiber that exhibits low radiation-induced attenuation.


SUMMARY

Accordingly, in one aspect, the present invention embraces an optical fiber that includes a central core, an interior cladding layer (e.g., an inner cladding), and an outer cladding (e.g., an outer optical cladding). Typically, the optical fiber's central core is a glass-based central core having an alpha-index profile (i.e., a graded-index profile) and an outer radius r1.


The central core's alpha-index profile has a minimum refractive index value at the central core's outer radius r1 that corresponds to a minimum refractive index difference Δnend with respect to the outer cladding. More specifically, the central core has an outer radius r1 and an alpha-index profile, and, at the central core's outer radius r1, a refractive index difference Δnend with respect to the outer cladding (e.g., the innermost portion of the outer cladding).


Similarly, the central core's alpha-index profile has a maximum refractive index value (e.g., at the center of the central core) that corresponds to a maximum refractive index difference Δn1 with respect to the outer cladding. Typically, the central core's maximum refractive index difference Δn1 is approximately equal to or less than zero. Stated differently, the central core's maximum refractive index value is typically equal to or less than the outer cladding's refractive index value.


The optical fiber's inner cladding is positioned between the central core and the outer cladding. The inner cladding has an outer radius r2, a width w2, and a refractive index difference Δn2 with respect to the outer cladding.


In an exemplary embodiment, the optical fiber's central core has a maximum refractive index difference Δn1 of between 0 and −5×10−3 (e.g., between −0.05×10−3 and −2×10−3).


In another exemplary embodiment, the central core's outer radius r2 is between 22.5 microns and 27.5 microns (i.e., 25±2.5 microns).


In yet another exemplary embodiment, the central core's minimum refractive index Δnend is between −14×10−3 and −21×10−3 (e.g., between −15×10−3 and −17×10−3).


In yet another exemplary embodiment, the central core's alpha index profile has an alpha parameter of between 1.90 and 2.15.


In yet another exemplary embodiment, the inner cladding's refractive index difference Δn2 is between −14×10−3 and −21×10−3 (e.g., between −15×10−3 and −16×10−3).


In yet another exemplary embodiment, the inner cladding's width w2 is between 5 microns and 37.5 microns (e.g., between 10 microns and 25 microns).


In yet another exemplary embodiment, the inner cladding's width w2 is 20 microns or greater.


In yet another exemplary embodiment, the inner cladding's outer radius r2 is between 30 microns and 62.5 microns (e.g., between 35 microns and 50 microns).


In yet another exemplary embodiment, the inner cladding's outer radius r2 is greater than 45 microns (e.g., between 50 microns and 62.5 microns).


In yet another exemplary embodiment, the inner cladding's refractive index difference Δn2 is approximately equal to the central core's minimum refractive index difference Δnend.


In yet another exemplary embodiment, the optical fiber has a numerical aperture of 0.200±0.015 (i.e., between 0.185 and 0.215).


In yet another exemplary embodiment, across the entire width of the central core, the optical fiber's chlorine concentration is less than 0.10 weight percent.


In yet another exemplary embodiment, across 95 percent of the central core's width, the optical fiber's chlorine concentration is less than 0.08 weight percent (e.g., less than 0.07 weight percent).


In yet another exemplary embodiment, the optical fiber's average chlorine concentration is 0.06 weight percent or less (e.g., less than about 0.05 weight percent).


In yet another exemplary embodiment, at a wavelength of 856 nanometers, a temperature of about 24° C., and a radiation dose rate of 0.15 Gy/s, the optical fiber exhibits a radiation-induced attenuation of about 26.7 dB/km or less after a radiation dose of 650 grays.


In yet another exemplary embodiment, at a wavelength of 856 nanometers, a temperature of about 24° C., and a radiation dose rate of 0.15 Gy/s, the optical fiber exhibits a radiation-induced attenuation that increases by about 5.6 percent or less from a dosage of 650 grays to 10,000 grays.


In yet another exemplary embodiment, the optical fiber has a halogen ratio at the central core's outer radius of more than 30 (e.g., between 50 and 500).


In yet another exemplary embodiment, the optical fiber has a core-cladding-average halogen ratio of more than 20 (e.g., between 22 and 300).


In yet another exemplary embodiment, the optical fiber has a core-cladding-average halogen ratio of between 25 and 269 (e.g., between 48 and 240).


In yet another exemplary embodiment, the optical fiber has a core-cladding-average halogen ratio of between 53 and 200 (e.g., between 60 and 140).


In yet another exemplary embodiment, the optical fiber has a core-average halogen ratio of more than 20 (e.g., between 30 and 170).


In another aspect, the present invention embraces an optical fiber that includes a central core and an interior cladding layer (e.g., an inner cladding). Typically, the optical fiber's central core is a glass-based central core having an alpha-index profile (i.e., a graded-index profile) and an outer radius r1.


The central core's alpha-index profile has a minimum refractive index value at the central core's outer radius r1 that corresponds to a minimum refractive index difference Δnend with respect to pure silica. More specifically, the central core has an outer radius r1 and an alpha-index profile, and, at the central core's outer radius r1, a refractive index difference Δnend with respect to pure silica.


Similarly, the central core's alpha-index profile has a maximum refractive index value (e.g., at the center of the central core) that corresponds to a maximum refractive index difference Δn1 with respect to pure silica. Typically, the central core's maximum refractive index difference Δn1 is approximately equal to or less than zero. Stated differently, the central core's maximum refractive index value is typically equal to or less than pure silica's refractive index value. The optical fiber's inner cladding is positioned around the central core. The inner cladding has an outer radius r2, a width w2, and a refractive index difference Δn2 with respect to pure silica.


In yet another aspect, the present invention embraces an optical fiber that includes a central core, a buried trench, an interior cladding layer (e.g., an intermediate cladding), and an outer cladding (e.g., an outer optical cladding). Typically, the buried trench is positioned between the central core and the outer cladding (e.g., immediately surrounding the central core). The buried trench has a width w3, an outer radius r3, and a refractive index difference Δn3 with respect to the outer cladding. The intermediate cladding is typically positioned between the buried trench and the outer cladding (e.g., immediately surrounding the buried trench). The intermediate cladding has an outer radius r4, a width w4, and a refractive index difference Δn4 with respect to the outer cladding.


In yet another aspect, the present invention embraces an optical fiber that includes a central core, an inner cladding, a buried trench, an intermediate cladding, and an outer cladding (e.g., an outer optical cladding). Typically, the inner cladding is positioned between the central core and the outer cladding (e.g., immediately surrounding the central core). The inner cladding has an outer radius r2, a width w2, and a refractive index difference Δn2 with respect to the outer cladding. The buried trench is typically positioned between the inner cladding and the outer cladding (e.g., immediately surrounding the inner cladding). The buried trench has a width w3, an outer radius r3, and a refractive index difference Δn3 with respect to the outer cladding. Additionally, the intermediate cladding is typically positioned between the buried trench and the outer cladding (e.g., immediately surrounding the buried trench). The intermediate cladding has an outer radius r4, a width w4, and a refractive index difference Δn4 with respect to the outer cladding.


In yet another aspect, the present invention embraces an optical fiber that exhibits excellent hydrogen resistance.


In another aspect, the present invention embraces an optical transmission system that includes at least a portion of an optical fiber in accordance with the foregoing. In an exemplary embodiment, the optical system has a data rate of at least 10 Gb/s over at least 100 meters (e.g., 300 meters).


In yet another aspect, the present invention embraces a method of making an optical fiber. Typically, the method includes supplying reactive gases to one side of a substrate tube. The interior of the substrate tube is typically supplied with oxygen at a flow rate that is approximately 1.8 times higher than in a conventional chemical vapor deposition technique. The method also includes reciprocating an energy source between two reversal points along the substrate tube to promote the formation of a glass layer.


In an exemplary embodiment, the method includes reciprocating a plasma generator between two reversal points along the substrate tube.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts an exemplary DMD measurement method and graph.



FIG. 2 graphically depicts the set refractive index profile of an exemplary optical fiber according to the present invention.



FIG. 3 graphically depicts the calculated overfilled modal bandwidth (OMBc) of a 300-meter length of optical fiber before and after being exposed to 500 kilograys of radiation.



FIG. 4 graphically depicts the calculated effective modal bandwidth (EMBc) of a 300-meter length of optical fiber before and after being exposed to 500 kilograys of radiation.



FIG. 5 graphically depicts a comparative optical fiber's fluorine (F) and chlorine (Cl) concentrations as a function of radial offset.



FIG. 6 graphically depicts an exemplary optical fiber's fluorine (F) and chlorine (Cl) concentrations as a function of radial offset.



FIG. 7 graphically depicts radiation-induced attenuation as a function of radiation dosage for a comparative optical fiber and an exemplary optical fiber.



FIG. 8 graphically depicts radiation-induced attenuation as a function of radiation dosage for a comparative optical fiber.



FIG. 9 graphically depicts radiation-induced attenuation as a function of radiation dosage for an exemplary optical fiber.



FIG. 10 graphically depicts another exemplary optical fiber's fluorine (F) and chlorine (Cl) concentrations as a function of radial offset.



FIG. 11 graphically depicts yet another exemplary optical fiber's fluorine (F) and chlorine (Cl) concentrations as a function of radial offset.



FIG. 12 graphically depicts the set refractive index profile of another exemplary optical fiber according to the present invention.



FIG. 13 graphically depicts the set refractive index profile of yet another exemplary optical fiber according to the present invention.



FIG. 14 graphically depicts the macrobending losses at a wavelength of 850 nanometers for two turns around a given bend radius for two exemplary optical fibers.





DETAILED DESCRIPTION

The present invention embraces a multimode optical fiber having a high bandwidth and low radiation-induced attenuation. Typically, the optical fiber includes a central core, an inner cladding, and an outer cladding.


An optical fiber should have sufficient bandwidth to perform well in a high-bandwidth application. For a given wavelength, the bandwidth of an optical fiber may be characterized in several different ways. Typically, a distinction is made between the so-called “overfilled modal bandwidth” (OMB) and the so-called “effective modal bandwidth” (EMB). The acquisition of the OMB bandwidth assumes the use of a light source exhibiting uniform excitation over the entire radial surface of the optical fiber (i.e., an overfilled launch condition using, for example, a laser diode or light emitting diode (LED)).


Recently developed light sources used in high-bandwidth applications, such as VCSELs (Vertical Cavity Surface Emitting Lasers), exhibit an inhomogeneous excitation over the radial surface of the optical fiber. For this kind of light source, the OMB bandwidth is a less suitable measurement so it is preferable to use the effective modal bandwidth (EMB). The calculated effective modal bandwidth (EMBc) estimates the minimum EMB of a multimode optical fiber independent of the kind of VCSEL used. The EMBc is obtained from a differential-mode-delay (DMD) measurement (e.g., as set forth in the FOTP-220 standard).


An exemplary method of measuring DMD and calculating the effective modal bandwidth can be found in the FOTP-220 standard, which is hereby incorporated by reference in its entirety. Further details on this technique are set forth in the following publications, each of which is hereby incorporated by reference: P. F. Kolesar and D. J. Mazzarese, “Understanding Multimode Bandwidth and Differential Mode Delay Measurements and Their Applications,” Proceedings of the 51st Int'l Wire and Cable Symposium, 2002, pp. 453-460; and Doug Coleman and Phillip Bell, “Calculated EMB Enhances 10 GbE Performance Reliability for Laser-Optimized 50/125 μm Multimode Fiber,” Corning Cable Systems Whitepaper (March 2005).



FIG. 1 shows a schematic diagram of a DMD measurement according to the criteria of the FOTP-220 standard as published in its TIA SCFO-6.6 version (Nov. 22, 2002). FIG. 1 schematically represents a part of an optical fiber (i.e., an optical core surrounded by an outer cladding). A DMD graph is obtained by successively injecting light pulses of a given wavelength λ0 into the multimode optical fiber with a radial offset between each successive pulse. The delay of each pulse is then measured after a given length of fiber L. Multiple identical light pulses (i.e., light pulses having the same amplitude, wavelength, and frequency) are injected with different radial offsets with respect to the center of the multimode optical fiber's core. The injected light pulse is depicted in FIG. 1 as a dot on the optical core of the optical fiber. In order to characterize an optical fiber with a 50-micron diameter, the FOTP-220 standard recommends that individual measurements be carried out at radial offset intervals of about two microns or less. From these measurements, it is possible to determine the modal dispersion and the calculated effective modal bandwidth (EMBc).


The TIA-492AAAC-A standard, which is hereby incorporated by reference in its entirety, specifies the performance requirements for 50-micron-diameter multimode optical fibers used over long distances in Ethernet high-bandwidth transmission network applications. The OM3 standard requires, at a wavelength of 850 nanometers, an EMB of at least 2,000 MHz·km. The OM3 standard assures error-free transmissions for a data rate of 10 Gb/s (10 GbE) up to a distance of 300 meters. The OM4 standard requires, at a wavelength of 850 nanometers, an EMB of at least 4,700 MHz·km to obtain error-free transmissions for a data rate of 10 Gb/s (10 GbE) up to a distance of 550 meters. The OM4 standard is hereby incorporated by reference in its entirety.


In a multimode optical fiber, the difference between the propagation times, or group delay times, of the several modes along the optical fiber determine the optical fiber's bandwidth. In particular, for the same propagation medium (i.e., in a step-index multimode optical fiber), the different modes have different group delay times. This difference in group delay times results in a time lag between the pulses propagating along different radial offsets of the optical fiber.


For example, as shown in the graph on the right side of FIG. 1, a time lag is observed between the individual pulses. This FIG. 1 graph depicts each individual pulse in accordance with its radial offset in microns (y-axis) and the time in nanoseconds (x-axis) the pulse took to pass along a given length of the optical fiber.


As depicted in FIG. 1, the location of the peaks along the x-axis varies, which indicates a time lag (i.e., a delay) between the individual pulses. This delay causes a broadening of the resulting light pulse. Broadening of the light pulse increases the risk of the pulse being superimposed onto a trailing pulse and reduces the bandwidth (i.e., data rate) supported by the optical fiber. The bandwidth, therefore, is directly linked to the group delay time of the optical modes propagating in the multimode core of the optical fiber. Thus, to guarantee a broad bandwidth, it is desirable for the group delay times of all the modes to be identical. Stated differently, the intermodal dispersion should be zero, or at least minimized, for a given wavelength.


To reduce intermodal dispersion, exemplary multimode optical fibers of the present invention have a core with a refractive index that decreases progressively from the center of the optical fiber to its interface with a cladding (i.e., an “alpha” core profile).


A graded-index profile (i.e., an alpha-index profile) can be described by a relationship between the refractive index value n and the distance r from the center of the optical fiber according to the following equation:






n
=


n
1




1
-

2

Δ







(

r

r
1


)

α









wherein,


α≧1, and α is a non-dimensional parameter that is indicative of the shape of the index profile;


n1 is the maximum refractive index of the optical fiber's core;


r1 is the radius of the optical fiber's core; and






Δ
=


(


n
1
2

-

n
0
2


)


2


n
1
2







where n0 is the minimum refractive index of the multimode core.


Exemplary multimode optical fibers with a graded index (i.e., an alpha profile) therefore each have a core profile with a rotational symmetry such that along any radial direction of the optical fiber the value of the refractive index decreases continuously from the center of the optical fiber's core to its periphery. When a multimode light signal propagates in such a graded-index core, the different optical modes experience differing propagation mediums (i.e., because of the varying refractive indices). This, in turn, affects the propagation speed of each optical mode differently. Thus, by adjusting the value of the parameter α, it is possible to obtain a group delay time that is virtually equal for all of the modes. Stated differently, the refractive index profile can be modified to reduce or even eliminate intermodal dispersion.



FIG. 2 graphically depicts the refractive index profile of an exemplary optical fiber according to the present invention. The optical fiber includes a central core that is surrounded by an outer cladding (e.g., an outer optical cladding). For reasons of cost, the outer cladding is typically made of natural silica, but it may also be made of doped silica. As shown, the optical fiber's central core is a glass-based central core having an alpha-index profile (i.e., a graded-index profile) and an outer radius r1. The central core is typically doped with fluorine (F) to reduce the refractive index of the silica.


The central core's alpha-index profile has a minimum refractive index at the central core's outer radius r1 that corresponds to a refractive index difference Δnend with respect to the outer cladding. Stated differently, the central core has an alpha-index profile and, at the central core's outer radius r1, a refractive index difference Δnend with respect to the outer cladding (e.g., the innermost portion of the outer cladding).


The central core's alpha-index profile also has a maximum refractive index difference Δn1 with respect to the outer cladding (e.g., at the center of the central core). The central core's alpha-index profile facilitates the achievement of high bandwidths.


Typically, the optical fiber's central core has a maximum refractive index difference Δn of between about 0 and −5×10−3 (e.g., between about −0.05×10−3 and −4×10−3). More typically, the central core's maximum refractive index difference Δn1 is between about 0 and −2×10−3. The central core's outer radius r1 is typically between about 22.5 microns and 27.5 microns (i.e., 25±2.5 microns). The central core's minimum refractive index Δnend is typically between about −14×10−3 and −21×10−3 (e.g., between −17×10−3 and −19×10−3). More typically, the central core's minimum refractive index difference Δnend is greater than about −20×10−3 (e.g., between about −15×10−3 and −16×10−3). Additionally, the central core's alpha-index profile typically has an alpha-parameter of between about 1.90 and 2.15.


During preform manufacturing, the central core's alpha-index profile is typically created by depositing between about 1000 and 2000 layers of glass (e.g., between 1400 and 1700 layers). In this regard, the central core's alpha-index profile is typically more similar to a true graded-index profile than a step-wise approximation using discrete layers (e.g., between about three and 200 layers of a step-wise decreasing refractive index). Optical fibers having set alpha-index profiles similar to true graded alpha-index profile central cores typically exhibit higher bandwidths than optical fibers with central cores having step-wise approximations of an alpha-index profile.


As depicted in FIG. 2, the exemplary optical fiber also includes an inner cladding. The optical fiber's inner cladding is positioned between the central core and the outer cladding. The inner cladding has an outer radius r2, a width w2, and a refractive index difference Δn2 with respect to the outer cladding. The inner cladding is typically doped with fluorine (F) to reduce the refractive index of the silica. The optical fiber's inner cladding generally confines the optical signal within the central core.


The inner cladding's refractive index difference Δn2 is typically between about −14×10−3 and −21×10−3 (e.g., between about −15×10−3 and −16×10−3). The inner cladding's width w2 is typically between about 5 microns and 37.5 microns (e.g., between about 10 microns and 25 microns). In an exemplary embodiment, the inner cladding's width w2 is about 20 microns or greater. The inner cladding's outer radius r2 is typically between about 30 microns and 62.5 microns (e.g., between 35 microns and 50 microns).


In exemplary embodiments, the inner cladding's outer radius r2 is about 45 microns or greater (e.g., between about 50 microns and 62.5 microns). The present inventors have found that exemplary optical fibers having an inner-cladding outer radius r2 greater than about 45 microns exhibit bandwidths that are less sensitive to fiber length because confinement losses are reduced as compared to optical fibers having inner-cladding outer radii less than 45 microns.


In exemplary embodiments, the inner cladding's refractive index difference Δn2 is approximately equal to the central core's minimum refractive index difference Δnend. That said, the inner cladding's refractive index difference Δn2 may be greater than or less than the central core's minimum refractive index difference Δnend.



FIG. 2 depicts an inner cladding layer having a constant refractive index difference with respect to the outer cladding. Exemplary optical fibers according to the invention, however, may have one or more refractive index differences that vary as a function of radial position (e.g., a trapezoidal, triangular, or alpha profile). For cladding layers having non-constant refractive indices, the respective refractive index differences (e.g., the inner cladding's refractive index difference Δn2) refer to the largest refractive index difference between a cladding layer and the outer cladding layer in terms of absolute value.


Furthermore, those of ordinary skill in the art will recognize that the outer cladding typically has a constant refractive index. That said, if the outer cladding has a non-constant refractive index, refractive index differences are typically measured with respect to the innermost portion of the outer cladding (i.e., that portion of the outer cladding that is closest to the central core and that may affect the propagation of optical signals within the optical fiber).


Thus, the exemplary manufactured multimode optical fiber has a graded-index central core surrounded by a cladding layer. The core-cladding interface interrupts the core's alpha-index profile. Consequently, the multimode optical fiber's core never corresponds to a theoretically perfect alpha profile (i.e., the alpha set profile). The outer cladding accelerates the higher-order modes with respect to the lower-order modes. This phenomenon is known as the “cladding effect.” In DMD measurements, the responses acquired for the highest radial positions (i.e., nearest the outer cladding) exhibit multiple pulses, which results in a temporal spreading of the response signal. Therefore, bandwidth is diminished by this cladding effect.


An optical fiber's cladding effect may be evaluated using differential-mode-delay measurements acquired with an outer mask. For example, for a 50-micron central core (i.e., a central core diameter of 50±3 microns or radius of 25±1.5 microns), the differential-mode-delay value on the outer mask 0-23 microns can be obtained using the method of the FOTP-220 standard. In this regard, a differential-mode-delay value on the outer mask 0-23 microns (i.e., DMDout, the outer DMD (0-23 microns)) is measured using the DMD method over the radial offset range from the center of the central core (i.e., 0 microns) to 23 microns. In other words, when calculating an optical fiber's outer DMD value, the signals for radial offset values greater than 23 microns are not considered.


Those of ordinary skill in the art will recognize that the dimensions of an outer mask may be modified for optical fibers having larger or smaller core diameters. For example, a mask with larger dimensions (e.g., a larger inner and outer radius) might be used with respect to a multimode optical fiber having a 62.5-micron diameter core. Similarly, a mask with smaller dimensions (e.g., a smaller inner and outer radius) might be used with respect to a multimode optical fiber having a core that is less than 50 microns.


The outer DMD originates from a plot for DMD measured over a length of optical fiber (e.g., over 750 meters of optical fiber). The light source used may be a pulsed titanium-sapphire laser emitting at 850 nanometers. The source emits pulses of less than 40 picoseconds at quarter height, and the RMS (Root Mean Square) spectral width is less than 0.1 nanometer.


Other aspects of an optical fiber's differential mode delay can be evaluated using differential-mode-delay measurements acquired with an inner mask. The differential-mode-delay value on the inner mask 5-18 microns can be obtained using the method of the FOTP-220 standard. In this regard, a differential-mode-delay value on the inner mask 5-18 microns (i.e., DMDin, the inner DMD (5-18 microns)) is measured using the DMD method over the radial offset range of 5 microns from the center of the central core to 18 microns from the center of the central core.


Even further aspects of an optical fiber's differential-mode-delay can be evaluated using differential-mode-delay measurements acquired with a sliding mask in accordance with the method of the FOTP-220 standard. Sliding mask DMD measurements are performed to determine the maximum DMD mask width over any six micron interval between radial offset positions of seven and nineteen microns (i.e., the DMDslid or sliding DMD (7-19 microns)).


As noted, with respect to typical optical fibers, the refractive index of the core nc is typically greater than the refractive index of the optical cladding ng (i.e., nc>ng). The exemplary optical fiber of FIG. 2, however, has a depressed central core (e.g., a fluorine-doped silica core). In this regard, the central core's maximum refractive index difference Δn1 is approximately equal to or less than zero. Stated differently, the central core's maximum refractive-index value is equal to or less than the outer cladding's refractive-index value.


In exemplary embodiments, the central core's maximum refractive index difference Δn1 is negative. Those having ordinary skill in the art will appreciate that for optical-fiber embodiments in which the entire core possesses a negative refractive index relative to the outer cladding, the greatest refractive-index differential between the central core and the outer cladding occurs at the outermost portion of the central core. In other words, in terms of absolute value, the largest numerical refractive index difference between the central core and the outer cladding occurs at the end of the central core's alpha-index profile. Conversely, in terms of absolute value, the smallest numerical refractive index difference between the central core and the outer cladding occurs at the center of the central core's alpha-index profile.


As previously noted, the outer cladding is typically made of pure silica. That said, in some exemplary embodiments, the optical fiber does not include a pure silica outer cladding. For example, the optical fiber may include a central core surrounded by a fluorine doped cladding (e.g., an inner cladding) that extends to the optical fiber's outermost radius. In such embodiments, refractive index differences are typically measured with respect to pure silica having a refractive-index value of about 1.456. Exemplary optical fibers that include a central core surrounded by a fluorine doped cladding may be manufactured via PCVD deposition using fluorine doped substrate tubes. Alternatively, an exemplary optical fiber may be manufactured using a pure silica deposition tube that is removed after deposition either mechanically or via etching techniques.


The presence of germanium and/or phosphorous tends to promote radiation-induced attenuation. Nonetheless, commonly assigned U.S. Patent Application Publication No. 2012/0039361, which is hereby incorporated by reference in its entirety, demonstrates that germanium doping can reduce an optical fiber's hydrogen-induced attenuation. Thus, the present optical fibers may include a depressed central core (and/or interior cladding layer) that is manufactured with some germanium doping. Some exemplary multimode optical fibers might include a germanium-doped central core having a maximum germanium concentration of 0.1 weight percent or less (e.g., between about 0.01 and 0.05 weight percent germanium). In other words, across the entire width of the central core, the germanium concentration does not exceed 0.1 weight percent.


It has been observed that, in a hydrogen-rich environment at temperatures greater than about 200° C. (e.g., 250° C.), the presence of germanium in the optical fiber's central core can promote hydrogen-induced attenuation. Accordingly, to achieve a depressed central core (e.g., a fluorine-doped silica, alpha-index core), the optical fiber's set profile is typically manufactured without germanium doping or phosphorous doping. Instead, the central core's alpha-index profile is achieved using fluorine-doping to lower the central core's refractive index below the refractive index of the outer cladding.


Exemplary multimode optical fibers usually possess a central core that is substantially free of germanium dopants such that the concentration of germanium within the central core is less than 0.005 weight percent (i.e., less than 50 ppm). In other words, such optical fibers are not intentionally doped with germanium, and any trace amounts of germanium are considered an impurity.


The absence of germanium and phosphorous in the exemplary optical fiber's central core improves two aspects of the optical fiber's performance characteristics. Eliminating the central core's germanium and phosphorous content reduces the optical fiber's overall attenuation. Furthermore, and as noted, the absence of germanium or phosphorous in the central core improves the optical fiber's resistance to radiation.


To illustrate one aspect of a depressed-core optical fiber's improved radiation resistance, FIGS. 3 and 4, respectively, graphically depict the calculated overfilled modal bandwidth (OMBc) and calculated effective modal bandwidth (EMBc) of a 300-meter optical fiber sample before and after radiation. The optical fiber used to generate the data of FIGS. 3 and 4 includes a depressed, alpha-index core and an inner cladding having an outer radius of 35 microns and, therefore, has a refractive index profile similar to the exemplary optical fiber of FIG. 2. The graphs include two bars. The shaded, left-hand bar indicates the optical fiber's bandwidth (i.e., OMBc or EMBc) before radiation. The corresponding unshaded, right-hand bar indicates the optical fiber's bandwidth after being subjected to a radiation dosage of 500 kilograys.


Typically, with respect to a standard multimode optical fiber with a germanium-doped central core, both the calculated overfilled modal bandwidth and the calculated effective modal bandwidth are effectively zero after irradiation up to a cumulated dose of 500 kilograys, because the radiation increases the optical fiber's attenuation to several hundred dB/km.


As shown in FIGS. 3 and 4, respectively, for the 300-meter depressed, alpha-index core optical fiber, 500 kilograys of radiation had no effect on the optical fiber's calculated overfilled modal bandwidth and only slightly reduced the optical fiber's calculated effective modal bandwidth. Thus, the absence of germanium and phosphorous in the exemplary optical fiber's central core improves the optical fiber's resistance to radiation-induced degradation of bandwidth.


Further advantages of the depressed, alpha-index core of the exemplary optical fiber will be better understood with reference to Table 1 (below). Table 1 shows the results of measurements performed on the optical fiber of FIGS. 3 and 4. Again, the measurements were performed before and after the optical fiber was subjected to 500 kilograys of radiation.


The first column of Table 1 provides the length of optical fiber. The second and seventh columns, respectively, show the outer DMD (DMDout) values for the optical fiber before and after radiation. The third and eighth columns, respectively, show the inner DMD (DMDin) values for the optical fiber before and after radiation. The fourth and ninth columns, respectively, show the sliding DMD (DMDslid) values for the optical fiber before and after radiation. The fifth and tenth columns, respectively, show the calculated effective modal bandwidth (EMBc) for the optical fiber before and after radiation. The sixth and eleventh columns, respectively, show the calculated overfilled modal bandwidth (OMBc) for the optical fiber before and after radiation. Each measurement was performed at a wavelength of 850 nanometers.











TABLE 1







Fiber
Before Radiation
After Radiation

















Length
DMDout
DMDin
DMDslid
EMBc
OMBc
DMDout
DMDin
DMDslid
EMBc
OMBc


[m]
[ps/m]
[ps/m]
[ps/m]
[MHz · km]
[MHz · km]
[ps/m]
[ps/m]
[ps/m]
[MHz · km]
[MHz · km]





300
noise
0.27
0.27
2179
1785
noise
0.27
0.27
2106
1785









As shown in Table 1, the optical fiber's DMD and bandwidth characteristics are not significantly affected by radiation. The EMBc and OMBc data of Table 1 has been graphically depicted in FIGS. 3 and 4. Thus, Table 1 also illustrates that the absence of germanium and phosphorous in the exemplary optical fiber's central core improves the optical fiber's resistance to radiation-induced degradation of bandwidth.


During the manufacturing of optical fibers via PCVD, chlorine (Cl) is typically incorporated into the optical fiber. For example, FIG. 5 graphically depicts the chemical composition of a comparative, depressed, graded-index multimode optical fiber manufactured using typical chlorine concentrations. The comparative optical fiber includes a 50-micron-diameter central core surrounded by an inner cladding having a width of about 10 microns.


The respective chlorine and fluorine (F) concentrations (i.e., in weight percent) are depicted as a function of the optical fiber's radius. The centrally-positioned vertical axis and the darker, diamond plot line provide the optical fiber's fluorine (F) concentration at particular radial offsets. Similarly, the right-hand vertical axis and the lighter, square plot line provide the optical fiber's chlorine (Cl) concentration at particular radial offsets. As used herein, the recitation of a chlorine or fluorine concentration refers to the weight fraction of elemental chlorine or fluorine, respectively.


As depicted in FIG. 5, the comparative optical fiber's chlorine concentration is greater than 0.10 weight percent across about 95 percent of the central core's width. Additionally, the comparative optical fiber's average chlorine concentration is about 0.15 weight percent.


In contrast, exemplary optical fibers of the present invention typically have low chlorine concentrations. For example, exemplary optical fibers may have average chlorine concentrations that are two to three times less than that of the comparative optical fiber of FIG. 5. FIG. 6 graphically depicts the chemical composition of an exemplary embodiment of a depressed, graded-index multimode optical fiber according to the present invention. The depicted exemplary optical fiber includes a 50-micron-diameter central core surrounded by an inner cladding having a width of about 10 microns.


Again, the chlorine and fluorine concentrations are depicted as a function of the optical fiber's radius. The centrally-positioned vertical axis and the darker, diamond plot line provide the optical fiber's fluorine concentration at particular radial offsets. The right-hand vertical axis and the lighter, square plot line provide the optical fiber's chlorine concentration at particular radial offsets.


As depicted in FIG. 6, across the entire width of the central core, the exemplary optical fiber's chlorine concentration is less than 0.10 weight percent (i.e., the central core has a maximum chlorine concentration of less than 0.10 weight percent). Additionally, across 95 percent of the central core's width, the exemplary optical fiber's chlorine concentration is less than 0.08 weight percent, if not less than 0.07 weight percent. Furthermore, the depicted exemplary optical fiber's average chlorine concentration is about 0.06 weight percent.


More generally, across 95 percent of the central core's width, exemplary optical fibers typically have a chlorine concentration of less than 0.10 weight percent (e.g., less than 0.09 weight percent). In some embodiments, across the entire width of the central core, the exemplary optical fiber's chlorine concentration is less than 0.08 weight percent (e.g., less than 0.07 weight percent). For example, across the entire width of the central core, the exemplary optical fiber's chlorine concentration may be less than 0.06 weight percent (e.g., less than 0.05 weight percent).


Furthermore, in exemplary embodiments, the optical fiber has an average chlorine concentration of less than about 0.10 weight percent (e.g., less than about 0.09 weight percent). Exemplary optical fibers typically have an average chlorine concentration of less than about 0.08 weight percent (e.g., less than 0.07 weight percent). More typically, exemplary optical fibers have an average chlorine concentration of less than 0.06 weight percent (e.g., less than 0.05 weight percent). In some exemplary embodiments, the optical fibers have an average chlorine concentration of less than 0.03 weight percent (e.g., less than 0.01 weight percent).


In exemplary embodiments, at its outer radius, the central core has a minimum flourine concentration of at least about 3 weight percent (e.g., 3.5 to 7.0 weight percent). At the outer radius of the central core, exemplary optical fibers typically have a minimum flourine concentration of 4 weight percent (e.g., 4.5 to 6.0 weight percent). See FIG. 6.


As previously discussed, during typical manufacturing techniques, chlorine is incorporated into an optical fiber. In the context of radiation-rich environments, however, the present inventors have found that high chlorine concentrations actually increase an optical fiber's attenuation.



FIG. 7 graphically depicts the radiation-induced attenuation (i.e., the induced loss) as a function of radiation dosage for both (i) a comparative optical fiber manufactured using typical techniques and (ii) an exemplary optical fiber according to the present invention. The comparative and exemplary optical fibers are depressed, graded-index multimode optical fibers having refractive index profiles similar to that of FIG. 2. The lighter (and upper) plot line provides the radiation-induced attenuation for the comparative optical fiber. The darker (and lower) plot line provides the radiation-induced attenuation for the exemplary optical fiber.



FIG. 8 graphically depicts the radiation-induced attenuation (i.e., the induced loss) as a function of radiation dosage for the comparative optical fiber. FIG. 9 graphically depicts the radiation-induced attenuation (i.e., the induced loss) as a function of radiation dosage for the exemplary optical fiber.


To generate the plots of FIGS. 7-9, the optical fibers were irradiated for 19 hours using cobalt-60 sources (i.e., 60Co sources) at a dose rate of 0.15 Gy/s and a temperature of about 24° C. During irradiation, the radiation-induced attenuation of the optical fibers was measured using an LED source emitting at a wavelength of 856 nanometers and approximately −18 dBm (i.e., approximately 16 μW). Further details of the apparatus and testing procedure used to generate the plots of FIGS. 7-9 can be found in the following publication, which is hereby incorporated by reference: Jochen Kuhnhenn, Stefan Klaus Höffgen, and Udo Weinand, Quality Assurance for Irradiation Tests of Optical Fibers: Uncertainty and Reproducibility, IEEE Transactions on Nuclear Science, Vol. 56, No. 4, August 2009, at 2160-2166.


As shown in FIGS. 7-9, the exemplary optical fiber exhibited greater resistance to radiation-induced attenuation than did the comparative optical fiber. Indeed, the exemplary optical fiber's radiation-induced attenuation is two to three times less than the comparative optical fiber's radiation-induced attenuation.


In this regard, at a wavelength of 856 nanometers, a temperature of about 24° C., and a radiation dose rate of 0.15 Gy/s, the comparative optical fiber exhibited a radiation-induced attenuation of 61.5 dB/km after a radiation dose of 650 grays. From a dosage of 650 grays to 1500 grays, the comparative optical fiber's radiation-induced attenuation decreases by about 0.9 percent to about 60.95 dB/km. From a dosage of 1500 grays to 10,000 grays, the comparative optical fiber's radiation-induced attenuation increases by 9.5 percent to 67.35 dB/km. The comparative optical fiber's radiation-induced attenuation is relatively unpredictable, because it both increased and decreased during irradiation. Thus, the comparative optical fiber exhibited (i) a high radiation-induced attenuation, (ii) a high radiation-induced attenuation variation, and (iii) an unpredictable radiation-induced attenuation variation.


In contrast, at a wavelength of 856 nanometers, a temperature of about 24° C., and a radiation dose rate of 0.15 Gy/s, the exemplary optical fiber exhibited a radiation-induced attenuation of 26.7 dB/km after a radiation dose of 650 grays. From a dosage of 650 grays to 10,000 grays, the exemplary optical fiber's radiation-induced attenuation increases by 5.6 percent to 28.7 dB/km. Notably, the exemplary optical fiber's radiation-induced attenuation only increased during irradiation. Thus, the exemplary optical fiber exhibited (i) a relatively low radiation-induced attenuation, (ii) a relatively low radiation-induced attenuation variation, and (iii) a more predictable radiation-induced attenuation variation than the comparative optical fiber.


The radiation test results of FIG. 7 illustrate that high chlorine concentrations can increase an optical fiber's attenuation, particularly in radiation-rich environments. Thus, the relatively low concentrations of chlorine in the exemplary optical fibers, coupled with the fact that the fiber does not include dopants such as germanium and/or phosphorus, facilitate the achievement of low fiber-attenuation values in radiation-rich environments.


In some exemplary embodiments, the optical fiber of the present invention possesses a high halogen ratio. As used herein, the concept of a “halogen ratio” refers to the ratio of the weight fraction of elemental fluorine to the weight fraction of elemental chlorine. For instance, the halogen ratio can be expressed at a particular radius of the optical fiber (e.g., the central core's outer radius) or as an average over one or more layers (e.g., the average over the central core). The halogen ratio provides a meaningful comparison between the amount of fluorine dopant used to achieve the optical fiber's refractive index profile and the amount of chlorine incorporated into the optical fiber during the manufacturing process.


The present optical fibers typically possess a halogen ratio at the central core's outer radius of more than about 30 (e.g., between about 50 and 500). To the extent that an optical fiber exhibits circumferential variation with respect to concentrations of elemental fluorine and/or elemental chlorine, mean concentrations may be used to calculate such a radius-dependent halogen ratio.


An optical fiber's core-cladding-average halogen ratio is the average halogen ratio within the optical fiber's core and innermost cladding layer (i.e., the cladding layer contiguous with the central core, such as the inner cladding depicted in FIGS. 2 and 13 or the buried trench as depicted in FIG. 12). For example, to calculate a core-cladding-average halogen ratio for an optical fiber having a central core, an inner cladding, and an outer cladding, the average fluorine and chlorine concentrations in the central core and inner cladding would be used. Thus, the core-cladding-average halogen ratio typically represents the halogen ratio for the portion of the optical fiber through which the transmitted signals primarily propagate.


Optical fibers manufactured using conventional techniques typically have core-cladding-average halogen ratios of less than about 18.5. In contrast, exemplary embodiments of the optical fiber typically have a core-cladding-average halogen ratio of more than about 20 (e.g., between about 22 and 300). Typically, the optical fiber has a core-cladding-average halogen ratio of between 25 and 269 (e.g., between about 48 and 240). More typically, the optical fiber has a core-cladding-average halogen ratio of between 53 and 200 (e.g., between about 60 and 140).


An optical fiber's core-average halogen ratio is determined using the average fluorine and chlorine concentrations within the optical fiber's central core. Optical fibers manufactured using conventional techniques typically have core-average halogen ratios of less than about 15. In contrast, exemplary optical fibers typically have a core-average halogen ratio of more than about 20 (e.g., between about 30 and 170).


Higher halogen ratios seem to improve an optical fiber's radiation resistance. In particular, optical fibers with high halogen ratios typically exhibit lower radiation-induced attenuation. Additionally, high halogen ratio optical fibers are typically more resistant to radiation-induced refractive index changes that can compromise the optical fiber's bandwidth. Thus, optical fibers with high halogen ratios typically have high bandwidths and exhibit low attenuation in radiation-rich environments.


For example, FIGS. 10 and 11 graphically depict the fluorine (F) and chlorine (Cl) concentrations as a function of radial offset for two exemplary optical fibers. The exemplary optical fibers include a 50-micron-diameter central core surrounded by an inner cladding having a width of about 15 microns.


The respective chlorine and fluorine concentrations (i.e., in weight percent) are depicted as a function of the optical fiber's radius. The left-hand vertical axis and the lighter, square plot line provide the optical fiber's chlorine concentration at particular radial offsets. Similarly, the right-hand vertical axis and the darker, circle plot line provide the optical fiber's fluorine concentration at particular radial offsets. As used herein, the recitation of a chlorine or fluorine concentration refers to the weight fraction of elemental chlorine or fluorine, respectively.


The optical fiber of FIG. 10 has an average chlorine concentration in its core of 0.10 weight percent, and the optical fiber of FIG. 11 has an average chlorine concentration in its core of 0.05 weight percent. The optical fibers of FIGS. 10 and 11 have comparable average fluorine concentrations in their respective cores. Thus, the optical fiber of FIG. 11 has a core-average halogen ratio that is approximately two times (i.e., 2×) the core-average halogen ratio of the optical fiber of FIG. 10.


The optical fibers of FIGS. 10 and 11 were irradiated using cobalt-60 sources (i.e., 60Co sources) at a dose rate of about 1.25 Gy/s and a temperature of about 45° C. up to a cumulative dose of 2.35 MGy (i.e., 2.35 megagrays). After irradiation, the radiation-induced attenuation of the optical fibers was measured. At a wavelength of 1300 nanometers, the optical fiber of FIG. 10 exhibited 50 percent more (i.e., 1.5×) radiation-induced attenuation than the optical Fiber of FIG. 11. Furthermore, at a wavelength of 850 nanometers, the optical fiber of FIG. 10 exhibited 100 percent more (i.e., 2×) radiation-induced attenuation than the optical Fiber of FIG. 11. Thus, increasing an optical fiber's core-average halogen ratio seems to reduce an optical fiber's radiation-induced attenuation.


According to one embodiment, the optical fiber of the present invention complies with ITU-T Recommendation G.651.1 with the exception of its specifications regarding chromatic dispersion. As such, it has a central-core diameter of 50 microns (i.e., a central-core radius r1 of 25 microns) and/or a numerical aperture of 0.2±0.015.


In another aspect, the present invention embraces a multimode optical system that includes at least a portion of an optical fiber as disclosed herein. In particular, the optical system can exhibit a data rate of at least 10 Gb/s over at least 100 meters (e.g., 300 meters). In this regard, exemplary embodiments of the present optical system comply with the OM3 and OM4 standards with the exception of their respective specifications regarding chromatic dispersion.


In some exemplary embodiments, optical fibers of the present invention include a buried trench positioned between the central core and the outer cladding. Typically, the optical fiber's buried trench may immediately surround an inner cladding. Alternatively, the optical fiber may include a buried trench that immediately surrounds the central core. In exemplary embodiments that include a buried trench immediately surrounding the central core, the optical fiber may or may not include an intermediate cladding (e.g., an intermediate cladding positioned between the buried trench and the outer cladding).


For exemplary embodiments including a buried trench, the buried trench has a width w3, an outer radius r3, and a refractive index difference Δn3 with respect to the outer cladding. Typically, the term “buried trench” is used to describe a radial portion of an optical fiber that has a refractive index that is substantially less than the refractive index of the outer cladding.


Generally speaking, a refractive index difference can also be expressed as a percentage using the following equation:







Δ

%


(
r
)


=


100
×

(



n


(
r
)


2

-

n
cladding
2


)



2



n


(
r
)


2








where n(r) is the comparative refractive-index value as a function of radial position (e.g., the refractive index n3 of a buried trench), and ncladding is the refractive-index value of the outer cladding. Those of ordinary skill in the art will recognize that this equation can be used if the refractive index varies over a given section of the optical fiber (i.e., the refractive-index value varies as a function of radial position) or if the refractive index is constant over a given section.


Thus, a constant refractive index difference with respect to an outer cladding can be expressed as a percentage using the following equation:







Δ

%

=


100
×

(


n
2

-

n
cladding
2


)



2


n
2








where n is the comparative refractive-index value (e.g., the refractive index n3 of a buried trench), and ncladding is the refractive-index value of the outer cladding.


As used herein, the volume v of a buried trench is defined by the following equation:






v
=



2

π
×




r

i





n





t



r
ext




Δ

%


(
r
)

×
r
×


r











in which rint and rext are the inner radius and outer radius of the buried trench, respectively, and Δ % (r) is the buried trench's refractive index difference with respect to the outer cladding expressed in terms of percentage. Those of ordinary skill in the art will recognize that this equation can be used for both rectangular and non-rectangular trenches.


If a buried trench has a rectangular shape (i.e., a step index profile), the equation (above) can be simplified to the following equation:






v
=



Δ

%
×
π
×

(


r
ext
2

-

r

i





n





t

2


)









in which rext and rint are the outer radius and inner radius of the buried trench, respectively, and Δ % is the buried trench's refractive index difference with respect to the outer cladding expressed as a percentage.


As noted, exemplary optical fibers may include a buried trench immediately surrounding the central core. FIG. 12 graphically depicts the set refractive index profile of an exemplary optical fiber that includes a buried trench immediately surrounding the central core. The optical fiber includes a central core that is surrounded by an outer cladding (e.g., an outer optical cladding). For reasons of cost, the outer cladding is typically made of natural silica, but it may also be made of doped silica. As shown, the optical fiber's central core is a glass-based central core having an alpha-index profile (i.e., a graded-index profile) and an outer radius r1. The central core is typically doped with fluorine to reduce the refractive index of the silica.


The central core's alpha-index profile has a minimum refractive index at the central core's outer radius r1 that corresponds to a refractive index difference Δnend with respect to the outer cladding. Stated differently, the central core has an alpha-index profile and, at the central core's outer radius r1, a refractive index difference Δnend with respect to the outer cladding (e.g., the innermost portion of the outer cladding).


The central core's alpha-index profile also has a maximum refractive index difference Δn1 with respect to the outer cladding (e.g., at the center of the central core). The central core's alpha-index profile facilitates the achievement of high bandwidths.


Typically, the optical fiber's central core has a maximum refractive index difference Δn1 of between about 0 and −4×10−3. More typically, the central core's maximum refractive index difference Δn1 is between about −0.1×10−3 and −1.5×10−3. The central core's outer radius r1 is typically between about 22.5 microns and 27.5 microns (i.e., 25±2.5 microns). The central core's minimum refractive index Δnend is typically between about −14×10−3 and −21×10−3 (e.g., between about −17×10−3 and −19×10−3). More typically, the central core's minimum refractive index difference Δnend is greater than about −18×10−3 (e.g., between about −15×10−3 and −16×10−3). Additionally, the central core's alpha-index profile typically has an alpha-parameter of between about 1.9 and 2.1.


As depicted in FIG. 12, the exemplary optical fiber also includes a buried trench immediately surrounding the central core. The buried trench has a width w3, an outer radius r3, and a refractive index difference Δn3 with respect to the outer cladding. The buried trench is typically doped with fluorine to reduce the refractive index of the silica. The buried trench has a width w3, an outer radius r3, and a refractive index difference Δn3 with respect to the outer cladding. In exemplary embodiments, the buried trench's refractive index difference Δn3 is between about −15×10−3 and −36×10−3 (e.g., between about −18×10−3 and −34×10−3). Typically, the buried trench's refractive index difference Δn3 is between about −16×10−3 and −30×10−3 (e.g., between about −19×10−3 and −21×10−3).


In accordance with the foregoing, exemplary trench-assisted, multimode optical fibers might possess buried trenches having fluorine concentrations of at least about 5 weight percent (e.g., 5.5 to 6.5 weight percent), such as between about 6 weight percent and 7 weight percent. Typically, doping silica with 1 weight percent fluorine yields a refractive index difference with pure silica of about −3×10−3.


In some exemplary embodiments, the difference between the buried trench's refractive index difference Δn3 and the central core's minimum refractive index Δnend (i.e., Δn3−Δnend) is between about −1×10−3 and −15×10−3 (e.g., between about −2×10−3 and −14×10−3). The difference between the buried trench's refractive index difference Δn3 and the central core's minimum refractive index Δnend (i.e., Δn3−Δnend) is typically between about −3×10−3 and −13×10−3 (e.g., between about −3×10−3 and −10×10−3 or between about −4×10−3 and −12×10−3). More typically, the difference between the buried trench's refractive index difference Δn3 and the central core's minimum refractive index Δnend (i.e., Δn3−Δnend) is between about −5×10−3 and −11×10−3 (e.g., between about −6×10−3 and −10×10−3).


The buried trench's width w3 may be between about 0.5 micron and 10 microns (e.g., between about 2 microns and 8 microns). Typically, the buried trench's width w3 is between about 3 microns and 7 microns (e.g., between about 4 microns and 6 microns). The buried trench's outer radius r3 is typically between about 23 microns and 38 microns (e.g., between about 26 microns and 35 microns). More typically, the buried trench's outer radius r3 is between about 28 microns and 33 microns (e.g., between about 30 microns and 32 microns). In some exemplary embodiments, the optical fiber of the present invention includes a buried trench having a volume v3 of about 260%·μm2 or more (e.g., between about 280%·μm2 and 450%·μm2). More typically, the buried trench has a volume v3 of between about 300%·μm2 and 425%·μm2 (e.g., between about 350%·μm2 and 400%·μm2). The buried trench is typically doped with fluorine (F) to reduce the refractive index of the silica.


As depicted in FIG. 12, at the value of r=r1, there is a distinct, discontinuous drop in the optical fiber's refractive index from the central core's minimum refractive index Δnend to the buried trench's refractive index difference Δn3. That said, in exemplary embodiments, the drop in the optical fiber's refractive index at the central core's outer radius r1 may be continuous. For example, the central core's alpha-index profile may include a refractive index difference Δnend that corresponds to the buried trench's refractive index difference Δn3.


The exemplary optical fiber of FIG. 12 also includes an intermediate cladding positioned between the buried trench and the outer cladding. The intermediate cladding has an outer radius r4, a width w4, and a refractive index difference Δn4 with respect to the outer cladding. The intermediate cladding is typically doped with fluorine to reduce the refractive index of the silica.


In exemplary embodiments, the intermediate cladding's refractive index difference Δn4 is approximately equal to the central core's minimum refractive index difference Δnend. That said, the intermediate cladding's refractive index difference Δn4 may be greater than or less than the central core's minimum refractive index difference Δnend.


The optical fiber's intermediate cladding typically has a width w4 of between about 8 microns and 40 microns (e.g., between about 10 microns and 25 microns). The intermediate cladding's refractive index difference Δn4 is typically between about −14×10−3 and −21×10−3 (e.g., between about −17×10−3 and −19×10−3). More typically, the intermediate cladding's refractive index difference Δn4 is greater than about −20×10−3 (e.g., between about −15×10−3 and −16×10−3). The intermediate cladding's outer radius r4 is typically between about 30 microns and 62.5 microns (e.g., between about 35 microns and 50 microns).


In exemplary embodiments, the intermediate cladding's outer radius r4 is about 45 microns or greater (e.g., between about 50 microns and 62.5 microns). The present inventors have found that exemplary optical fibers having an intermediate-cladding outer radius r2 greater than about 45 microns exhibit bandwidths that are less sensitive to fiber length because confinement losses are reduced as compared to optical fibers having intermediate-cladding outer radii less than 45 microns.



FIG. 13 graphically depicts the set refractive index profile of yet another exemplary optical fiber that includes a buried trench. The optical fiber includes a central core that is surrounded by an outer cladding (e.g., an outer optical cladding). As shown, the optical fiber's central core is a glass-based central core having an alpha-index profile (i.e., a graded-index profile), an outer radius r1, a minimum refractive index Δnend, and a maximum refractive index difference Δn1.


In this exemplary embodiment, the optical fiber's central core typically has a maximum refractive index difference Δn1 of between about 0 and −5×10−3 (e.g., between about −0.05×10−3 and −4×10−3). More typically, the central core's maximum refractive index difference Δn1 is between about 0 and −2×10−3. The central core's outer radius r1 is typically between about 22.5 microns and 27.5 microns (i.e., 25±2.5 microns). The central core's minimum refractive index Δnend is typically between about −14×10−3 and −21×10−3 (e.g., between about −17×10−3 and −19×10−3). More typically, the central core's minimum refractive index difference Δnend is greater than about −20×10−3 (e.g., between about −15×10−3 and −16×10−3). Additionally, the central core's alpha-index profile typically has an alpha-parameter of between about 1.90 and 2.15.


As depicted in FIG. 13, the exemplary optical fiber also includes an inner cladding (e.g., a ring). The optical fiber's inner cladding is positioned between the central core and the outer cladding. The inner cladding has an outer radius r2, a width w2, and a refractive index difference Δn2 with respect to the outer cladding. The inner cladding is typically doped with fluorine to reduce the refractive index of the silica.


The inner cladding's refractive index difference Δn2 is typically between about −14×10−3 and −21×10−3 (e.g., between about −17×10−3 and −19×10−3). More typically, the inner cladding's refractive index difference Δn2 is greater than about −20×10−3 (e.g., between about −15×10−3 and −16×10−3). The inner cladding's width w2 is typically between about 0.5 micron and 10 microns (e.g., between about 1 micron and 9 microns). More typically, the inner cladding's width w2 is between about 2 microns and 7 microns (e.g., between about 4 microns and 6 microns). The inner cladding's outer radius r2 is typically between about 23 microns and 38 microns (e.g., between about 26 microns and 35 microns). More typically, the inner cladding's outer radius r2 is between about 28 microns and 33 microns (e.g., between about 30 microns and 32 microns).


In exemplary embodiments, the inner cladding's refractive index difference Δn2 is approximately equal to the central core's minimum refractive index difference Δnend. That said, the inner cladding's refractive index difference Δn2 may be greater than or less than the central core's minimum refractive index difference Δnend.


As depicted in FIG. 13, the exemplary optical fiber further includes a buried trench immediately surrounding the inner cladding. The buried trench has a width w3, an outer radius r3, and a refractive index difference Δn3 with respect to the outer cladding. In exemplary embodiments, the buried trench's refractive index difference Δn3 is between about −15×10−3 and −36×10−3 (e.g., between about −18×10−3 and −34×10−3). Typically, the buried trench's refractive index difference Δn3 is between about −16×10−3 and −30×10−3 (e.g., between about −19×10−3 and −21×10−3).


In some exemplary embodiments, the difference between the buried trench's refractive index difference Δn3 and the inner cladding's refractive index difference Δn2 (i.e., Δn3−Δn2) is between about −1×10−3 and −15×10−3 (e.g., between about −2×10−3 and −14×10−3). The difference between the buried trench's refractive index difference Δn3 and the inner cladding's refractive index difference Δn2 (i.e., Δn3−Δn2) is typically between about −3×10−3 and −13×10−3 (e.g., between about −3×10−3 and −10×10−3 or between about −4×10−3 and −12×10−3). More typically, the difference between the buried trench's refractive index difference Δn3 and the inner cladding's refractive index difference Δn2 (i.e., Δn3−Δn2) is between about −5×10−3 and −11×10−3 (e.g., between about −6×10−3 and −10×10−3).


The buried trench's width w3 may be between about 0.5 micron and 10 microns (e.g., between about 2 microns and 8 microns). Typically, the buried trench's width w3 is between about 3 microns and 7 microns (e.g., between about 4 microns and 6 microns). The buried trench's outer radius r3 is typically between about 23 microns and 38 microns (e.g., between about 26 microns and 35 microns). More typically, the buried trench's outer radius r3 is between about 28 microns and 33 microns (e.g., between about 30 microns and 32 microns). In some exemplary embodiments, the optical fiber of the present invention includes a buried trench having a volume v3 of about 260%·μm2 or more (e.g., between about 280%·μm2 and 450%·μm2). More typically, the buried trench has a volume v3 of between about 300%·μm2 and 425%·μm2 (e.g., between about 350%·μm2 and 400%·μm2). The buried trench is typically doped with fluorine to reduce the refractive index of the silica.


The exemplary optical fiber of FIG. 13 also includes an intermediate cladding positioned between the buried trench and the outer cladding. The intermediate cladding has an outer radius r4, a width w4, and a refractive index difference Δn4 with respect to the outer cladding. The intermediate cladding is typically doped with fluorine to reduce the refractive index of the silica.


In exemplary embodiments, the intermediate cladding's refractive index difference Δn4 is approximately equal to the central core's minimum refractive index difference Δnend. That said, the intermediate cladding's refractive index difference Δn4 may be greater than or less than the central core's minimum refractive index difference Δnend.


The optical fiber's intermediate cladding typically has a width w4 of between about 8 microns and 40 microns (e.g., between about 10 microns and 25 microns). The intermediate cladding's refractive index difference Δn4 is typically between about −14×10−3 and −21×10−3 (e.g., between about −17×10−3 and −19×10−3). More typically, the intermediate cladding's refractive index difference Δn4 is greater than about −20×10−3 (e.g., between about −15×10−3 and −16×10−3). The intermediate cladding's outer radius r4 is typically between about 30 microns and 62.5 microns (e.g., between about 35 microns and 50 microns).


In exemplary embodiments, the intermediate cladding's outer radius r4 is about 45 microns or greater (e.g., between about 50 microns and 62.5 microns). The present inventors have found that exemplary optical fibers having an intermediate-cladding outer radius r2 greater than about 45 microns exhibit bandwidths that are less sensitive to fiber length because confinement losses are reduced as compared to optical fibers having intermediate-cladding outer radii less than 45 microns.


As noted, some exemplary embodiments of the optical fiber include an inner cladding immediately surrounding the central core and a buried trench immediately surrounding the inner cladding. In such optical fiber embodiments, the inner cladding's refractive index difference Δn2 may be equal to the central core's minimum refractive index difference Δnend. In alternative embodiments, however, the alpha-index profile of the central core is interrupted at a refractive index difference Δnend that is greater than the minimum refractive index used to determine the shape of the alpha-index profile. As used herein, an alpha-index profile is considered to be interrupted if the central core has a minimum refractive-index value nend that is greater than the minimum refractive-index value n0 (i.e., the theoretical minimum refractive-index value). Those of ordinary skill in the art will appreciate that nend is the minimum refractive-index value, whereas Δnend is the minimum refractive index difference.


Without being bound to any particular theory, the present inventors have found that a buried trench can facilitate a reduction in the optical fiber's bending losses (i.e., macrobending losses). In this regard, at a wavelength of 850 nanometers, exemplary optical fibers including a buried trench have bending losses for two turns with a bend radius of 15 millimeters of less than 0.11 dB (e.g., less than 0.06 dB); bending losses for two turns with a bend radius of 10 millimeters of less than 0.10 dB (e.g., less than 0.9 dB); bending losses for two turns with a bend radius of 7.5 millimeters of less than 0.15 dB (e.g., less than 0.10 dB); and bending losses for two turns with a bend radius of 5 millimeters of less than 0.18 dB (e.g., less than 0.15 dB).


Indeed, FIG. 14 graphically depicts the macrobending losses at a wavelength of 850 nanometers for two turns around a given bend radius for two exemplary optical fibers. One of the exemplary optical fibers includes a buried trench immediately surrounding an inner cladding (i.e., a set profile similar to FIG. 13), while the other exemplary optical fiber does not include a buried trench. The curve designated with circles shows the bending losses of the exemplary optical fiber that includes a buried trench. The curve designated with triangles shows the bending losses of the exemplary optical fiber that does not include a buried trench. As depicted, the exemplary optical fiber that includes a buried trench has bending losses at a given radius that are at least three to five times less than the bending losses of the exemplary optical fiber without a buried trench.


As used herein, an optical fiber “without a buried trench” refers to an optical fiber that has an otherwise identical refractive index profile as the optical fiber to which it is being compared, except that the trench is replaced with a material having a refractive index that is the same as an adjacent cladding layer (e.g., an inner cladding, an intermediate cladding, or an outer cladding).


Macrobending losses may be measured according to the IEC 60793-1-47 and IEC 61280-4-1 International Standards, each of which is hereby incorporated by reference in its entirety. In this regard, the measurement is typically performed on a ball-bearing set-up with small diameter bends. Typically, the launch conditions used are those described in the IEC 61280-4-1 International Standard.


In another aspect, the present invention embraces a method of manufacturing an optical fiber preform via an internal chemical vapor deposition technique (CVD). The CVD process involves the deposition of doped or undoped, reactive, glass-forming gases on the inside of a hollow substrate tube. Such reactive gases, which are supplied on one side of the substrate tube (i.e., the supply side), form a glass layer on the interior of the substrate tube under certain process conditions. Exemplary methods include supplying the interior of the substrate tube with higher levels of oxygen (i.e., O2) than are used in a conventional internal chemical vapor deposition. In some exemplary embodiments, the interior of the substrate tube is supplied with oxygen at a flow rate that is approximately 1.8 times higher than in a conventional CVD deposition process.


An energy source is reciprocated between two reversal points along the substrate tube to promote the formation of a glass layer. The energy source, such as a plasma generator, supplies high-frequency energy to generate a plasma in the interior of the substrate tube, under which conditions the reactive, glass-forming gases will react (i.e., a plasma CVD technique).


In exemplary embodiments, a plasma generator is used to perform a plasma enhanced CVD technique (i.e., a PCVD deposition). PCVD deposition techniques typically provide higher fluorine deposition efficiencies and higher fluorine concentrations than conventional CVD processes.


The present optical fibers may facilitate the reduction in overall optical-fiber diameter. As will be appreciated by those having ordinary skill in the art, a reduced-diameter optical fiber is cost-effective, requiring less raw material. Moreover, a reduced-diameter optical fiber requires less deployment space (e.g., within a buffer tube and/or fiber optic cable), thereby facilitating increased fiber count and/or reduced cable size.


Those having ordinary skill in the art will recognize that an optical fiber with a primary coating (and an optional secondary coating and/or ink layer) typically has an outer diameter of between about 235 microns and about 265 microns (μm). The component glass fiber itself (i.e., the glass core and surrounding cladding layers) typically has a diameter of about 125 microns, such that the total coating thickness is typically between about 55 microns and 70 microns.


With respect to the present optical fiber, the component glass fiber typically has an outer diameter of about 125 microns. With respect to the optical fiber's surrounding coating layers, the primary coating typically has an outer diameter of between about 175 microns and about 195 microns (i.e., a primary coating thickness of between about 25 microns and 35 microns), and the secondary coating typically has an outer diameter of between about 235 microns and about 265 microns (i.e., a secondary coating thickness of between about 20 microns and 45 microns). Optionally, the present optical fiber may include an outermost ink layer, which is typically between two and ten microns in thickness.


In one alternative embodiment, an optical fiber may possess a reduced diameter (e.g., an outermost diameter between about 150 microns and 230 microns). In this alternative optical fiber configuration, the thickness of the primary coating and/or secondary coating is reduced, while the diameter of the component glass fiber is maintained at about 125 microns. (Those having ordinary skill in the art will appreciate that, unless otherwise specified, diameter measurements refer to outer diameters.)


By way of illustration, in such exemplary embodiments, the primary coating layer may have an outer diameter of between about 135 microns and about 175 microns (e.g., about 160 microns), typically less than 165 microns (e.g., between about 135 microns and 150 microns), and usually more than 140 microns (e.g., between about 145 microns and 155 microns, such as about 150 microns).


Moreover, in such exemplary embodiments, the secondary coating layer may have an outer diameter of between about 150 microns and about 230 microns (e.g., more than about 165 microns, such as 190-210 microns or so), typically between about 180 microns and 200 microns. In other words, the total diameter of the optical fiber is reduced to less than about 230 microns (e.g., between about 195 microns and 205 microns, and especially about 200 microns). By way of further illustration, an optical fiber may employ a secondary coating of about 197 microns at a tolerance of +/−5 microns (i.e., a secondary-coating outer diameter of between 192 microns to 202 microns). Typically, the secondary coating will retain a thickness of at least about 10 microns (e.g., an optical fiber having a reduced thickness secondary coating of between 15 microns and 25 microns).


In another alternative embodiment, the outer diameter of the component glass fiber may be reduced to less than 125 microns (e.g., between about 60 microns and 120 microns), perhaps between about 70 microns and 115 microns (e.g., about 80-110 microns). This may be achieved, for instance, by reducing the thickness of one or more cladding layers. As compared with the prior alternative embodiment, (i) the total diameter of the optical fiber may be reduced (i.e., the thickness of the primary and secondary coatings are maintained in accordance with the prior alternative embodiment) or (ii) the respective thicknesses of the primary and/or secondary coatings may be increased relative to the prior alternative embodiment (e.g., such that the total diameter of the optical fiber might be maintained).


By way of illustration, with respect to the former, a component glass fiber having a diameter of between about 90 and 100 microns might be combined with a primary coating layer having an outer diameter of between about 110 microns and 150 microns (e.g., about 125 microns) and a secondary coating layer having an outer diameter of between about 130 microns and 190 microns (e.g., about 155 microns). With respect to the latter, a component glass fiber having a diameter of between about 90 and 100 microns might be combined with a primary coating layer having an outer diameter of between about 120 microns and 140 microns (e.g., about 130 microns) and a secondary coating layer having an outer diameter of between about 160 microns and 230 microns (e.g., about 195-200 microns).


Reducing the diameter of the component glass fiber might make the resulting optical fiber more susceptible to microbending attenuation. That said, the advantages of further reducing optical-fiber diameter might be worthwhile for some optical-fiber applications.


As noted, the present optical fibers may include one or more coating layers (e.g., a primary coating and a secondary coating). At least one of the coating layers—typically the secondary coating—may be colored and/or possess other markings to help identify individual fibers. Alternatively, a tertiary ink layer may surround the primary and secondary coatings.


The present optical fibers may be manufactured by drawing from final preforms.


A final preform may be manufactured by providing a primary preform with an outer overcladding layer (i.e., an overcladding process). The outer overcladding layer typically consists of doped or undoped, natural or synthetic, silica glass. Several methods are available for providing the outer overcladding layer.


In a first exemplary method, the outer overcladding layer may be provided by depositing and vitrifying natural or synthetic silica particles on the outer periphery of the primary preform under the influence of heat. Such a process is known, for example, from U.S. Pat. Nos. 5,522,007, 5,194,714, 6,269,663, and 6,202,447, each of which is hereby incorporated by reference in its entirety.


In another exemplary method, a primary preform may be overcladded using a silica sleeve tube, which may or may not be doped. This sleeve tube may then be collapsed onto the primary preform.


In yet another exemplary method, an overcladding layer may be applied via an Outside Vapor Deposition (OVD) method. Here, a soot layer is first deposited on the outer periphery of a primary preform, and then the soot layer is vitrified to form glass.


The primary preforms may be manufactured via outside vapor deposition techniques, such as Outside Vapor Deposition (OVD) and Vapor Axial Deposition (VAD). Alternatively, the primary preforms may be manufactured via inside deposition techniques in which glass layers are deposited on the inner surface of a substrate tube of doped or undoped silica glass, such as Modified Chemical Vapor Deposition (MCVD), Furnace Chemical Vapor Deposition (FCVD), and Plasma Chemical Vapor Deposition (PCVD).


By way of example, the primary preforms may be manufactured using a PCVD process, which can precisely control the central core's gradient refractive index profile.


A depressed trench, for instance, may be deposited on the inner surface of a substrate tube as part of the chemical vapor deposition process. More typically, a depressed trench may be manufactured either (i) by using a fluorine-doped substrate tube as the starting point of the internal deposition process for deposition of the gradient refractive index central core or (ii) by sleeving a fluorine-doped silica tube over the gradient refractive index central core, which itself may be produced using an outside deposition process (e.g., OVD or VAD). Accordingly, a component glass fiber manufactured from the resulting preform may have a depressed trench located at the periphery of its central core.


As noted, a primary preform may be manufactured via an inside deposition process using a fluorine-doped substrate tube. The resulting tube containing the deposited layers may be sleeved by one or more additional fluorine-doped silica tubes so as to increase the thickness of a depressed trench, or to create a depressed trench having a varying refractive index over its width. Although not required, one or more additional sleeve tubes (e.g., fluorine-doped substrate tubes) may be collapsed onto the primary preform before an overcladding step is carried out. The process of sleeving and collapsing is sometimes referred to as jacketing and may be repeated to build several glass layers on the outside of the primary preform.


The present optical fibers may be deployed in various structures, such as those exemplary structures disclosed hereinafter.


For example, one or more of the present optical fibers may be enclosed within a buffer tube. For instance, optical fiber may be deployed in either a single-fiber loose buffer tube or a multi-fiber loose buffer tube. With respect to the latter, multiple optical fibers may be bundled or stranded within a buffer tube or other structure. In this regard, within a multi-fiber loose buffer tube, fiber sub-bundles may be separated with binders (e.g., each fiber sub-bundle is enveloped in a binder). Moreover, fan-out tubing may be installed at the termination of such loose buffer tubes to directly terminate loose buffered optical fibers with field-installed connectors.


In other embodiments, the buffer tube may tightly surround the outermost optical fiber coating (i.e., tight buffered fiber) or otherwise surround the outermost optical-fiber coating or ink layer to provide an exemplary radial clearance of between about 50 and 100 microns (i.e., a semi-tight buffered fiber).


With respect to the former tight buffered fiber, the buffering may be formed by coating the optical fiber with a curable composition (e.g., a UV-curable material) or a thermoplastic material. The outer diameter of tight buffer tubes, regardless of whether the buffer tube is formed from a curable or non-curable material, is typically less than about 1,000 microns (e.g., either about 500 microns or about 900 microns).


With respect to the latter semi-tight buffered fiber, a lubricant may be included between the optical fiber and the buffer tube (e.g., to provide a gliding layer).


As will be known by those having ordinary skill in the art, an exemplary buffer tube enclosing optical fibers as disclosed herein may be formed of polyolefins (e.g., polyethylene or polypropylene), including fluorinated polyolefins, polyesters (e.g., polybutylene terephthalate), polyamides (e.g., nylon), as well as other polymeric materials and blends. In general, a buffer tube may be formed of one or more layers. The layers may be homogeneous or include mixtures or blends of various materials within each layer.


In this context, the buffer tube may be extruded (e.g., an extruded polymeric material) or pultruded (e.g., a pultruded, fiber-reinforced plastic). By way of example, the buffer tube may include a material to provide high temperature and chemical resistance (e.g., an aromatic material or polysulfone material).


Although buffer tubes typically have a circular cross section, buffer tubes alternatively may have an irregular or non-circular shape (e.g., an oval or a trapezoidal cross-section).


Alternatively, one or more of the present optical fibers may simply be surrounded by an outer protective sheath or encapsulated within a sealed metal tube. In either structure, no intermediate buffer tube is necessarily required.


Multiple optical fibers as disclosed herein may be sandwiched, encapsulated, and/or edge bonded to form an optical fiber ribbon. Optical fiber ribbons can be divisible into subunits (e.g., a twelve-fiber ribbon that is splittable into six-fiber subunits). Moreover, a plurality of such optical fiber ribbons may be aggregated to form a ribbon stack, which can have various sizes and shapes.


For example, it is possible to form a rectangular ribbon stack or a ribbon stack in which the uppermost and lowermost optical fiber ribbons have fewer optical fibers than those toward the center of the stack. This construction may be useful to increase the density of optical elements (e.g., optical fibers) within the buffer tube and/or cable.


In general, it is desirable to increase the filling of transmission elements in buffer tubes or cables, subject to other constraints (e.g., cable or mid-span attenuation). The optical elements themselves may be designed for increased packing density. For example, the optical fiber may possess modified properties, such as improved refractive-index profile, core or cladding dimensions, or primary-coating thickness and/or modulus, to improve microbending and macrobending characteristics.


By way of example, a rectangular ribbon stack may be formed with or without a central twist (i.e., a “primary twist”). Those having ordinary skill in the art will appreciate that a ribbon stack is typically manufactured with rotational twist to allow the tube or cable to bend without placing excessive mechanical stress on the optical fibers during winding, installation, and use. In a structural variation, a twisted (or untwisted) rectangular ribbon stack may be further formed into a coil-like configuration (e.g., a helix) or a wave-like configuration (e.g., a sinusoid). In other words, the ribbon stack may possess regular “secondary” deformations.


As will be known to those having ordinary skill in the art, such optical fiber ribbons may be positioned within a buffer tube or other surrounding structure, such as a buffer-tube-free cable. Subject to certain restraints (e.g., attenuation), it is desirable to increase the density of elements such as optical fibers or optical fiber ribbons within buffer tubes and/or optical fiber cables.


A plurality of buffer tubes containing optical fibers (e.g., loose or ribbonized fibers) may be positioned externally adjacent to and stranded around a central strength member. This stranding can be accomplished helically in one direction, known as “S” or “Z” stranding, or via Reverse Oscillated Lay stranding, known as “S-Z” stranding. Stranding about the central strength member reduces optical fiber strain when cable strain occurs during installation and use.


Those having ordinary skill in the art will understand the benefit of minimizing fiber strain for both tensile cable strain and longitudinal compressive cable strain during installation or operating conditions.


With respect to tensile cable strain, which may occur during installation, the cable will become longer while the optical fibers can migrate closer to the cable's neutral axis to reduce, if not eliminate, the strain being translated to the optical fibers. With respect to longitudinal compressive strain, which may occur at low operating temperatures due to shrinkage of the cable components, the optical fibers will migrate farther away from the cable's neutral axis to reduce, if not eliminate, the compressive strain being translated to the optical fibers.


In a variation, two or more substantially concentric layers of buffer tubes may be positioned around a central strength member. In a further variation, multiple stranding elements (e.g., multiple buffer tubes stranded around a strength member) may themselves be stranded around each other or around a primary central strength member.


Alternatively, a plurality of buffer tubes containing optical fibers (e.g., loose or ribbonized fibers) may be simply placed externally adjacent to the central strength member (i.e., the buffer tubes are not intentionally stranded or arranged around the central strength member in a particular manner and run substantially parallel to the central strength member).


Alternatively still, the present optical fibers may be positioned within a central buffer tube (i.e., the central buffer tube cable has a central buffer tube rather than a central strength member). Such a central buffer tube cable may position strength members elsewhere. For instance, metallic or non-metallic (e.g., GRP) strength members may be positioned within the cable sheath itself, and/or one or more layers of high-strength yarns (e.g., aramid or non-aramid yarns) may be positioned parallel to or wrapped (e.g., contrahelically) around the central buffer tube (i.e., within the cable's interior space). As will be understood by those having ordinary skill in the art, such strength yarns provide tensile strength to fiber optic cables. Likewise, strength members can be included within the buffer tube's casing.


Strength yarns may be coated with a lubricant (e.g., fluoropolymers), which may reduce unwanted attenuation in fiber optic cables (e.g., rectangular, flat ribbon cables or round, loose tube cables) that are subjected to relatively tight bends (i.e., a low bend radius). Moreover, the presence of a lubricant on strength yarns (e.g., aramid strength yarns) may facilitate removal of the cable jacketing by reducing unwanted bonding between the strength yarns and the surrounding cable jacket.


In other embodiments, the optical fibers may be placed within a slotted core cable. In a slotted core cable, optical fibers, individually or as a fiber ribbon, may be placed within pre-shaped helical grooves (i.e., channels) on the surface of a central strength member, thereby forming a slotted core unit. The slotted core unit may be enclosed by a buffer tube. One or more of such slotted core units may be placed within a slotted core cable. For example, a plurality of slotted core units may be helically stranded around a central strength member.


Alternatively, the optical fibers may also be stranded in a maxitube cable design, whereby the optical fibers are stranded around themselves within a large multi-fiber loose buffer tube rather than around a central strength member. In other words, the large multi-fiber loose buffer tube is centrally positioned within the maxitube cable. For example, such maxitube cables may be deployed in optical ground wires (OPGW).


In another cabling embodiment, multiple buffer tubes may be stranded around themselves without the presence of a central member. These stranded buffer tubes may be surrounded by a protective tube. The protective tube may serve as the outer casing of the fiber optic cable or may be further surrounded by an outer sheath. The protective tube may either tightly surround or loosely surround the stranded buffer tubes.


As will be known to those having ordinary skill in the art, additional elements may be included within a cable core. For example, copper cables or other active, transmission elements may be stranded or otherwise bundled within the cable sheath. Passive elements may also be placed within the cable core, such as between the interior walls of the buffer tubes and the enclosed optical fibers. Alternatively and by way of example, passive elements may be placed outside the buffer tubes between the respective exterior walls of the buffer tubes and the interior wall of the cable jacket, or within the interior space of a buffer-tube-free cable.


For example, yarns, nonwovens, fabrics (e.g., tapes), foams, or other materials containing water-swellable material and/or coated with water-swellable materials (e.g., including super absorbent polymers (SAPs), such as SAP powder) may be employed to provide water blocking and/or to couple the optical fibers to the surrounding buffer tube and/or cable jacketing (e.g., via adhesion, friction, and/or compression). Exemplary water-swellable elements are disclosed in commonly assigned U.S. Pat. No. 7,515,795 for a Water-Swellable Tape, Adhesive-Backed for Coupling When Used Inside a Buffer Tube, which is hereby incorporated by reference in its entirety.


Moreover, an adhesive (e.g., a hot-melt adhesive or curable adhesive, such as a silicone acrylate cross-linked by exposure to actinic radiation) may be provided on one or more passive elements (e.g., water-swellable material) to bond the elements to the buffer tube. An adhesive material may also be used to bond the water-swellable element to optical fibers within the buffer tube. Exemplary arrangements of such elements are disclosed in commonly assigned U.S. Pat. No. 7,599,589 for a Gel-Free Buffer Tube with Adhesively Coupled Optical Element, which is hereby incorporated by reference in its entirety.


The buffer tubes (or buffer-tube-free cables) may also contain a thixotropic composition (e.g., grease or grease-like gels) between the optical fibers and the interior walls of the buffer tubes. For example, filling the free space inside a buffer tube with water-blocking, petroleum-based filling grease helps to block the ingress of water. Further, the thixotropic filling grease mechanically (i.e., viscously) couples the optical fibers to the surrounding buffer tube.


Such thixotropic filling greases are relatively heavy and messy, thereby hindering connection and splicing operations. Thus, the present optical fibers may be deployed in dry cable structures (i.e., grease-free buffer tubes).


Exemplary buffer tube structures that are free from thixotropic filling greases are disclosed in commonly assigned U.S. Pat. No. 7,724,998 for a Coupling Composition for Optical Fiber Cables (Parris et al.), which is hereby incorporated by reference in its entirety. Such buffer tubes employ coupling compositions formed from a blend of high-molecular weight elastomeric polymers (e.g., about 35 weight percent or less) and oils (e.g., about 65 weight percent or more) that flow at low temperatures. Unlike thixotropic filling greases, the coupling composition (e.g., employed as a cohesive gel or foam) is typically dry and, therefore, less messy during splicing.


As will be understood by those having ordinary skill in the art, a cable enclosing optical fibers as disclosed herein may have a sheath formed from various materials in various designs. Cable sheathing may be formed from polymeric materials such as, for example, polyethylene, polypropylene, polyvinyl chloride (PVC), polyamides (e.g., nylon), polyester (e.g., PBT), fluorinated plastics (e.g., perfluorethylene propylene, polyvinyl fluoride, or polyvinylidene difluoride), and ethylene vinyl acetate. The sheath and/or buffer tube materials may also contain other additives, such as nucleating agents, flame-retardants, smoke-retardants, antioxidants, UV absorbers, and/or plasticizers.


The cable sheathing may be a single jacket formed from a dielectric material (e.g., non-conducting polymers), with or without supplemental structural components that may be used to improve the protection (e.g., from rodents) and strength provided by the cable sheath. For example, one or more layers of metallic (e.g., steel) tape, along with one or more dielectric jackets, may form the cable sheathing. Metallic or fiberglass reinforcing rods (e.g., GRP) may also be incorporated into the sheath. In addition, aramid, fiberglass, or polyester yarns may be employed under the various sheath materials (e.g., between the cable sheath and the cable core), and/or ripcords may be positioned, for example, within the cable sheath.


Similar to buffer tubes, optical fiber cable sheaths typically have a circular cross section, but cable sheaths alternatively may have an irregular or non-circular shape (e.g., an oval, trapezoidal, or flat cross-section).


By way of example, the present optical fiber may be incorporated into single-fiber drop cables, such as those employed for Multiple Dwelling Unit (MDU) applications. In such deployments, the cable jacketing must exhibit crush resistance, abrasion resistance, puncture resistance, thermal stability, and fire resistance as required by building codes. An exemplary material for such cable jackets is thermally stable, flame-retardant polyurethane (PUR), which mechanically protects the optical fibers yet is sufficiently flexible to facilitate easy MDU installations. Alternatively, a flame-retardant polyolefin or polyvinyl chloride sheath may be used.


In general, and as will be known to those having ordinary skill in the art, a strength member is typically in the form of a rod or braided/helically wound wires or fibers, though other configurations will be within the knowledge of those having ordinary skill in the art.


Optical fiber cables containing optical fibers as disclosed may be variously deployed, including as drop cables, distribution cables, feeder cables, trunk cables, and stub cables, each of which may have varying operational requirements (e.g., temperature range, crush resistance, UV resistance, and minimum bend radius).


Such optical fiber cables may be installed within ducts, microducts, plenums, or risers. By way of example, an optical fiber cable may be installed in an existing duct or microduct by pulling or blowing (e.g., using compressed air). An exemplary cable installation method is disclosed in commonly assigned U.S. Pat. No. 7,574,095 for a Communication Cable Assembly and Installation Method, (Lock et al.), and U.S. Pat. No. 7,665,902 for a Modified Pre-Ferrulized Communication Cable Assembly and Installation Method, (Griffioen et al.), each of which is incorporated by reference in its entirety.


As noted, buffer tubes containing optical fibers (e.g., loose or ribbonized fibers) may be stranded (e.g., around a central strength member). In such configurations, an optical fiber cable's protective outer sheath may have a textured outer surface that periodically varies lengthwise along the cable in a manner that replicates the stranded shape of the underlying buffer tubes. The textured profile of the protective outer sheath can improve the blowing performance of the optical fiber cable. The textured surface reduces the contact surface between the cable and the duct or microduct and increases the friction between the blowing medium (e.g., air) and the cable. The protective outer sheath may be made of a low coefficient-of-friction material, which can facilitate blown installation. Moreover, the protective outer sheath can be provided with a lubricant to further facilitate blown installation.


In general, to achieve satisfactory long-distance blowing performance (e.g., between about 3,000 to 5,000 feet or more), the outer cable diameter of an optical fiber cable should be no more than about 70 to 80 percent of the duct's or microduct's inner diameter.


Compressed air may also be used to install optical fibers in an air blown fiber system. In an air blown fiber system, a network of unfilled cables or microducts is installed prior to the installation of optical fibers. Optical fibers may subsequently be blown into the installed cables as necessary to support the network's varying requirements.


Moreover, the optical fiber cables may be directly buried in the ground or, as an aerial cable, suspended from a pole or pylon. An aerial cable may be self-supporting, or secured or lashed to a support (e.g., messenger wire or another cable). Exemplary aerial fiber optic cables include overhead ground wires (OPGW), all-dielectric self-supporting cables (ADSS), all dielectric lash cables (AD-Lash), and figure-eight cables, each of which is well understood by those having ordinary skill in the art. Figure-eight cables and other designs can be directly buried or installed into ducts, and may optionally include a toning element, such as a metallic wire, so that they can be found with a metal detector.


In addition, although the optical fibers may be further protected by an outer cable sheath, the optical fiber itself may be further reinforced so that the optical fiber may be included within a breakout cable, which allows for the individual routing of individual optical fibers.


To effectively employ the present optical fibers in a transmission system, connections are required at various points in the network. Optical fiber connections are typically made by fusion splicing, mechanical splicing, or mechanical connectors.


The mating ends of connectors can be installed to the optical fiber ends either in the field (e.g., at the network location) or in a factory prior to installation into the network. The ends of the connectors are mated in the field in order to connect the optical fibers together or connect the optical fibers to the passive or active components. For example, certain optical fiber cable assemblies (e.g., furcation assemblies) can separate and convey individual optical fibers from a multiple optical fiber cable to connectors in a protective manner.


The deployment of such optical fiber cables may include supplemental equipment, which itself may employ the present optical fiber as previously disclosed. For instance, an amplifier may be included to improve optical signals. Dispersion compensating modules may be installed to reduce the effects of chromatic dispersion and polarization mode dispersion. Splice boxes, pedestals, and distribution frames, which may be protected by an enclosure, may likewise be included. Additional elements include, for example, remote terminal switches, optical network units, optical splitters, and central office switches.


A cable containing the present optical fibers may be deployed for use in a communication system (e.g., networking or telecommunications). A communication system may include fiber optic cable architecture such as fiber-to-the-node (FTTN), fiber-to-the-telecommunications enclosure (FTTE), fiber-to-the-curb (FITC), fiber-to-the-building (FTTB), and fiber-to-the-home (FTTH), as well as long-haul or metro architecture. Moreover, an optical module or a storage box that includes a housing may receive a wound portion of the optical fiber disclosed herein. By way of example, the optical fiber may be wound around a bending radius of less than about 15 millimeters (e.g., 10 millimeters or less, such as about 5 millimeters) in the optical module or the storage box.


Moreover, present optical fibers may be used in other applications, including, without limitation, fiber optic sensors or illumination applications (e.g., lighting).


The present optical fibers may include Fiber Bragg Grating (FBG). As will be known by those having ordinary skill in the art, FBG is a periodic or aperiodic variation in the refractive index of an optical fiber core and/or cladding. This variation in the refractive index results in a range of wavelengths (e.g., a narrow range) being reflected rather than transmitted, with maximum reflectivity occurring at the Bragg wavelength.


Fiber Bragg Grating is commonly written into an optical fiber by exposing the optical fiber to an intense source of ultraviolet light (e.g., a UV laser). In this respect, UV photons may have enough energy to break molecular bonds within an optical fiber, which alters the structure of the optical fiber, thereby increasing the optical fiber's refractive index. Moreover, dopants (e.g., boron or germanium) and/or hydrogen loading can be employed to increase photosensitivity.


In order to expose a coated glass fiber to UV light for the creation of FBG, the coating may be removed. Alternatively, coatings that are transparent at the particular UV wavelengths (e.g., the UV wavelengths emitted by a UV laser to write FBG) may be employed to render coating removal unnecessary. In addition, silicone, polyimide, acrylate, or PFCB coatings, for instance, may be employed for high-temperature applications.


A particular FBG pattern may be created by employing (i) a photomask placed between the UV light source and the optical fiber, (ii) interference between multiple UV light beams, which interfere with each other in accordance with the desired FBG pattern (e.g., a uniform, chirped, or titled pattern), or (iii) a narrow UV light beam for creating individual variations. The FBG structure may have, for example, a uniform positive-only index change, a Gaussian-apodized index change, a raised-cosine-apodized index change, or a discrete phase-shift index change. Multiple FBG patterns may be combined on a single optical fiber.


Optical fibers having FBG may be employed in various sensing applications (e.g., for detecting vibration, temperature, pressure, moisture, or movement). In this respect, changes in the optical fiber (e.g., a change in temperature) result in a shift in the Bragg wavelength, which is measured by a sensor. FBG may be used to identify a particular optical fiber (e.g., if the optical fiber is broken into pieces).


Fiber Bragg Grating may also be used in various active or passive communication components (e.g., wavelength-selective filters, multiplexers, demultiplexers, Mach-Zehnder interferometers, distributed Bragg reflector lasers, pump/laser stabilizers, and supervisory channels).


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications: U.S. Pat. No. 4,838,643 for a Single Mode Bend Insensitive Fiber for Use in Fiber Optic Guidance Applications (Hodges et al.); U.S. Pat. No. 7,623,747 for a Single Mode Optical Fiber (de Montmorillon et al.); U.S. Pat. No. 7,587,111 for a Single-Mode Optical Fiber (de Montmorillon et al.); U.S. Pat. No. 7,356,234 for a Chromatic Dispersion Compensating Fiber (de Montmorillon et al.); U.S. Pat. No. 7,483,613 for a Chromatic Dispersion Compensating Fiber (Bigot-Astruc et al.); U.S. Pat. No. 7,526,177 for a Fluorine-Doped Optical Fiber (Matthijsse et al.); U.S. Pat. No. 7,555,186 for an Optical Fiber (Flammer et al.); U.S. Pat. No. 8,055,111 for a Dispersion-Shifted Optical Fiber (Sillard et al.); U.S. Pat. No. 8,041,172 for a Transmission Optical Fiber Having Large Effective Area (Sillard et al.); International Patent Application Publication No. WO 2009/062131 A1 for a Microbend-Resistant Optical Fiber, (Overton); U.S. Patent Application Publication No. US2009/0175583 A1 for a Microbend-Resistant Optical Fiber, (Overton); U.S. Patent Application Publication No. US2009/0279835 A1 for a Single-Mode Optical Fiber Having Reduced Bending Losses, filed May 6, 2009, (de Montmorillon et al.); U.S. Pat. No. 7,889,960 for a Bend-Insensitive Single-Mode Optical Fiber, (de Montmorillon et al.); U.S. Patent Application Publication No. US2010/0021170 A1 for a Wavelength Multiplexed Optical System with Multimode Optical Fibers, filed Jun. 23, 2009, (Lumineau et al.); U.S. Pat. No. 7,995,888 for a Multimode Optical Fibers, filed Jul. 7, 2009, (Gholami et al.); U.S. Patent Application Publication No. US2010/0119202 A1 for a Reduced-Diameter Optical Fiber, filed Nov. 6, 2009, (Overton); U.S. Patent Application Publication No. US2010/0142969 A1 for a Multimode Optical System, filed Nov. 6, 2009, (Gholami et al.); U.S. Patent Application Publication No. US2010/0118388 A1 for an Amplifying Optical Fiber and Method of Manufacturing, filed Nov. 12, 2009, (Pastouret et al.); U.S. Patent Application Publication No. US2010/0135627 A1 for an Amplifying Optical Fiber and Production Method, filed Dec. 2, 2009, (Pastouret et al.); U.S. Patent Application Publication No. US2010/0142033 for an Ionizing Radiation-Resistant Optical Fiber Amplifier, filed Dec. 8, 2009, (Regnier et al.); U.S. Patent Application Publication No. US2010/0150505 A1 for a Buffered Optical Fiber, filed Dec. 11, 2009, (Testu et al.); U.S. Patent Application Publication No. US2010/0171945 for a Method of Classifying a Graded-Index Multimode Optical Fiber, filed Jan. 7, 2010, (Gholami et al.); U.S. Patent Application Publication No. US2010/0189397 A1 for a Single-Mode Optical Fiber, filed Jan. 22, 2010, (Richard et al.); U.S. Patent Application Publication No. US2010/0189399 A1 for a Single-Mode Optical Fiber Having an Enlarged Effective Area, filed Jan. 27, 2010, (Sillard et al.); U.S. Patent Application Publication No. US2010/0189400 A1 for a Single-Mode Optical Fiber, filed Jan. 27, 2010, (Sillard et al.); U.S. Patent Application Publication No. US2010/0214649 A1 for an Optical Fiber Amplifier Having Nanostructures, filed Feb. 19, 2010, (Burow et al.); U.S. Pat. No. 8,009,950 for a Multimode Fiber, filed Apr. 22, 2010, (Molin et al.); U.S. Patent Application Publication No. US2010/0310218 A1 for a Large Bandwidth Multimode Optical Fiber Having a Reduced Cladding Effect, filed Jun. 4, 2010, (Molin et al.); U.S. Patent Application Publication No. US2011/0058781 A1 for a Multimode Optical Fiber Having Improved Bending Losses, filed Sep. 9, 2010, (Molin et al.); U.S. Patent Application Publication No. US2011/0064367 A1 for a Multimode Optical Fiber, filed Sep. 17, 2010, (Molin et al.); U.S. Patent Application Publication No. US2011/0069724 A1 for an Optical Fiber for Sum-Frequency Generation, filed Sep. 22, 2010, (Richard et al.); U.S. Patent Application Publication No. US2011/0116160 A1 for a Rare-Earth-Doped Optical Fiber Having Small Numerical Aperture, filed Nov. 11, 2010, (Boivin et al.); U.S. Patent Application Publication No. US2011/0123161 A1 for a High-Bandwidth, Multimode Optical Fiber with Reduced Cladding Effect, filed Nov. 24, 2010, (Molin et al.); U.S. Patent Application Publication No. US2011/0123162 A1 for a High-Bandwidth, Dual-Trench-Assisted Multimode Optical Fiber, filed Nov. 24, 2010, (Molin et al.); U.S. Patent Application Publication No. US2011/0135262 A1 for a Multimode Optical Fiber with Low Bending Losses and Reduced Cladding Effect, filed Dec. 3, 2010, (Molin et al.); U.S. Patent Application Publication No. US2011/0135263 A1 for a High-Bandwidth Multimode Optical Fiber Having Reduced Bending Losses, filed Dec. 3, 2010, (Molin et al.); U.S. Patent Application Publication No. US2011/0188826 A1 for a Non-Zero Dispersion Shifted Optical Fiber Having a Large Effective Area, filed Jan. 31, 2011, (Sillard et al.); U.S. Patent Application Publication No. US2011/0188823 A1 for a Non-Zero Dispersion Shifted Optical Fiber Having a Short Cutoff Wavelength, filed Jan. 31, 2011, (Sillard et al.); U.S. Patent Application Publication No. 2011/0217012 A1 for a Broad-Bandwidth Multimode Optical Fiber Having Reduced Bending Losses, filed Mar. 1, 2011, (Bigot-Astruc et al.); U.S. Patent Application Publication No. 2011/0229101 A1 for a Single-Mode Optical Fiber, filed Mar. 15, 2011, (de Montmorillon et al.); U.S. Patent Application Publication No. 2012/0051703 A1 for a Single-Mode Optical Fiber, filed Jul. 1, 2011, (Bigot-Astruc et al.); U.S. Patent Application Publication No. 2012/0040184 A1 for a Method of Fabricating an Optical Fiber Preform, filed Aug. 10, 2011, (de Montmorillon et al.); U.S. patent application Ser. No. 13/275,921 for a Multimode Optical Fiber Insensitive to Bending Losses, filed Oct. 18, 2011, (Molin et al.); U.S. patent application Ser. No. 13/303,967 for a Radiation-Insensitive Optical Fiber Doped with Rare Earths, filed Nov. 23, 2011, (Burov et al.); U.S. patent application Ser. No. 13/315,712 for a Rare-Earth-Doped Optical Fiber, filed Dec. 9, 2011, (Boivin et al.); U.S. patent application Ser. No. 13/362,357 for a Broad-Bandwidth Optical Fiber, filed Jan. 31, 2012, (Molin et al.); U.S. patent application Ser. No. 13/362,395 for a Multimode Optical Fiber, filed Jan. 31, 2012, (Molin et al.); U.S. patent application Ser. No. 13/410,976 for a Rare-Earth-Doped Amplifying Optical Fiber, filed Mar. 2, 2012, (Burov et al.); and U.S. patent application Ser. No. 13/428,520 for a Bend-Resistant Multimode Optical Fiber, filed Mar. 23, 2012, (Molin et al.).


To supplement the present disclosure, this application further incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications: U.S. Pat. No. 5,574,816 for Polypropylene-Polyethylene Copolymer Buffer Tubes for Optical Fiber Cables and Method for Making the Same; U.S. Pat. No. 5,717,805 for Stress Concentrations in an Optical Fiber Ribbon to Facilitate Separation of Ribbon Matrix Material; U.S. Pat. No. 5,761,362 for Polypropylene-Polyethylene Copolymer Buffer Tubes for Optical Fiber Cables and Method for Making the Same; U.S. Pat. No. 5,911,023 for Polyolefin Materials Suitable for Optical Fiber Cable Components; U.S. Pat. No. 5,982,968 for Stress Concentrations in an Optical Fiber Ribbon to Facilitate Separation of Ribbon Matrix Material; U.S. Pat. No. 6,035,087 for an Optical Unit for Fiber Optic Cables; U.S. Pat. No. 6,066,397 for Polypropylene Filler Rods for Optical Fiber Communications Cables; U.S. Pat. No. 6,175,677 for an Optical Fiber Multi-Ribbon and Method for Making the Same; U.S. Pat. No. 6,085,009 for Water Blocking Gels Compatible with Polyolefin Optical Fiber Cable Buffer Tubes and Cables Made Therewith; U.S. Pat. No. 6,215,931 for Flexible Thermoplastic Polyolefin Elastomers for Buffering Transmission Elements in a Telecommunications Cable; U.S. Pat. No. 6,134,363 for a Method for Accessing Optical Fibers in the Midspan Region of an Optical Fiber Cable; U.S. Pat. No. 6,381,390 for a Color-Coded Optical Fiber Ribbon and Die for Making the Same; U.S. Pat. No. 6,181,857 for a Method for Accessing Optical Fibers Contained in a Sheath; U.S. Pat. No. 6,314,224 for a Thick-Walled Cable Jacket with Non-Circular Cavity Cross Section; U.S. Pat. No. 6,334,016 for an Optical Fiber Ribbon Matrix Material Having Optimal Handling Characteristics; U.S. Pat. No. 6,321,012 for an Optical Fiber Having Water Swellable Material for Identifying Grouping of Fiber Groups; U.S. Pat. No. 6,321,014 for a Method for Manufacturing Optical Fiber Ribbon; U.S. Pat. No. 6,210,802 for Polypropylene Filler Rods for Optical Fiber Communications Cables; U.S. Pat. No. 6,493,491 for an Optical Drop Cable for Aerial Installation; U.S. Pat. No. 7,346,244 for a Coated Central Strength Member for Fiber Optic Cables with Reduced Shrinkage; U.S. Pat. No. 6,658,184 for a Protective Skin for Optical Fibers; U.S. Pat. No. 6,603,908 for a Buffer Tube that Results in Easy Access to and Low Attenuation of Fibers Disposed Within Buffer Tube; U.S. Pat. No. 7,045,010 for an Applicator for High-Speed Gel Buffering of Flextube Optical Fiber Bundles; U.S. Pat. No. 6,749,446 for an Optical Fiber Cable with Cushion Members Protecting Optical Fiber Ribbon Stack; U.S. Pat. No. 6,922,515 for a Method and Apparatus to Reduce Variation of Excess Fiber Length in Buffer Tubes of Fiber Optic Cables; U.S. Pat. No. 6,618,538 for a Method and Apparatus to Reduce Variation of Excess Fiber Length in Buffer Tubes of Fiber Optic Cables; U.S. Pat. No. 7,322,122 for a Method and Apparatus for Curing a Fiber Having at Least Two Fiber Coating Curing Stages; U.S. Pat. No. 6,912,347 for an Optimized Fiber Optic Cable Suitable for Microduct Blown Installation; U.S. Pat. No. 6,941,049 for a Fiber Optic Cable Having No Rigid Strength Members and a Reduced Coefficient of Thermal Expansion; U.S. Pat. No. 7,162,128 for Use of Buffer Tube Coupling Coil to Prevent Fiber Retraction; U.S. Pat. No. 7,515,795 for a Water-Swellable Tape, Adhesive-Backed for Coupling When Used Inside a Buffer Tube (Overton et al.); U.S. Patent Application Publication No. 2008/0292262 for a Grease-Free Buffer Optical Fiber Buffer Tube Construction Utilizing a Water-Swellable, Texturized Yarn (Overton et al.); European Patent Application Publication No. 1,921,478 A1, for a Telecommunication Optical Fiber Cable (Tatat et al.); U.S. Pat. No. 7,702,204 for a Method for Manufacturing an Optical Fiber Preform (Gonnet et al.); U.S. Pat. No. 7,570,852 for an Optical Fiber Cable Suited for Blown Installation or Pushing Installation in Microducts of Small Diameter (Nothofer et al.); U.S. Pat. No. 7,646,954 for an Optical Fiber Telecommunications Cable (Tatat); U.S. Pat. No. 7,599,589 for a Gel-Free Buffer Tube with Adhesively Coupled Optical Element (Overton et al.); U.S. Pat. No. 7,567,739 for a Fiber Optic Cable Having a Water-Swellable Element (Overton); U.S. Pat. No. 7,817,891 for a Method for Accessing Optical Fibers within a Telecommunication Cable (Lavenne et al.); U.S. Pat. No. 7,639,915 for an Optical Fiber Cable Having a Deformable Coupling Element (Parris et al.); U.S. Pat. No. 7,646,952 for an Optical Fiber Cable Having Raised Coupling Supports (Parris); U.S. Pat. No. 7,724,998 for a Coupling Composition for Optical Fiber Cables (Parris et al.); U.S. Patent Application Publication No. US2009/0214167 A1 for a Buffer Tube with Hollow Channels, (Lookadoo et al.); U.S. Patent Application Publication No. US2009/0297107 A1 for an Optical Fiber Telecommunication Cable, filed May 15, 2009, (Tatat); U.S. Patent Application Publication No. US2009/0279833 A1 for a Buffer Tube with Adhesively Coupled Optical Fibers and/or Water-Swellable Element, filed Jul. 21, 2009, (Overton et al.); U.S. Patent Application Publication No. US2010/0092135 A1 for an Optical Fiber Cable Assembly, filed Sep. 10, 2009, (Barker et al.); U.S. Pat. No. 7,974,507 A1 for a High-Fiber-Density Optical Fiber Cable (Louie et al.); U.S. Pat. No. 7,970,247 for a Buffer Tubes for Mid-Span Storage (Barker); U.S. Pat. No. 8,081,853 for Single-Fiber Drop Cables for MDU Deployments, filed Nov. 9, 2009, (Overton); U.S. Pat. No. 8,041,167 for an Optical-Fiber Loose Tube Cables, filed Nov. 9, 2009, (Overton); U.S. Pat. No. 8,145,026 for a Reduced-Size Flat Drop Cable, filed Nov. 9, 2009, (Overton et al.); U.S. Patent Application Publication No. US2010/0092138 A1 for ADSS Cables with High-Performance Optical Fiber, filed Nov. 9, 2009, (Overton); U.S. Pat. No. 8,041,168 for Reduced-Diameter Ribbon Cables with High-Performance Optical Fiber, filed Nov. 10, 2009, (Overton); U.S. Pat. No. 8,031,997 for a Reduced-Diameter, Easy-Access Loose Tube Cable, filed Nov. 10, 2009, (Overton); U.S. Patent Application Publication No. US2010/0154479 A1 for a Method and Device for Manufacturing an Optical Preform, filed Dec. 19, 2009, (Milicevic et al.); U.S. Patent Application Publication No. US 2010/0166375 for a Perforated Water-Blocking Element, filed Dec. 29, 2009, (Parris); U.S. Patent Application Publication No. US2010/0183821 A1 for a UVLED Apparatus for Curing Glass-Fiber Coatings, filed Dec. 30, 2009, (Hartsuiker et al.); U.S. Patent Application Publication No. US2010/0202741 A1 for a Central-Tube Cable with High-Conductivity Conductors Encapsulated with High-Dielectric-Strength Insulation, filed Feb. 4, 2010, (Ryan et al.); U.S. Patent Application Publication No. US2010/0215328 A1 for a Cable Having Lubricated, Extractable Elements, filed Feb. 23, 2010, (Tatat et al.); U.S. Patent Application Publication No. US2011/0026889 A1 for a Tight-Buffered Optical Fiber Unit Having Improved Accessibility, filed Jul. 26, 2010, (Risch et al.); U.S. Patent Application Publication No. US2011/0064371 A1 for Methods and Devices for Cable Insertion into Latched Conduit, filed Sep. 14, 2010, (Leatherman et al.); U.S. Patent Application Publication No. 2011/0069932 A1 for a High-Fiber-Density Optical-Fiber Cable, filed Oct. 19, 2010, (Overton et al.); U.S. Patent Application Publication No. 2011/0091171 A1 for an Optical-Fiber Cable Having High Fiber Count and High Fiber Density, filed Oct. 19, 2010, (Tatat et al.); U.S. Patent Application Publication No. 2011/0176782 A1 for a Water-Soluble Water-Blocking Element, filed Jan. 19, 2011, (Parris); U.S. Patent Application Publication No. 2011/0268400 A1 for a Data-Center Cable, filed Apr. 28, 2011, (Louie et al.); U.S. Patent Application Publication No. 2011/0268398 A1 for a Bundled Fiber Optic Cables, filed May 3, 2011, (Quinn et al.); U.S. Patent Application Publication No. 2011/0287195 A1 for a Curing Apparatus Employing Angled UVLEDs, filed May 19, 2011, (Molin); U.S. Patent Application Publication No. 2012/0009358 for a Curing Apparatus Having UV Sources That Emit Differing Ranges of UV Radiation, filed Jun. 3, 2011, (Gharbi et al.); U.S. Patent Application Publication No. 2012/0014652 A1 for a Adhesively Coupled Optical Fibers and Enclosing Tape, filed Jul. 13, 2011, (Parris); U.S. Patent Application Publication No. 2012/0040105 A1 for a Method and Apparatus Providing Increased UVLED Intensity, filed Aug. 10, 2011, (Overton); U.S. Patent Application Publication No. 2012/0057833 A1 for an Optical-Fiber Module Having Improved Accessibility, filed Aug. 31, 2011, (Tatat); and U.S. patent application Ser. No. 13/401,026 for a Optical-Fiber Interconnect Cable, filed Feb. 21, 2012, (Risch et al.).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A multimode optical fiber, comprising: a central core surrounded by an outer cladding, said central core having (i) an outer radius r1, (ii) an alpha-index profile, (iii) a maximum refractive index difference Δn1 with respect to said outer cladding that is less than or equal to zero, and (iv) at said outer radius r1, a minimum refractive index difference Δnend with respect to said outer cladding; andan inner cladding positioned between said central core and said outer cladding, said inner cladding having (i) an outer radius r2, (ii) a width w2, and (iii) a negative refractive index difference Δn2 with respect to said outer cladding;wherein said central core has a maximum germanium concentration of 0.1 weight percent or less;wherein said central core has an average chlorine concentration of 0.1 weight percent or less; andwherein, at said outer radius r1, said central core has a minimum fluorine concentration of 3 weight percent or more.
  • 2. The multimode optical fiber according to claim 1, wherein said inner cladding immediately surrounds said central core.
  • 3. The multimode optical fiber according to claim 1, wherein said central core has a germanium concentration of less than 0.005 weight percent.
  • 4. The multimode optical fiber according to claim 1, wherein the optical fiber has a core-cladding average halogen ratio of 20 or greater.
  • 5. The multimode optical fiber according to claim 1, wherein the optical fiber has a core-cladding average halogen ratio of between 48 and 300.
  • 6. The multimode optical fiber according to claim 1, wherein the optical fiber has a halogen ratio at said central core's outer radius r1 of between 50 and 500.
  • 7. The multimode optical fiber according to claim 1, wherein the optical fiber has a core-average halogen ratio of between 30 and 170.
  • 8. The multimode optical fiber according to claim 1, wherein said central core has an average chlorine concentration of about 0.07 weight percent or less.
  • 9. The multimode optical fiber according to claim 1, wherein, across the entire width of said central core, said central core's chlorine concentration is less than about 0.1 weight percent.
  • 10. The multimode optical fiber according to claim 1, wherein at said outer radius r1, said central core has a minimum fluorine concentration of about 3.5 weight percent.
  • 11. A multimode optical fiber, comprising: a central core surrounded by an outer cladding, said central core having (i) an outer radius r1, (ii) an alpha-index profile, (iii) a maximum refractive index difference Δn1 with respect to said outer cladding that is less than or equal to zero, and (iv) at said outer radius r1, a minimum refractive index difference Δnend with respect to said outer cladding; anda buried trench positioned between said central core and said outer cladding, said buried trench having (i) an outer radius r3, (ii) a width w3, and (iii) a negative refractive index difference Δn3 with respect to said outer cladding such that Δn3<Δnend; andan intermediate cladding positioned between said buried trench and said outer cladding, said intermediate cladding having (i) an outer radius r4, (ii) a width w4, and (iii) a negative refractive index difference Δn4 with respect to said outer cladding;wherein said central core has a maximum germanium concentration of 0.1 weight percent or less;wherein said central core has an average chlorine concentration of 0.1 weight percent or less; andwherein, at said outer radius r1, said central core has a minimum fluorine concentration of 3 weight percent or more.
  • 12. The multimode optical fiber according to claim 11, wherein: said buried trench immediately surrounds said central core; andsaid intermediate cladding immediately surrounds said buried trench.
  • 13. The multimode optical fiber according to claim 11, wherein said central core has a germanium concentration of less than 0.005 weight percent.
  • 14. The multimode optical fiber according to claim 11, wherein the optical fiber has a core-cladding average halogen ratio of 25 or greater.
  • 15. The multimode optical fiber according to claim 11, wherein the optical fiber has a core-average halogen ratio of 20 or greater.
  • 16. The multimode optical fiber according to claim 11, wherein said central core has an average chlorine concentration of about 0.06 weight percent or less.
  • 17. The multimode optical fiber according to claim 11, wherein said central core's minimum refractive index difference Δnend is between about −14×10−3 and −20×10−3.
  • 18. The multimode optical fiber according to claim 11, wherein said central core's maximum refractive index difference Δn1 is between about 0 and −5×10−3.
  • 19. The multimode optical fiber according to claim 11, wherein the difference between said buried trench's refractive index difference Δn3 and said central core's minimum refractive index Δnend is between −3×10−3 and −10×10−3.
  • 20. A multimode optical fiber, comprising: a central core surrounded by an outer cladding, said central core having (i) an outer radius r1, (ii) an alpha-index profile, (iii) a maximum refractive index difference Δn1 with respect to said outer cladding that is less than or equal to zero, and (iv) at said outer radius r1, a minimum refractive index difference Δnend with respect to said outer cladding; andan inner cladding positioned between said central core and said outer cladding, said inner cladding having (i) an outer radius r2, (ii) a width w2, and (iii) a negative refractive index difference Δne with respect to said outer cladding;a buried trench positioned between said inner cladding and said outer cladding, said buried trench having (i) an outer radius r3, (ii) a width w3, and (iii) a negative refractive index difference Δn3 with respect to said outer cladding such that Δn3<Δnend; andan intermediate cladding positioned between said buried trench and said outer cladding, said intermediate cladding having (i) an outer radius r4, (ii) a width w4, and (iii) a negative refractive index difference Δn4 with respect to said outer cladding;wherein said central core has a maximum germanium concentration of 0.1 weight percent or less;wherein said central core has an average chlorine concentration of 0.1 weight percent or less; andwherein, at said outer radius r1, said central core has a minimum fluorine concentration of 3 weight percent or more.
  • 21. The multimode optical fiber according to claim 20, wherein: said inner cladding immediately surrounds said central core;said buried trench immediately surrounds said inner cladding; andsaid intermediate cladding immediately surrounds said buried trench.
  • 22. The multimode optical fiber according to claim 20, wherein said central core has a germanium concentration of less than 0.005 weight percent.
  • 23. The multimode optical fiber according to claim 20, wherein the optical fiber has a core-cladding average halogen ratio of 20 or greater.
  • 24. The multimode optical fiber according to claim 20, wherein: said central core's maximum refractive index difference Δn1 is between about −0.05×10−3 and −2×10−3; andthe optical fiber has a core-cladding-average halogen ratio of between 48 and 240.
  • 25. The multimode optical fiber according to claim 20, wherein the optical fiber has a halogen ratio at said central core's outer radius r1 of 30 or more.
  • 26. The multimode optical fiber according to claim 20, wherein the optical fiber has a core-average halogen ratio of between 30 and 170.
  • 27. The multimode optical fiber according to claim 20, wherein said central core has an average chlorine concentration of about 0.05 weight percent or less.
  • 28. The multimode optical fiber according to claim 20, wherein said central core's minimum refractive index difference Δnend is between about −14×10−3 and −20×10−3.
  • 29. The multimode optical fiber according to claim 20, wherein the difference between said buried trench's refractive index difference Δn3 and said central core's minimum refractive index Δnend is between about −1×10−3 and −15×10−3.
  • 30. The multimode optical fiber according to claim 20, wherein the difference between said buried trench's refractive index difference Δn3 and said central core's minimum refractive index Δnend is between about −3×10−3 and −10×10−3.
  • 31. The multimode optical fiber according to claim 20, wherein said buried trench's volume v3 is about 260%·μm2 or more.
CROSS-REFERENCE TO PRIORITY APPLICATIONS

This U.S. nonprovisional application claims the benefit of U.S. Patent Application Ser. No. 61/479,555 for High-Bandwidth, Radiation-Resistant Multimode Optical Fiber (filed Apr. 27, 2011) and U.S. Patent Application Ser. No. 61/503,801 for High-Bandwidth, Radiation-Resistant Multimode Optical Fiber (filed Jul. 1, 2011), each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (242)
Number Name Date Kind
4111525 Kaminow et al. Sep 1978 A
4184744 Onoda et al. Jan 1980 A
4222631 Olshansky Sep 1980 A
4229070 Olshansky et al. Oct 1980 A
4230396 Olshansky et al. Oct 1980 A
RE30635 Kuppers et al. Jun 1981 E
4314833 Kuppers Feb 1982 A
4339174 Levin Jul 1982 A
4406517 Olshansky Sep 1983 A
4465335 Eppes Aug 1984 A
4636235 Glessner et al. Jan 1987 A
4636236 Glessner et al. Jan 1987 A
4653042 d'Auria et al. Mar 1987 A
4690504 Yokokawa et al. Sep 1987 A
4715695 Nishimura et al. Dec 1987 A
4723828 Garel-Jones et al. Feb 1988 A
4802733 Bachmann et al. Feb 1989 A
4838643 Hodges et al. Jun 1989 A
5115486 Bader et al. May 1992 A
5142603 Forrester Aug 1992 A
5194714 Le Sergent Mar 1993 A
5221309 Kyoto et al. Jun 1993 A
5278687 Jannson et al. Jan 1994 A
5381503 Kanamori et al. Jan 1995 A
5522007 Drouart et al. May 1996 A
5574816 Yang et al. Nov 1996 A
5702497 Oh et al. Dec 1997 A
5717805 Stulpin Feb 1998 A
5761362 Yang et al. Jun 1998 A
5841933 Hoaglin et al. Nov 1998 A
5911023 Risch et al. Jun 1999 A
5982968 Stulpin Nov 1999 A
6002818 Fatehi et al. Dec 1999 A
6035087 Bonicel et al. Mar 2000 A
6066397 Risch et al. May 2000 A
6085009 Risch et al. Jul 2000 A
6134363 Hinson et al. Oct 2000 A
6175677 Yang et al. Jan 2001 B1
6181857 Emeterio et al. Jan 2001 B1
6185346 Asawa et al. Feb 2001 B1
6202447 Drouart et al. Mar 2001 B1
6210802 Risch et al. Apr 2001 B1
6215931 Risch et al. Apr 2001 B1
6269663 Drouart et al. Aug 2001 B1
6292603 Mizuochi et al. Sep 2001 B1
6292612 Golowich et al. Sep 2001 B1
6314224 Stevens et al. Nov 2001 B1
6321012 Shen Nov 2001 B1
6321014 Overton et al. Nov 2001 B1
6334016 Greer, IV Dec 2001 B1
6381390 Hutton et al. Apr 2002 B1
6470126 Mukasa Oct 2002 B1
6490398 Gruner-Nielsen et al. Dec 2002 B2
6493491 Shen et al. Dec 2002 B1
6580863 Yegnanarayanan et al. Jun 2003 B2
6603908 Dallas et al. Aug 2003 B2
6606437 Mukasa et al. Aug 2003 B1
6618538 Nechitailo et al. Sep 2003 B2
6658184 Bourget et al. Dec 2003 B2
6704485 Campion et al. Mar 2004 B1
6724965 Abbott et al. Apr 2004 B2
6724966 Mukasa Apr 2004 B2
6735985 DiGiovanni et al. May 2004 B2
6749446 Nechitailo Jun 2004 B2
6750294 Sugiyama et al. Jun 2004 B2
6771865 Blaszyk et al. Aug 2004 B2
6853798 Weiss Feb 2005 B1
6856739 Zhang et al. Feb 2005 B2
6904218 Sun et al. Jun 2005 B2
6912347 Rossi et al. Jun 2005 B2
6922515 Nechitailo et al. Jul 2005 B2
6941049 Risch et al. Sep 2005 B2
7006751 Provost et al. Feb 2006 B2
7043126 Guan et al. May 2006 B2
7043128 DiGiovanni et al. May 2006 B2
7045010 Sturman, Jr. May 2006 B2
7089765 Schaper et al. Aug 2006 B2
7162128 Lovie et al. Jan 2007 B2
7228032 Blauvelt et al. Jun 2007 B2
7315677 Li et al. Jan 2008 B1
7322122 Overton et al. Jan 2008 B2
7346244 Gowan et al. Mar 2008 B2
7356234 de Montmorillon et al. Apr 2008 B2
7400835 Sardesai et al. Jul 2008 B2
7406235 Guan et al. Jul 2008 B2
7421172 Matthijsse et al. Sep 2008 B2
7421174 Fleming, Jr. et al. Sep 2008 B2
7440673 Aikawa et al. Oct 2008 B2
7483612 Digiovanni et al. Jan 2009 B2
7483613 Bigot-Astruc et al. Jan 2009 B2
7515795 Overton et al. Apr 2009 B2
7526160 Homa et al. Apr 2009 B1
7526177 Matthijsse et al. Apr 2009 B2
7539381 Chen et al. May 2009 B2
7555186 Flammer et al. Jun 2009 B2
7567739 Overton et al. Jul 2009 B2
7570852 Nothofer et al. Aug 2009 B2
7574095 Lock et al. Aug 2009 B2
7587111 de Montmorillon et al. Sep 2009 B2
7593612 Shimotakahara Sep 2009 B2
7599589 Overton et al. Oct 2009 B2
7623747 de Montmorillon et al. Nov 2009 B2
7639915 Parris et al. Dec 2009 B2
7646952 Parris Jan 2010 B2
7646954 Tatat Jan 2010 B2
7646955 Donlagic Jan 2010 B2
7665902 Griffioen et al. Feb 2010 B2
7689093 Matthijsse et al. Mar 2010 B2
7702204 Gonnet et al. Apr 2010 B2
7724998 Parris et al. May 2010 B2
7783149 Fini Aug 2010 B2
7787731 Bookbinder et al. Aug 2010 B2
7817257 Takenaga et al. Oct 2010 B2
7817891 Lavenne et al. Oct 2010 B2
7826691 Matthijsse et al. Nov 2010 B2
7865050 Sun et al. Jan 2011 B1
7878712 Shimotakahara et al. Feb 2011 B2
7889960 de Montmorillon et al. Feb 2011 B2
7903917 Bickham et al. Mar 2011 B2
7903918 Bickham et al. Mar 2011 B1
7970247 Barker Jun 2011 B2
7974507 Lovie et al. Jul 2011 B2
7995888 Gholami et al. Aug 2011 B2
8009950 Molin et al. Aug 2011 B2
8031997 Overton Oct 2011 B2
8041167 Overton Oct 2011 B2
8041168 Overton Oct 2011 B2
8041172 Sillard et al. Oct 2011 B2
8055111 Sillard et al. Nov 2011 B2
8081853 Overton Dec 2011 B2
8145025 de Montmorillon et al. Mar 2012 B2
8145026 Overton et al. Mar 2012 B2
8145027 Overton et al. Mar 2012 B2
8165439 Overton Apr 2012 B2
8184936 Zhang et al. May 2012 B2
8195018 Overton et al. Jun 2012 B2
8385703 Bennett et al. Feb 2013 B2
8428411 de Montmorillon et al. Apr 2013 B2
8554039 Benjamin et al. Oct 2013 B2
8879878 Bigot-Astruc et al. Nov 2014 B2
20010036349 Abe et al. Nov 2001 A1
20020102082 Sarchi et al. Aug 2002 A1
20020176678 Mukasa Nov 2002 A1
20020197038 Abbott et al. Dec 2002 A1
20030024276 Anderson et al. Feb 2003 A1
20040146260 Kalish et al. Jul 2004 A1
20040247269 Hirano et al. Dec 2004 A1
20050008312 Jang et al. Jan 2005 A1
20060039665 Matsuo et al. Feb 2006 A1
20060263019 Negishi et al. Nov 2006 A1
20070172182 Lee et al. Jul 2007 A1
20070274666 Aikawa et al. Nov 2007 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080292262 Overton et al. Nov 2008 A1
20090059353 Fini Mar 2009 A1
20090060437 Fini et al. Mar 2009 A1
20090092365 Donlagic Apr 2009 A1
20090154888 Abbott, III et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175583 Overton Jul 2009 A1
20090214167 Lookadoo et al. Aug 2009 A1
20090279833 Overton et al. Nov 2009 A1
20090279835 de Montmorillon et al. Nov 2009 A1
20090297107 Tatat Dec 2009 A1
20100021170 Lumineau et al. Jan 2010 A1
20100028020 Gholami et al. Feb 2010 A1
20100040336 Chen et al. Feb 2010 A1
20100067858 Kim et al. Mar 2010 A1
20100092135 Barker et al. Apr 2010 A1
20100092138 Overton Apr 2010 A1
20100118388 Pastouret et al. May 2010 A1
20100119202 Overton May 2010 A1
20100135624 Overton et al. Jun 2010 A1
20100135627 Pastouret et al. Jun 2010 A1
20100142033 Regnier et al. Jun 2010 A1
20100142969 Gholami et al. Jun 2010 A1
20100150505 Testu et al. Jun 2010 A1
20100154479 Milicevic et al. Jun 2010 A1
20100166375 Parris Jul 2010 A1
20100171945 Gholami et al. Jul 2010 A1
20100183821 Hartsuiker et al. Jul 2010 A1
20100189397 Richard et al. Jul 2010 A1
20100189399 Sillard et al. Jul 2010 A1
20100189400 Sillard et al. Jul 2010 A1
20100202741 Ryan et al. Aug 2010 A1
20100214649 Burov et al. Aug 2010 A1
20100215328 Tatat et al. Aug 2010 A1
20100220966 Bennett Sep 2010 A1
20100254653 Molin et al. Oct 2010 A1
20100310218 Molin et al. Dec 2010 A1
20110002590 Ooizumi et al. Jan 2011 A1
20110026889 Risch et al. Feb 2011 A1
20110037183 Tudury et al. Feb 2011 A1
20110044594 Tudury et al. Feb 2011 A1
20110044596 Zhang et al. Feb 2011 A1
20110054861 Lane Mar 2011 A1
20110054862 Pimpinella et al. Mar 2011 A1
20110058781 Molin et al. Mar 2011 A1
20110064367 Molin et al. Mar 2011 A1
20110064371 Leatherman et al. Mar 2011 A1
20110069724 Richard et al. Mar 2011 A1
20110069932 Overton et al. Mar 2011 A1
20110085770 Bigot-Astruc et al. Apr 2011 A1
20110085772 Benjamin et al. Apr 2011 A1
20110091171 Tatat et al. Apr 2011 A1
20110091175 Sanders et al. Apr 2011 A1
20110116160 Boivin et al. May 2011 A1
20110123161 Molin et al. May 2011 A1
20110123162 Molin et al. May 2011 A1
20110135262 Molin et al. Jun 2011 A1
20110135263 Molin et al. Jun 2011 A1
20110176782 Parris Jul 2011 A1
20110188823 Sillard et al. Aug 2011 A1
20110188826 Sillard et al. Aug 2011 A1
20110217012 Bigot-Astruc et al. Sep 2011 A1
20110229101 de Montmorillon et al. Sep 2011 A1
20110268398 Quinn et al. Nov 2011 A1
20110268400 Lovie et al. Nov 2011 A1
20110287195 Molin Nov 2011 A1
20110305423 Molin et al. Dec 2011 A1
20120009358 Gharbi et al. Jan 2012 A1
20120014652 Parris Jan 2012 A1
20120039361 Gooijer et al. Feb 2012 A1
20120040105 Overton Feb 2012 A1
20120040184 de Montmorillon et al. Feb 2012 A1
20120051703 Bigot-Astruc et al. Mar 2012 A1
20120057833 Tatat Mar 2012 A1
20120092651 Molin et al. Apr 2012 A1
20120134376 Burov et al. May 2012 A1
20120148206 Boivin et al. Jun 2012 A1
20120195549 Molin et al. Aug 2012 A1
20120195561 Molin et al. Aug 2012 A1
20120213483 Risch et al. Aug 2012 A1
20120224254 Burov et al. Sep 2012 A1
20120243843 Molin et al. Sep 2012 A1
20120251062 Molin et al. Oct 2012 A1
20120275751 Krabshuis et al. Nov 2012 A1
20120301093 Sillard et al. Nov 2012 A1
20120315006 Bigot-Astruc et al. Dec 2012 A1
20130004135 Bigot-Astruc et al. Jan 2013 A1
20130028564 Molin et al. Jan 2013 A1
20130071114 Bickham et al. Mar 2013 A1
Foreign Referenced Citations (29)
Number Date Country
1845398 Oct 2007 EP
1921478 May 2008 EP
2166386 Mar 2010 EP
2220524 Aug 2010 EP
2312350 Apr 2011 EP
2418523 Feb 2012 EP
2518546 Oct 2012 EP
2541292 Feb 2013 EP
2449164 Nov 2008 GB
06-216440 Aug 1994 JP
08-304636 Nov 1996 JP
09-048629 Feb 1997 JP
11-064665 Mar 1999 JP
2000-347057 Dec 2000 JP
2001-235648 Aug 2001 JP
2002-318315 Oct 2002 JP
2006-047719 Feb 2006 JP
2006-078543 Mar 2006 JP
2006-227173 Aug 2006 JP
2007-272239 Oct 2007 JP
2008-102331 May 2008 JP
0050941 Aug 2000 WO
03081301 Oct 2003 WO
2005106544 Nov 2005 WO
2009062131 May 2009 WO
2009078962 Jun 2009 WO
2010036684 Apr 2010 WO
2011040830 Apr 2011 WO
2011109263 Sep 2011 WO
Non-Patent Literature Citations (24)
Entry
Kolesar, et al., “Understanding Multimode Bandwidth and Differential Mode Delay Measurements and Their Applications,” Proceedings of the 51st Int'l Wire and Cable Symposium, 2002, pp. 453-460.
Coleman et al., “Calculated EMB Enhances 10GbE Performance Reliability for Laser-Optimized 50/125 μm Multimode Fiber,” Corning Cable Systems Whitepaper (Mar. 2005).
Kuhnhenn, et al., “Quality Assurance for Irradiation Tests of Optical Fibers: Uncertainty and Reproducibility”, IEEE Transactions on Nuclear Science, vol. 56, No. 4, Aug. 2009, at 2160-2166.
Dutch Search Report in counterpart Dutch Application No. 2007032 dated Feb. 14, 2012, pp. 1-11.
Nagasawa, et al., “Gamma-Ray Induced 2eV Optical Absorption Bank in Pure-Silica Core Fibers”, Japanese Journal of Applied Physics, vol. 26, No. 6, (Jun. 1987) pp. L1009-L1011.
Kuhnhenn, et al., “Irradiation test of multi-mode fibres”, Fraunhofer Int., (May 2010) pp. 1-13.
Matthijsse et al., “Towards the low limits of 1383 nm loss in PCVD enabled single mode fibre production”, OFC 2004, Los Angeles, paper TuB5, Feb. 2004, pp. 1-3.
European Search Report in counterpart European Application No. 12165137.6 dated Aug. 20, 2012, pp. 1-9.
Bogatyrjov et al., “Super-high-strength metal-coated low-hydroxyl low-chlorine all-silica optical fibers”, IEEE Transactions on Nuclear Science, IEEE Service Center, New York, NY, vol. 43, No. 3, Jun. 1, 1996, pp. 1057-1060 [cited in European Search Report].
U.S. Appl. No. 13/534,793 for “Multimode Optical Fiber”, filed Jun. 27, 2012, pp. 1-92.
Yabre, “Comprehensive Theory of Dispersion in Graded Index Optical Fibers”, Journal of Lightwave Technology, Feb. 2000, vol. 18, No. 2, pp. 166-177.
Sasaki, P.L. Francois, D.N. Payne, “Accuracy and resolution of preform index-profiling by the spatial-filtering method,” ECOC'81, 6.4-1, Copenhagen, Denmark.
Kashima et al., “Transmission characteristics of graded-index optical fibers with a lossy outer layer,” Applied Optics USA, vol. 17, No. 8, Apr. 15, 1978.
Jacomme, “Modal dispersion in multimode graded-index fibers,” Applied Optics USA, vol. 14, No. 11, Nov. 1, 1975, pp. 2578-2584.
Okamoto et al., “Computer-Aided Synthesis of the Optimum Refractive-Index Profile for a Multimode Fiber,” IEEE Transaction on Microwave Theory and Techniques, USA, vol. MTT-25, No. 3, Mar. 1977, pp. 1-10.
Donalagic, “Opportunities to Enhance Multimode Fiber Links by Application of Overfilled Launch,” Journal of Lightwave Technology, vol. 23, No. 11, (Nov. 2005) pp. 3526-3540.
Morikuni et al., “Simulation-Based Prediction of Multimode Fiber Bandwidth for 10 Gb/s Systems,” LEOS 2002, 15th Annual Meeting of IEEE Lasers & Electro-Optics Society, Glascow, Scotland, pp. 1-2.
Guan et al., “Multimode Fibers for Compensating Intermodal Dispersionof Graded-Index Multimode Fibers”, Jul. 2004, Journal of Lightwave Technology, vol. 22, No. 7, pp. 1714-1719.
Gloge et al., “Multimode Theory of Graded-Core Fibers”, Bell System Technical Journal, vol. 52, No. 9, Nov. 1, 1973, pp. 1563-1578.
Kaminow et al., “Profile synthesis in multicomponent glass optical fibers”, Applied Optics, vol. 16, No. 1, Jan. 1, 1977, pp. 108-112.
Molin et al., “Low Bending Sensitivity of Regular OM3/OM4 Fibers in 10GbE Applications”, Optical Fiber Communication (OFC) Collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC), IEEE, Piscataway, NJ, Mar. 21, 2010, pp. 1-3.
Pepeljugoski et al., “15.6-Gb/s Transmission Over 1 km of Next Generation Multimode Fiber”, IEEE Photonics Technology Letters, vol. 14, No. 5, May 2002, pp. 1-3.
Freund, et al., “High-Speed Transmission in Multimode Fibers”, Journal of Lightwave Technology, vol. 28, No. 4, Feb. 15, 2010, pp. 1-18.
English-translation of Office Action in counterpart Japanese Application No. 2012-099273, dated Sep. 1, 2015, pp. 1-5.
Related Publications (1)
Number Date Country
20120275751 A1 Nov 2012 US
Provisional Applications (2)
Number Date Country
61479555 Apr 2011 US
61503801 Jul 2011 US