The present invention relates generally to napkin dispensers and in a preferred embodiment to an in-counter, high capacity napkin dispenser with an injection-molded faceplate having a concealed latch accessible through its dispensing aperture.
Napkin dispensers are well known in the art. There is disclosed in U.S. Pat. No. 4,311,252 to Hope, Jr. et al., a large capacity elevator-type napkin dispenser comprising an elongated supporting structure or cage composed of a series of spaced rod-like vertical supports. A stack of folded napkins is supported on a pressure plate that is mounted on a carriage adapted to slide vertically within the cage. The pressure plate is supported from the carriage by a plurality of compression springs which enable the pressure plate to float and accommodate the varying thickness of the stack of folded napkins. A cover is mounted on the upper end of the cage and has an opening through which the napkins are dispensed. The pressure plate and stack of napkins are urged upwardly toward the undersurface of the cover by a biasing mechanism that includes a pair of extension springs. The springs have a varying spring rate so that the force of the springs will be greatest when the pressure plate is fully loaded with napkins.
Radek discloses another vertically oriented napkin dispenser in U.S. Pat. No. 4,094,442 wherein there is shown a napkin dispenser for disposition on a restaurant table or counter and normally housing a stack of paper napkins. The dispenser is in the form of a parallelpiped with a top access opening for loading and removing napkins. The opening is generally rectangular except for a concavely arcuate edge on one side from which napkins are normally extracted. Two opposed sides of the opening normal to the arcuate edge are provided with a pair of relatively narrow spring biased leaves resiliently extendable into the container to facilitate loading, the free edges of said leaves being longitudinally gently oblique and widening toward the aforesaid arcuate edge. Each of said leaves has a longitudinal outwardly turned lip and the exposed corners of the leaves are rounded. All of said features contribute toward convenient extraction of a napkin without damage. See also, U.S. Pat. No. 4,343,415, also to Radek.
Further features of napkin and towel dispensers are seen in the following: EPO Application 0 101 287 of Evans; U.S. Pat. No. 4,329,001 of Filipowicz et al.; U.S. Pat. No. 2,840,268 of Casey et al.; U.S. Pat. No. 4,155,484 of Pastore; U.S. Pat. No. 5,156,293 of Petterson et al.; and U.S. Pat. No. 5,964,375 of Carlson et al.
Despite advances in the art, many issues with dispensers remain unresolved. For one, most napkin dispensers do not have a large capacity and need to be re-filled frequently adding to labor costs and/or causing consumer inconvenience. Moreover, it is desirable to lock dispensers so that they cannot be opened by unauthorized personnel; however, keys get lost. It will be appreciated from the foregoing patents that existing dispensers are relatively expensive to fabricate and install especially when made of multiple parts including metal parts requiring multiple fasteners, springs, brackets and the like.
Existing high capacity napkin dispenser are also oftentimes difficult to reload. When the cover is open, the napkins are not sufficiently retained within the dispenser such that a technician must exercise considerable skill in order to refill the dispenser without assistance or damaging product.
Still yet other issues include reliably feeding the napkins to the dispensing aperture without damaging the product by way of tearing, or jamming of the dispenser as will be appreciated by one of skill in the art.
The present invention provides an improved high capacity napkin dispenser with multiple features which provide for superior operation. The inventive features include a sequestered locking mechanism which is easy to operate and which is hidden within the dispenser such that a technician with knowledge of its operation can readily unlock the dispenser without the need for a key. Another aspect of the invention includes gripping surfaces adjacent the faceplate so that a stack of napkins can be retained within the dispenser while the face plate is open, yet the gripping surfaces will not interfere with feeding product to the aperture when the faceplate is closed. Preferably, the gripping surfaces are bowed surfaces which facilitate feeding product to the aperture of the dispenser as illustrated in the appended drawings and described herein.
Still yet another aspect of the present invention is an injection molded construction which dramatically reduces the cost of high capacity dispensers, providing an order of magnitude reduction in cost. A high capacity dispenser of the invention may be produced for as little as 15-30 dollars as opposed to 150-250 dollars and more for conventional products of similar capacity. Such dramatic cost reductions are achieved by providing identical panels for defining the storage chamber, as well as, for example, identical plates for holding a biasing spring, as well as, for example, utilizing molded-in label technology to provide for a suitable appearance. Injection-molded parts and panels with molded-in assembly features make it possible to greatly reduce assembly complexity. Still yet other features and advantages of the present invention will become apparent from the discussion which follows.
There is provided in a first aspect of the invention a large capacity napkin dispenser comprising: (a) an elongate housing defining a storage chamber with a generally rectangular cross-section for receiving a stack of napkins ; (b) a faceplate with a dispensing aperture extending between a first and a second side of the dispenser, the faceplate being hinged to the housing at the first side so as to be movable between an open position for re-loading and a closed position for dispensing, the faceplate having an outer surface and an inner surface which is inside the dispenser when the faceplate is in the closed position; (c) a movable support member mounted in the housing; (d) biasing means for urging the movable support toward the faceplate so that the stack of napkins is advanced to the aperture as it is depleted; and (e) means for locking the faceplate in the closed position, the locking means being operable to lock the faceplate to the second side of the dispenser in the closed position and includes release means located adjacent the inner surface of the faceplate such that when the faceplate is in the closed position the release means is concealed in the interior of the dispenser and accessible through the dispensing aperture. In a preferred embodiment the faceplate is hinged to a mounting bracket secured to the housing and the release means of the locking means is located adjacent one end of the dispensing aperture. Especially preferred are constructions wherein the locking means includes an injection-molded unitary latch including both an integrally formed spring and a latch member. The injection-molded unitary latch is formed from an injection-molding composition comprising nylon, polyacetal or polyester.
The faceplate preferably has a plurality of guide ridges at its inner surface and the injection-molded unitary latch has a pair of spring arms configured to engage a guide ridge. The unitary latch is provided with a beveled edge in preferred constructions to facilitate operation of the dispenser, while the faceplate is perhaps most preferably integrally formed by injection-molding and includes a plurality of guide ridges at its inner surface. The guide ridges comprise triangular guide ridges having a profile inclined toward the dispensing aperture so as to guide the napkin stack thereto. In a preferred embodiment the guide ridges extend progressively further from the inner surface of the faceplate with increasing distance from the aperture thereby flaring away from the aperture. The guide ridges may be further characterized in that: (i) the guide ridges are generally orthogonal to an elongate axis of the dispensing aperture; and (ii) the guide ridges are generally parallel to an axis of the storage chamber when the faceplate the closed position. Suitable materials for the faceplate include an injection-molding composition comprising an acrylonitrile-butadiene-styrene resin or injection-molding compositions comprising an acrylic resin or a polycarbonate resin.
The housing is also preferably made by way of injection-molding, including injection-molding at least two panels having molded-in features for joining the panels to each other. These panels are made from an injection-molding composition comprising an acrylonitrile-butadiene-styrene resin or these panels are made from an injection-molding composition comprising an acrylic resin or a polycarbonate resin. A particularly cost effective method of manufacturing the dispenser is wherein the generally rectangular storage chamber has sidewalls defined by two substantially identical U-shaped channel members molded from a polymer composition as noted above. The housing is vertically oriented when the dispenser is an in-counter dispenser and is sized to accommodate at least about 1,000 single-fold napkins.
Another feature of the present invention which makes the dispenser particularly cost effective includes a construction wherein a helical spring is secured to two substantially identical plates which are molded from a polymer composition in order to provide biasing means to advance the napkins to the dispensing aperture. Preferably, the substantially identical plates include molded-in locking means for securing the helical spring. A particularly preferred construction is wherein the helical spring has at its extremities two end portions which project radially inwardly with respect to the axis of the spring and the plates each include molded-in quick lock features for securing the spring thereto without other hardware. This feature eliminates the need for additional screws, brackets and so forth as well as greatly reduce fabrication labor required to produce the dispenser. The quick lock feature is perhaps most preferably achieved by including a radial hook with a radial locking finger extending radially outwardly with respect to the axis of the helical spring and a tangential hook with a locking finger extending tangentially with respect to the coils of the helical spring. The tangential hooks have locking protuberances on surfaces thereof opposed to their respective plates in order to secure the spring and to hinder rotation of the spring with respect to the plates to which the spring is secured. Optionally included are a plurality of positioning posts for positioning the spring with respect to the plates in addition to the hooks. The plates are thus adapted to operate as the movable support member to advance the napkins to the dispensing aperture.
The construction is achieved with a minimum of molds. As one of skill in the art will appreciate, molds for injection-molding are quite expensive and can add many tens of thousands of dollars to the capital cost involved for each part.
In another aspect of the invention, there is provided a large capacity napkin dispenser including: (a) an elongate housing defining a storage chamber with a generally rectangular cross-section for receiving a stack of napkins; (b) a faceplate with a dispensing aperture extending between a first and a second side of the dispenser, the faceplate being hinged to the housing at the first side so as to be movable between an open position for re-loading and a closed position for dispensing, the faceplate further having an outer surface and an inner surface which is inside the dispenser when the faceplate is in the closed position; (c) a movable support member mounted in the housing; (d) biasing means for urging the movable support toward the faceplate so that the stack of napkins is advanced to the aperture as it is depleted; (e) means for locking the faceplate in the closed position; and (f) means for gripping the napkin stack adjacent the faceplate to control advancement of the napkin stack to the aperture. Preferably, the means for gripping the stack include a pair of opposed gripping surfaces which define a progressively decreasing span in the direction of the dispensing aperture such as wherein the gripping surfaces each have an inwardly convex bowed profile and define a progressively decreasing span. In a preferred embodiment, the means for gripping the napkin stack adjacent the faceplate are effective to retain the napkin stack within the elongate housing when the faceplate is in the open position.
Another aspect of the invention is a kit for converting existing dispensers. There is thus provided a kit with a locking faceplate for mounting on a napkin dispenser housing comprising: (a) a mounting bracket; (b) means for securing the mounting bracket to the dispenser housing; (c) a faceplate with an elongate aperture; (d) hinge means for pivotally mounting the faceplate to the mounting bracket such that it is movable between a closed position for dispensing a stack of napkins and an open position for reloading; and (e) means for locking the faceplate in the closed position, the locking means being operable to lock the faceplate to the mounting bracket in the closed position and including release means for unlocking the faceplate located adjacent an inner surface of the faceplate such that when the faceplate is in the closed position on a dispenser the release means is concealed in the interior of the dispenser and accessible through the dispensing aperture. The means for securing the mounting bracket to the dispenser includes a mounting collar adapted to be secured to the mounting bracket; ordinarily about a flange in the housing of an existing dispenser. Here again the locking means includes biasing means adapted to maintain it in a locking position and the locking means preferably includes an injection-molded unitary latch including an integrally-formed spring and a latch member as noted above.
Another aspect of the invention provides an injection-molded unitary faceplate for a napkin dispenser made from an injection-molding composition, the faceplate having a dispensing aperture as well as a plurality of guide ridges on an inner surface thereof inclined toward the aperture, the faceplate being further provided with a molded-in label film on an outer surface thereof; the label film including an outwardly facing polymer film layer extending over substantially the entire outer surface of the faceplate. Typically, the molded-in label film comprises a polymer film layer and an ink layer. The ink layer may be formulated to mimic a metallic finish. In a preferred embodiment, the label film consists of a thermoplastic polymer film layer and an ink layer, wherein the ink layer is melt-bonded to the injection-molding composition and the outwardly facing polymer film layer is a polycarbonate film. In many cases, a heat activated adhesive will be used between the ink layer and the underlying polymer. However, if the proper outer thermoplastic polymer film layer is chosen for compatibility with the ink and the underlying polymer, it may be possible to dispense with the heat activated adhesive layer entirely.
A method of making an injection-molded faceplate for a napkin dispenser of the invention includes: (a) printing an ink composition onto a thermoplastic polymer film; (b) thermoforming the film into a shape suitable for a faceplate layer; and (c) injection-molding structural resins onto the ink layer of the thermoformed film, wherein the faceplate is provided with a dispensing aperture and the polymer film extends over substantially the entire outer surface of the faceplate.
The present invention is also directed to using the improvements noted above to dispense napkins.
Still further features and advantages of the present invention will become apparent from the discussion which follows.
The invention is described in detail below with reference to the various drawings wherein like numbers designate similar parts in the drawings:
The invention is described in detail below with reference to the drawings for purposes of illustration only. Modifications within the spirit and scope of the invention, set forth in the appended claims will be readily apparent to one of skill in the art.
Referring to
Housing 12 and faceplate 14 thus define a storage chamber generally indicated at 13 for receiving a stack of napkins.
Housing 12 suitably includes two multi-faceted panels 24, 26 as well as an end plate 28. Panels 24, 26 define opposed sidewalls 30, 32, 34 and 36 when secured together by way of tabs 38 which fits in slots 40. Preferably, plates 16, 28 are injection-molded and of identical construction. This reduces fabrication costs as well as provides an opportunity to include molded-in features in the plate such as the quick lock mounting for spring 18 described herein. So also, panels 24, 26 are of identical construction which saves considerable capital costs when producing the molds. Injection-molding allows for providing multiple molded-in features which reduces the number of parts as well as the labor required to fabricate the inventive dispensers.
An optional tether 42 secures plate 28 to movable support plate 16 so that when the empty dispenser is opened support plate 16 is not pushed out of the interior of the housing by spring 18. Preferably, the ends of the spring are bent inwardly at ends 18a, 18b and secured to support plates 16, 28 provided by way of quick locking hooks 17, 19 with fingers 17a and 19a over apertures 17b and 19b respectively configured so that a tether is not necessary. Details are best seen in
After assembly and loading with napkins, the weight of a napkin stack compresses spring 18 which, in turn, forces the stack to the faceplate as the stack is depleted.
Faceplate 14 is provided with an elongate aperture 44 which extends between sidewalls 30 and 36 and provides access to the napkin stack. At the outer surface 46 of the faceplate there is optionally provided a molded-in label film layer 48, which extends substantially over the entire outer surface of faceplate 14. At the inner surface 50 of faceplate 14 there is provided a plurality of triangular guide ridges 52, 54 and so forth inclined towards aperture 44 as is seen in
Aperture 44 is suitably configured to restrict access to the napkins and encourage withdrawal of 1 napkin at a time. In this regard, the length of the aperture at 55 is typically about 5½ inches and the opening has a maximum width of about 1⅜ inches when single fold napkins having a tail of about 6½ are aligned with axis 55 of the aperture. The faceplate, with its relatively restrictive aperture, is also effective to hinder or prevent contaminants and debris such as drinking straws, used packaging material and so forth from finding their way into the interior of the dispenser.
It is appreciated from
Faceplate 14 is preferably injection-molded and of unitary structure. A Preferred class of materials are acrylonitrile-butadiene-styrene (ABS) molding compositions due to their unique combination of impact resistance and warp resistance.
Faceplate 14 is also provided with a unitary injection-molded locking latch 56 which is provided with a molded-in spring in the form of a pair of arms 58, 60 which bear upon the guide ridges to bias latching member 62 of the latch to a locking position where it is maintained when mounted in the faceplate. When faceplate 14 is closed (
In order to release the latch, a technician simply pulls the latch away from the locking position by pulling on a lip 68 of the latch to displace it inwardly toward the center of the aperture.
Preferably, the latch has a beveled edge 72 to facilitate closing and is made of relatively durable polymer such as nylon or polyacetal. Celcon acetal copolymer is available from Celanese Limited, Dallas, Tex.
Optionally, faceplate 14 and bracket 20 are provided as part of a kit with an additional collar 80 as shown in
In a preferred construction of the inventive dispenser, bracket 20 defines an opening 100 (
In this regard, it is noted that a geometry with simply a rectangular cantilever projecting over the opening of the storage chamber was less desirable than the bowed geometry seen in
The relative dimensions of opening 100 and a napkin stack 106 are better understood with reference to
In a preferred embodiment, span 110 of the napkins may be about 5 inches or so and the span at 112 may be about 4.5 inches, about 10% less than the width of the napkin stack.
Plates 16, 28 are suitably injection-molded from an ABS resin composition which is used for the other components of the dispenser such as the U-shaped panels defining the storage chamber for the napkins.
A napkin dispenser faceplate of the invention is likewise made by injection-molding such that it has molded-in guide ridges inclined to the aperture in a unitary structure as illustrated. A preferred faceplate has a molded-in label film at its outer surface which gives the faceplate a brushed stainless steel appearance, for example, when a polymer layer printed with an appropriately pigmented ink is used. The inventive dispenser is most preferably provided with a decorative cover film 48 of the type illustrated schematically in
Alternatively, metallic foil containing label film is used. A label film is shown schematically in
The optional heat activated or heat-activatable layer of the label film is a layer of material which is activated by heat during the molding process to improve bonding of the label to a plastic article in the molding process. Materials for the heat-activatable adhesive layer may comprise any heat-activatable adhesive or thermoplastic film material. Such materials include but are not limited to the following film-forming materials used alone or in combination such as polyolefins, (linear or branched), metallocene catalyzed polyolefins, syndiotactic polystyrenes, syndiotactic polypropylenes, cyclic polyolefins, polyacrylates, polyethylene ethyl acrylate, polyethylene methyl acrylate, acrylonitrile butadiene styrene polymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl acetate copolymers, polyamides such as nylon, polystyrenes, polyurethanes, polysulfones, polyvinylidene chlorides, polycarbonates, styrene maleic anhydride polymers, styrene acrylonitrile polymers, ionomers based on sodium or zinc salts of ethylene/methacrylic acid, cellulosics, fluoroplastics, polyacrylonitriles, and thermoplastic polyesters. More specific examples are the acrylates such as ethylene methacrylic acid, ethylene methyl acrylate, ethylene acrylic acid and ethylene ethyl acrylate. Also, included are polymers and copolymers of olefin monomers having, for example, 2 to about 12 carbon atoms, and in one embodiment 2 to about 8 carbon atoms. These include the polymers of alpha-olefins having from 2 to about 4 carbon atoms per molecule. These include polyethylene, polypropylene, poly-1-butene, etc. An example of a copolymer within the above definition is a copolymer of ethylene with 1-butene having from about 1 to about 10 weight percent of the 1-butene comonomer incorporated into the copolymer molecule. The polyolefins include amorphous polyolefins. The polyethylenes that are useful in the heat seal layer include those with various densities including low, medium and high density ranges. The ethylene/methyl acrylate copolymers available from Chevron under the tradename EMAC can be used. These include EMAC 2260, which has a methyl acrylate content of 24% by weight and a melt index of 2.0 grams/10 minutes at 190° C., 2.16 Kg; and EMAC SP 2268T, which also has a methyl acrylate content of 24% by weight and a melt index of 10 grams/10 minutes at 190° C., 2.16 Kg. Polymer film materials prepared from blends of copolymers or blends of copolymers with homopolymers are also useful.
Also, the heat activatable first adhesive layer may contain antiblock additives (such as silica, diatomaceous earth, synthetic silica, glass spheres, ceramic partides, etc.) This layer also may contain an antistatic additive (such as an amine or an amide or a derivative of a fatty acid).
The heat activatable adhesive layer is designed for and activated at temperatures known to those skilled in the art. Generally the heat-activatable first adhesive layer has a lower melting point than any of the other layers of the in-mold label. While the heat activatable layer may activate at temperatures below those specified for activation, the layer is designed to activate at certain temperatures based on the substrate material under normal in-mold labeling conditions. In one embodiment, the heat activatable adhesive layer activates at temperatures between about 80° C. to about 300° C., more often the heat seal layer activates at temperatures between about 87° C. to about 250° C.
The facestock layer may include or consist of paper, foils, pigmented polymer layers and so forth as enumerated in U.S. Pat. No. 6,773,653 noted above.
The polymer facestock and the heat activatable first adhesive layer may be formed by simultaneous extrusion from two or more extruders with a suitable coextrusion die whereby the facestock and first adhesive layer are adhered to each other in a permanently combined state to provide a unitary coextrudate. A tie layer (adhesion promoting layer) may also be coextruded with the facestock and the heat-activatable first adhesive layer to improve the adhesion of the heat-activatable layer to the facestock. Alternatively, a coating process may be used to lay down a layer of the heat-activatable material on the facestock, or the two layers can be formed separately and thereafter laminated together with or without the acid of an adhesive layer.
While the invention has been illustrated in connection with several examples, modifications to these examples within the spirit and scope of the invention will be readily apparent to those of skill in the art. In view of the foregoing discussion, relevant knowledge in the art and references discussed above in connection with the Background and Detailed Description, the disclosures of which are all incorporated herein by reference, further description is deemed unnecessary.
This non-provisional application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/627,866, of the same title, filed Nov. 15, 2004.
Number | Name | Date | Kind |
---|---|---|---|
2840268 | Casey et al. | Jun 1958 | A |
4094442 | Radek | Jun 1978 | A |
4155484 | Pastore | May 1979 | A |
4311252 | Hope, Jr. et al. | Jan 1982 | A |
4329001 | Filipowicz et al. | May 1982 | A |
4343415 | Radek | Aug 1982 | A |
4706844 | Omdoll et al. | Nov 1987 | A |
5131561 | Casperson et al. | Jul 1992 | A |
5156293 | Petterson et al. | Oct 1992 | A |
5632409 | Raghunanan | May 1997 | A |
5964375 | Carlson et al. | Oct 1999 | A |
6241118 | Tramontina | Jun 2001 | B1 |
6257443 | LaCount et al. | Jul 2001 | B1 |
6773653 | Miller et al. | Aug 2004 | B2 |
6899251 | Christensen et al. | May 2005 | B2 |
6929147 | Guillemette et al. | Aug 2005 | B2 |
7124911 | Tramontina et al. | Oct 2006 | B2 |
Number | Date | Country |
---|---|---|
0 101 287 | Feb 1984 | EP |
1279361 | Jan 2003 | EP |
1564451 | Apr 1980 | GB |
WO9822009 | May 1998 | WO |
WO2004093629 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060102641 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60627866 | Nov 2004 | US |