This invention relates to a high capacity media apparatus and method. In particular, according to one embodiment, the invention relates to a high capacity media apparatus and method in a high capacity media device holding large quantities of media. A unitary deformable media holder includes a moveable support base and access ports that provide access to a lifting device in the high capacity media device that is conformed to align with the access ports for applying lifting force to the movable support base.
The paperless office remains the optimistic hope of many. Nonetheless, despite the ongoing electronic revolution, more paper is being used in offices around the country and throughout the world than ever before. In fact, the increased demand for high capacity media devices, such as high speed copiers and printers capable of holding multiple reams of media, for example only and not by limitation, for the creation and reproduction of documents, pictures, and the like has created a new office drudgery that is time-consuming, and therefore costly, and subject to failure. This thankless task is the job of properly loading these high capacity media devices with multiple reams of media, such as standard letter size and A4 paper used for most office printing and copying.
Typically, high capacity media devices are capable of holding four or more reams of paper. As a result, today when a high capacity input (HCI) device runs out of paper, the user must open a box containing reams of paper. Then, the user must open and load four or more reams, as appropriate, before most high-end HCIs are fully loaded. In addition to the box and/or packaging the reams come in as a group, each ream is individually wrapped. Another negative aspect of the current process is the large amounts of waste wrappers and packaging materials that are generated.
Loading and waste generation are not the only problems encountered in the prior art use of HCI devices. Another problem is that if the reams of paper are not properly aligned, the misalignment often causes paper jams and malfunctions. A related issue is “splits”. Splits occur at the interface of one ream of paper with another. Even the most careful alignment does not always ensure that a jam or malfunction will not occur at a split. Still further, prior art HCI devices using large amounts of media are adversely affected by moisture. Moisture affects the ability of the HCI devices to pick up media for processing.
The high capacity media apparatus and method according to the present invention includes, in a high capacity media device holding large quantities of media, a unitary deformable media holder with a bottom, a top, and sides, with the media holder constructed to separate at preselected locations. A movable support base is provided in the media holder. A lifting device is provided in the high capacity media device and is conformed to apply lifting force to the movable support base.
An embodiment of the present invention is illustrated by way of example in
According to another embodiment, a media holder sensor 30 is connected to the high capacity media device 12 so as to signal/sense the presence of the media holder 14 when it is placed within high capacity media device 12. In this embodiment, media holder sensor 30, upon sensing the presence of media holder 14, signals high capacity media device to release lifting device(s) 26 thereby allowing lifting devices 26 to apply lifting pressure against the bottom of movable support base 28 through access ports 24 in media holder 14.
According to another embodiment, lifting device 26 is engaged when a loading door (not shown) of high capacity media device 12 is closed. If no media 46 is present, the media lifting mechanism 26 moves to the top of the high capacity input device 12 until the lifting pins 42 are detected by a sensor 32 located at the top of the high capacity media device 12. If the pins 42 are detected and no media 46 is detected, an unloaded or paper out state is indicated. In this case pins 42 retract and a new full media holder 14 is placed within device 12. At that point, sensor 30, detecting the presence of media holder 14, signals the release of lifting device 26 and pins 42 extend to apply lifting force to the movable support base 28 as shown in FIG. 1.
According to another aspect of the invention, media sensor 32, such as a mechanical or an optical sensor, for example only and not by limitation, or any other sensors now known or hereafter developed, is connected to high capacity media device 12 so as to signal/sense the presence of media 46 next to the pick roller assembly 34 of high capacity media device 12. In another aspect of the invention, a label sensor 36, such as a bar code scanner or an RFID sensor receiver, is connected to high capacity media device 12 so as to signal/sense and read a label 38 attached to the bottom 16 of media holder 14. Label 38 may be any machine readable label now known or hereafter developed such as a bar code label. Label 38 may include paper size, quantity, weight, texture, surface roughness or any other feature or information now known or hereafter developed. In combination, label sensor 36 and label 38 identify the media type to the high capacity media device 12. In one aspect of the invention, high capacity media device 12 is conformed to adjust the fuser temperature, print speeds or other processing parameters as appropriate for the characteristics of the identified media type. Media holder sensor 30, media sensor 32 and label sensor 36 may be combined into a single sensor and may be any type of sensor now known or hereafter developed. Connection of the sensors 30, 32, and 36 to high capacity media device 12 and the use of the sensor information to operate and adjust high capacity media device 12 is not disclosed specifically as it is well within the ordinary skill of those in the art.
Referring now to
Referring now to
In one aspect of the invention, unitary deformable media holder 14 is constructed so as to absorb moisture. This could be accomplished by including a desiccant in the box or by other means now known or hereafter developed. In another aspect of the invention, unitary deformable media holder 14 is constructed of cardboard. Cardboard absorbs moisture and keeps the preloaded media 46 ready to use. In another aspect of the invention, the sides 20 of unitary deformable media holder 14 are constructed so as to provide vertical alignment for media 46, such as paper, contained within media holder 14. This aspect of the invention is directed to assisting in the proper alignment of the media holder 14 within the device 12 and also to ensuring that the media 46 is presented to the pick roller 34, or any other media picking mechanism, in a proper, useful fashion.
Referring again to
The description of the present embodiments of the invention has been presented for purposes of illustration, but is not intended to be exhaustive or to limit the invention to the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. For example only and not by limitation, media holder 14 may be a throw away item or it may be built of material, plastic or the like, which enables it to be reused. In much the same way that printer cartridges are sent back to be factory filled, media holder 14 may be sent back to be factory filled with another load of media 46. As such, while the present invention has been disclosed in connection with an embodiment thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1883008 | Sherman | Oct 1932 | A |
2118380 | Gresenz | May 1938 | A |
3367487 | Dwyer, Jr. | Feb 1968 | A |
3767188 | Rosenberg et al. | Oct 1973 | A |
4274623 | Reist et al. | Jun 1981 | A |
4830354 | Penson | May 1989 | A |
5053814 | Takano et al. | Oct 1991 | A |
5126789 | Fukuchi et al. | Jun 1992 | A |
5944306 | Maeda et al. | Aug 1999 | A |
6286827 | Meetze et al. | Sep 2001 | B1 |
6398210 | Nomura | Jun 2002 | B1 |
Number | Date | Country |
---|---|---|
1-317924 | Dec 1989 | JP |
3-73719 | Mar 1991 | JP |
4-45020 | Feb 1992 | JP |
4-133960 | May 1992 | JP |
6-179533 | Jun 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20040169328 A1 | Sep 2004 | US |