The various embodiments of the disclosure relate generally to structures and monoliths, prepared by coating a composite material onto a support, and layering supports together to form a layered assembly or structure. The composite material can have an active material in it, typically a catalyst or an adsorbent. The technology can be applied to prepare monoliths for gas adsorption, medium separations, or catalytic processes.
Numerous processes and devices rely on monolithic structures acting as supports for a catalyst layer. Several methods are used to create the monolithic structures, the two main routes being ceramic extrusion and spiral wound foils. Monoliths can be created by extruding a ceramic to form a ceramic monolith having channels passing through the body of the monolith structure. Monoliths can also be created from metal foils, particularly corrugated metal foils, which are spiral-wound to form a support, and a catalyst or adsorbent then coated down onto the support. This method is often hampered by clogging or poor coating results when the structures or channels on a support become too small. In other words, monolith microstructures can reach a size below which applying the coating becomes impractical.
Moreover, the effectiveness of many processes is proportionate to the amount of available surface area, particularly in catalysis or adsorption. Decreasing the size of channels in a monolith leads to more surface area for reactivity, but there are limits to how small the channels can become before coating becomes impractical. Moreover, processes that require a significant amount of surface area of catalyst/adsorbent are typically hindered by large pressure drops in the reactor. For example, rapid cycle swing adsorption processes with extremely short cycle times typically require structured adsorbent beds (rather than randomly packed beds) to reduce the pressure drop in the bed. Laminar flow in these systems can be ideal if the adsorbent can be aligned in a straight channel fashion. Coating straight channel structures (e.g. monoliths) with adsorbent is one option, but remains challenging due to the small size of the channels.
The various embodiments of the disclosure relate generally to structures having layered supports and passageways between the supports. Active materials can be in the layered supports. The structures can be monoliths, and can be used in catalysis and adsorption processes, including gas adsorption processes such as pressure swing adsorption and temperature swing adsorption.
An embodiment of the disclosure can be a structure comprising layered coated supports and passageways between adjacent layered coated supports. Each layered coated support can be a support having a first and second side, and a composite on at least the first side of the support. The composite can include an active material, and can have features in the surface of the composite. The passageways of the structure can be formed by the contact of the features in a coating on the first side of a layered structure with a side of an adjacent layered structure. The composite can also include a binder.
In some embodiments, the support can be a metal substrate. The support can be a sheet, foil or mesh. The support can be coated with the composite material, and the composite material can include active material. The active material can be a catalyst or can be an adsorbent. In some embodiments, the active material can be a zeolite.
In some embodiments, the layered coated support can further include a composite on the second side. Passageways can be formed at the contact of the features in the coating on the first side of a coated support with a composite on the second side an adjacent support.
An embodiment of the disclosure can include a structure that is a monolith. The monolith can have passageways through its structure that are small, and can have cell densities greater than current monolith technology. In some embodiments, the cell density of the monolith can be at least 900 cpsi, or at least 1000 cpsi, or at least 1500 cpsi. In an embodiment, when the features in the structure are channels, the distance between channels is less than about 900 microns.
In some embodiments of the disclosure, the layered coated supports can be separate supports, and the passageways are formed at the contact of the first side of one support with the second side of a separate support. In some embodiments, layered coated supports can be a single coated support coiled in a spiral, and the passageways are formed at the contact of the first side of the coated support with the second side of the coated support.
An embodiment of the disclosure can be a structure including layered coated supports and passageways between adjacent layered coated supports, where each layered coated support includes a support having a first and second side, and a composite on at least the first side of the support, and the composite includes an active material and tortuous pathways through the composite for fluid communication of the adsorbent with the passageways, and having features in the surface of the composite. The composite further include a binder.
In some embodiments, the composite has a mesoporosity. The mesoporosity can be at least about 15%, or at least about 20%.
In some embodiments, the composite can enclose some or all of the active material. The composite can enclose at least about 15% of the active material, or at least about 20% of the active material.
An embodiment of the disclosure includes a method for preparing the structure. The method includes coating on a support having a first side and a second side a paste to the first side; creating features in the paste; layering a first coated support with a second coated support by contacting the paste on the first side of the coated support with a side of the second coated support to form enclosed passageways; and calcining the layered supports to form the structure.
In some embodiments, the side of the support is a second side of a support coated with a thin layer of paste, and the enclosed passageways are formed by the contact of the paste with features of the first support to the thin layer of paste on the second side of the second support. The features can be created in the paste by imprinting, stamping, molding, dragging or 3-D printing. A paste layer can be coated on the second side of the support, and features can be created in the paste on the second side.
In some embodiments, the support can be a metal substrate. The support can be a sheet, foil or mesh. In some embodiments, a paste can be coated onto the support. The paste can include a binder and an active material. The active material can be a catalyst or can be an adsorbent. In some embodiments, the active material can be a zeolite.
In some embodiments, the layering step can be layering a coated support onto a separate coated support to form layers of coated supports. In some embodiments, the layering step can include one or more coated supports coiled in a spiral such that the first side of a support can contact the second side of a support to form the enclosed passageways within a spiral structure.
Although preferred embodiments of the disclosure are explained in detail, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the disclosure is limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or carried out in various ways. Also, in describing the preferred embodiments, specific terminology will be resorted to for the sake of clarity.
It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.
Also, in describing the preferred embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.
Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value.
By “comprising” or “comprises” or “including” is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.
It is also to be understood that the mention of one or more method steps does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.
The disclosure includes a structure that comprises layers of coated supports, and passageways between the layers. The disclosure also includes a method for preparing, or a method for constructing, the structures, which allows for the design of features in the layers of paste, which creates the passageways in the structure. The structure can be applied to a variety of technologies, including catalysis and adsorption processes, and can incorporate a variety of features as further discussed herein. An example of a structure is a monolith, which can be applied to a variety of these technologies.
One aspect of the disclosure is a composite in the structure or monolith, and the paste used to produce the composite. As discussed further below, a paste can be coated onto a support, dried, and optionally further processed to produce the composite. The paste can contain an active material and solvent, and optionally a binder. By virtue of the drying process, the composite can contain an active material. The composite can further include a binder. The active material can typically be an adsorbent or a catalyst. More than one active material can be included in the composite, and the more than one active material can be applied in the same section of the support, and uniformly throughout the structure. Alternatively, the more than one active material can be applied to different sections of the support, such as in composites or pastes on different sides of a support. The composite may or may not also contain residual solvent. The paste and composite in this disclosure contain high loadings or volume fractions of active material, and thereby can produce high capacity monoliths that are not attainable using traditional coating technologies.
In some embodiments, the composite or paste can include an active material. The active material can be an adsorbent or a catalyst. For adsorbents, any adsorbent applicable in gas separation or medium separation technology can be used. Medium separation is important in various industries, including but not limited to, the production of fuels, chemicals, petrochemicals, purified gases, and specialty products. The term “medium” is used herein for convenience and refers generally to many fluids, liquids, gases, solutions, suspensions, powders, gels, dispersions, emulsions, vapors, flowable materials, multiphase materials, or combinations thereof. A medium can comprise a feed stream. A medium can comprise a mixture of a plurality of components. The term “plurality” as used herein refers to more than one. Preferably the medium herein is a gas, and the adsorbents are being applied in gas separation technologies.
Medium separation can be accomplished by many methods that, assisted by heat, pressure, solids, fluids, or other means, generally exploit the differences in physical and/or chemical properties of the components to be separated. Gas separation can be achieved by partial liquefaction or by utilizing an adsorbent material that preferentially retains or adsorbs a more readily retained or adsorbed component relative to a less readily adsorbed component of the gas mixture.
Pressure swing adsorption (PSA) and temperature swing adsorption (TSA) are two commercially practiced gas separation process. TSA comprises a process wherein a bed of adsorbent material is used to separate one or more components out of a stream of a medium, and then the adsorbent bed can be regenerated, thereby releasing the adsorbed components, by increasing the temperature of the bed. PSA similarly includes a bed of material used to separate one or more major components from a medium, but the absorbent bed can be regenerated by changing the pressure of the system.
Both TSA and PSA processes can comprise preferential adsorption of at least one component of a medium by an adsorbent material relative to a second component or other components in the medium. The total amount of the at least one component adsorbed from the medium (i.e., the adsorption capacity of the adsorbent material) and the selectivity of the adsorption for one component over another component of the medium, can often be improved by operating the adsorption process under specific pressure and temperature conditions, as both pressure and temperature may influence the adsorption loading of a component of the medium. The adsorbed component can be later desorbed from the adsorbent material.
Adsorption and desorption of a component in TSA occurs because adsorption isotherms are strongly influenced by temperature. Thus, high purities of a component of a medium can be obtained by adsorbing at low temperature, where adsorption is strong, with the release of a strongly held component being possible by means of high temperature for desorption. In TSA processes, heat for desorption may be supplied directly to the adsorbent material by flowing a hot desorbent medium through the bed, or indirectly to the adsorbent material through a heating coil, electrical heat source, heat transfer medium, or heat exchanger, among others, which are in intimate association with the adsorbent material.
Adsorption and desorption of a component in PSA occurs because adsorption of gases in a medium increases with at increasing pressure. Different gases tend to have different adsorption coefficients with different substrates, so a mixture of gases can be passed through at bed at higher pressure to selectively adsorb at least one of the gases in the mixture. Once the bed reaches the end of its capacity, the pressure can be reduce to collect the adsorbed gas and regenerate the adsorbent.
The PSA and TSA processes do not have to be exclusively only pressure or temperature. The pressure in a TSA process can also be changed during adsorption/desorptions, and the temperature in a PSA process can also be changed during adsorption/desorptions. Moreover, purge gases or other means might also be used in conjunction with PSA and/or TSA processes.
In each of the TSA and PSA processes, the nature of the adsorbent and the nature of the structure containing the adsorbent can impact both the type of adsorption, effectiveness and efficiency of adsorption, and capacity for a gas in the process.
The adsorbent in this disclosure can be a material suitable for adsorption of a gas in a gas separation or removal process. The adsorbent can be a material effective in a pressure swing adsorption process or a temperature swing adsorption process. In some embodiments, the adsorbent can be a material that adsorbs CO2 from a gas stream. In an embodiment, the adsorbent can be a zeolite, metal oxide, metal organic framework, zeolitic imidozolate framework, or activated carbons. Preferably, the adsorbent can be a zeolite. The zeolite can be any zeolite used in an adsorption process, including but not limited to zeolite A, zeolite X, zeolite Y, MFI, mordenite, silicalite, chabasite, faujasite, and variations of these frameworks.
In some embodiments, the active material in the composite or paste can be a catalyst. The catalyst can be any material applicable to a catalytic process, including for example chemical processes such as catalytic conversion, isomerization, polymerization, or other reaction. The catalysts in the composites and monoliths of this disclosure can be used to catalyze a wide variety of organic compound conversion processes including many of present commercial/industrial importance. Examples of chemical conversion processes effectively catalyzed by the crystalline material of this invention, by itself or in combination with one or more other catalytically active substances including other crystalline catalysts, can include those requiring a catalyst with acid activity. Specific examples can include, but are not limited to:
In some embodiments, the paste and the composite in the disclosure can each further include a binder. The binder can be any binder applicable to preparing a structure. In an embodiment, the binder can be alumina, inorganic and organic polymers, silica. In some embodiments, the paste can include additional materials and additives. In one embodiment, the paste can also include a polymer, particularly a cellulosic polymer, which can be removed later during processing and calcination. Removal of the polymer during processing can produce a porous composite, i.e. a composite that contains pores, specifically mesopores within the composite. In another embodiment, an inorganic additive, such as sodium silicate, can be included. Calcination of the composite can integrate the additive into the structure as a binding agent.
Other aspects of the composites and pastes are characterized further below. With the composite and paste initially described, the method for preparing the monoliths can be described in more detail.
A method for preparing a monolith is disclosed, including the steps of coating a support, creating features in the support, layering supports together and drying the support to form the monolith. In an embodiment, the method can include the steps of coating, on a support having a first side and a second side, a paste on the first side of the support, creating features in the paste, layering a first coated support with a second coated support by contacting the paste on one side of the coated support with one side of the second coated support to form enclosed passageways, and drying the layered supports to form the monolith.
In an embodiment, coating the paste 102 can be on only one side of the support 101, or on both sides of the support, as shown for paste 105. In some embodiments, the paste on the second side can be a thin coating. In other embodiments, the paste can be a thicker coating. In some embodiments, the paste 105 can also have features created in the coating. In an embodiment, coating the paste can also be on the second side of the support, and the enclosed passageways are formed by contacting of the paste with features of the first support to the paste on the second side of the second support. In some embodiments, a support can be used that allows the application of the paste on one side to establish a coating layer on both sides, such as for example, by applying a paste to one side of a mesh support such that a portion of the paste passes through the mess and onto the opposite side of the support.
The step of coating the support can be by any method known to one of ordinary skill in coating a paste onto a support. In an embodiment, the paste can be applied by knife coating, roll coating, dip coating or spray coating.
The features created in the paste can determine the nature and shape of passageways created in the final monolith. Features can be any shape that can be created in a paste. In an embodiment, the feature can be a groove that traverses the paste in a direction roughly parallel to the surface of the support. The groove can include any groove, and can be linear, non-linear, wavy, sinusoidal, zig-zagged, or stair-stepped. When the feature is a groove, the cross-sectional shape of the groove, i.e. the shape of the groove when viewed as a cross-section perpendicular to the surface of the support, can also be described. Generally, the groove can be any shape that can be applied to a paste, including a cross-sectional shape of a square, a triangular, or a sloped valley, or a shape that is generally parabolic. A representation of a linear groove is shown in
The feature does not need to be a groove, but can include other structures such as hills, mesas, pillars, cylinders, mounds, or cones. In a nonlimiting example, a feature created in the paste could be a series of pillars placed at regular intervals such that the pillars form a grid design, with the pillars of paste having a height greater than the surrounding paste. A representation of features as a series of pillars in a grid pattern is shown in
Creating the features in the paste can be by any method known to one of ordinary skill. The features can be created by imprinting the feature into the paste, stamping the feature into the paste, molding the paste to create the feature, dragging through the paste to create the features, or rolling the paste with device having the feature. For example, as shown in
The steps of coating the support and creating features in the support can occur in any order or simultaneously. Because the support can be included in part of a mold or created using a 3-D printing technique, can in some instances occur simultaneously. Similarly, features can be created in a paste first, and then the paste applied to a support, e.g. a paste applied in a mold, and then the support layered into the paste of the mold.
The step of coating the paste on to the support and creating features in the support do not necessarily represent separate steps, and can occur concurrently, or in any order. In one non-limiting example, the paste can be applied to a support while at the same time imprinting the features into the paste, such as, but not limited to, with an engraved roller (such as by gravure coating), in a rotary screen printing system, or by injecting a paste into a mold containing the support. In another embodiment, the paste can be applied with a 3-D printer which would create the paste and features simultaneously. In yet another embodiment, the features could be created in the paste with a mold first, and then the support applied to the paste while in the mold or during the removal from the mold.
After coating the support with the paste and creating the feature in the paste, the coated supports can be layered together to form a layered assembly. The layered assembly before drying can be termed a green monolith, an undried monolith, an uncalcined monolith, or a monolith precursor. In an embodiment, layering the coated supports can be layering a first coated support with a second coated support. The features in the first coated support can contact the second coated support to form passageways between the layers. When the feature is a groove, the passageways can be channels, and the method can include layering a first coated support with a second coated support by contacting the paste on the first coated support with the second coated support to form channels.
In some embodiments, the layering step can further include layering the first coated support with a second coated support, where the second side of the support is also coated with a thin layer of paste and the passageways are formed by the contact of the paste with grooves of the first support to the thin layer of paste on the second side of the second support. In an alternate embodiment, the layering step can include layering the first coated support with a second coated support, where the second side of the support is not coated with a thin layer of paste, and the passageways are formed by contract of the paste with the grooves of the first support to the uncoated second side of the second support.
The layering step above can occur in an standard stacking pattern, where the first side of a first support is contacted with a second side of a second support. In such an standard stacking pattern, represented schematically in
However, other layering orders may also be conducted. For example, an alternating stacking pattern could be created. In a nonlimiting example, represented schematically in
In some embodiments, the features can also be created in the coating on the second side of a support, including any of the features discussed for the first side of a support. The features of one support can then be combined with the features of another support to produce passageways within the structure that might not necessarily be producible in a single coating. In a nonlimiting example, the coating on a first side of a first support could have created in it linear channels, and the coating on the second side of a second support could have created in it linear channels. The two supports could be layered together such that the linear channels in each surface run parallel to each other. Alternatively, the two supports could be layered together such that the linear channels in each surface run perpendicular to each other. Similarly, the channels on two supports can be offset at any angle between 0 (parallel) and 90 degrees (perpendicular).
After the layered supports are formed, the layered assembly can be dried to form a dried assembly. The dried assembly can then be further processed to secure the layered coated supports together. Additional steps can be calcining, brazing, gluing, or other methods used to secure the supports into a fixed assembly. In an embodiment, the dried assembly can also be calcined. The calcining step can occur as a single step of drying and calcining, or the drying step can be conducted separately. Additional post-drying treatment or modification could optionally be conducted prior to the step of calcining. The drying step can generally be conducted at 120° C. or higher. The calcining step generally can be conducted at temperatures above 300° C. In a nonlimiting example, a layered assembly could be dried about 120° C. for 5 hours, then the temperature ramped up slow over several hours to prevent cracking, for example 1-2° C./min, and the assembly then calcined at between 400° C. to 700° C. for 5 hours to produce the monolith.
The layering step can include a first and a second coated support. Those coated supports to be layered together can be two separate supports, such as two separate sheets or foils that are coated separately and then layered together, as shown in
In some embodiments, the same composite or paste can be used throughout a structure. However, because the coating of the paste can be controlled, structures having different types of composites or pastes can be created. For example, the coating on alternating faces of a support could be of different thicknesses. The coating on alternating faces of a support could include different active materials in each layer. Two supports could be layered together, each having a different paste on the support. The structures can then have more than one composite within the structure, and more than one active material within the structure.
With the method for creating the structure described above, the structure of the disclosure can also be described. The disclosure provides for a structure that can include layered supports and passageways between the layered supports. The layered coated supports can include a support having a first side and a second side, and a composite on at least one side. The composite can include a binder and an active material, preferably an adsorbent or a catalyst. The composite can have features in the composite. The passageways of the monolith can be formed at the contact of the features of the composite on the first side of a coated support with a side of an adjacent coated support.
In one embodiment, when the features are grooves, the resulting passageways are channels. The disclosure for a structure can then be layered supports and channels between the layered supports, the layered supports including a support having a first side and a second side, and a composite on at least one side, where the composite can include a binder and an active material. The composite can have grooves running laterally through the composite. The channels of the structure can be formed at the contact of the grooved composite on the first side of a coated support with a side of an adjacent coated support.
The coated supports can include any support suitable for construction and operation in these structures. In an embodiment, the support can be a sheet, a foil, a mesh, or a corrugated material. In one embodiment, the support can be a mesh or a corrugated material. A mesh substrate can be particularly suitable as a support. Mesh can provide an advantage because, when coated with a paste that forms the composite, the mesh can be integrated into the composite, forming a mixed material. The composite with the mesh can then be stronger rather than a composite by itself, similar to how rebar reinforces concrete. Mesh can also provide an advantage because the paste can be pushed through the mesh, forming a layer of paste on the opposing side of the mesh, which can produce a more flexible substrate which can be rolled into a monolith or other structure.
The support can also be composed of any type of material suitable for the purpose. In an embodiment, the support can be a metal substrate, a fiber substrate, or a fabric substrate, preferably a metal substrate. The substrate can also include wires or strings. Metal substrates can be particularly suitable as the metal can increase the heat capacity attained by the structure during operation, unlike traditional ceramic monoliths that do not maintain temperature as easily. The support material can be thermally and/or electrically conductive, allowing internal heating (e.g. electrical resistive heating) of the structure via the metal substrates. By using sheets, foils or meshes, the layered substrate can be more flexible as well, allowing for winding or bending that can form spiral wound shapes and other non-planar forms, as well as simple layering to form a stacked assembly.
The coated support can include a composite on at least a first side of the support. The coated support can also include a composite on at least the second side. In an embodiment, the coated support can include a composite on a first and a second side of the support. The coated support can include features in the composite on either of the first or second sides, preferably at least in the composite on the first side.
The passageways for the structure then can be formed at the contact of the composite having features on one side of a support with a side of an adjacent support. The contact of the layered structures can be in a standard stacking pattern, as discussed above. In a nonlimiting example, the first side of a first coated support contacts the second side of a second coated support, then the first side of the second coated support contacts the second side of a third coated support, and so forth. The contact of the coated supports can also be in other patterns. In a nonlimiting example, an alternating stacking pattern can be created, where the first side of a first coated support contacts the first side of a second coated support, the second side of the second coated support contacts the second side of a third coated support, then the first side of the third layered structure contacts a first side of a fourth coated support, and so forth.
The features and passageways of the disclosure can include many different shapes and patterns. The features can be described as grooves, and the passageways that result from the grooves can be described as channels. One example is a linear groove, which can then result in a linear channel, analogous to traditional monolith technology. However, the grooves and channels do not need to be linear, but can include shape. The groove or channel can be non-linear, wavy, sinusoidal, zig-zagged, or stair-stepped.
The composite can include any feature that can be created in a paste or composite. Due to the ability to mold and form patterns in the paste which dries to form the composite, any variety of shape can be included in the monolith. The feature does not need to be a groove, but can be other structures such as hills, mesas, pillars, cylinders, mounds, or cones. In a nonlimiting example, a composite could have a series of pillars placed at regular intervals such that the pillars form a grid design, with the pillars of composite having a height greater than the surrounding composite.
When features are formed in the composite or paste, the feature need not be continuously patterned throughout composite, but can instead be designed to construct monoliths with different flow shapes. For example, two coated supports can be created that have complementary channels created in sides that, when placed in contact produce a particular flow pattern. Moreover, the features need not provide a clear flow path through the structure. In a nonlimiting example shown in
When two layers are in contact with each other, the distance between the supports for those two layers is bridged by the composite. In an embodiment, the monolith can have an average distance between layers, measured as the distance between two adjacent supports, and averaged for the monolith. In an embodiment, the average distance can be at least about 100-2000 microns. In some embodiments, the distance can be between about 1000-2000 microns. In other embodiments, the distance can be between about 100-1000 microns, from about 200-800 microns, from about 300-600 microns or from about 400-500 microns. The distance can be greater than 100 microns, greater than 200 microns, or greater than 300 microns. The distance can be less than 1000 microns, less than 800 microns, less than 700 microns, or less than 600 microns.
The method and the structures of this disclosure provide many potential advantages over the two main routes for manufacturing monoliths (i.e. ceramic extrusion or spiral-winding foils), both of which require a coating step in most cases. Extrusion of ceramics requires a die, where the features of the die shape the channels as the ceramic is extruded. Fabrication of dies for very small channels, and the working life of such dies, presents one type of limitation. Further, when the ceramic is extruded from a small feature die, the thin walls of the resulting extruded structure are thin and weak and are thus subject to slumping and deformation. Also, although extrusion of a monolith made purely from active material is possible, these lack often suitable mechanical strength. Wash coating high cell-density monoliths is challenging and is rarely practiced at densities>900 cpsi.
When larger particles are used or thicker coatings are desired, several additional challenges arise. For example the channels can be plugged by the larger particles due to large particles bridging across channels. The channels can also be plugged due to the multiple coating steps required for a thick coating and capillary forces that limit effective or thorough coatings.
This disclosure addresses these challenges by forming the passageways, using features in the adsorbent paste, into the desired thickness and shape. These can be controlled by choice of the appropriate template/mold. This allows for a higher density of active material per unit volume because less material is needed as compared to a coated monolith. This disclosure can have application in catalytic/adsorbent processes where diffusion into the active material is a limitation, where relatively lower pressure drop is needed, or where higher packing densities of adsorbent is beneficial. Structures, including monoliths, according to the disclosure can also be created that operate under laminar flow conditions, such as with linear channels. However, structures can also be designed that disrupt laminar flow to produce conditions similar to turbulent flow.
This disclosure overcomes the issues with traditional monoliths because there is no required coating step after formation of the small channels, and the process is not as sensitive to particle size. Additionally, the imprinted features do not support the weight of the overall structure because the support is part of the structure. So unlike extruded structures, the imprinted coated supports will not deform when it is still wet and conformable. The imprinted supports can be semi-rolled or completely rolled in the wet state, which can reduce the amount of stress the dried sheet is subjected to upon rolling. Finally, imprinting allows for an array of features in the surface beyond the linear channels currently available for extruded monoliths. For example, the shape of channels can be redesigned to provide, for example, wavy channels. Moreover, non-channel features can be selected instead, such as for example mesas, pillars, cylinders, mounds, or cones, which allow for new designs not attainable in traditional extruded or coiled monoliths.
Due to the features that can be constructed in the paste and the passageways that can be designed for the composite, the structures and monoliths disclosed can attain higher cell densities than current monolith technology. The cell density of the monolith can be at least about 900 cpsi, or at least about 1000 cpsi. In an embodiment, the cell density can be at least about 1200 cpsi, at least about 1500 cpsi, at least or at least about 2000 cpsi. In some embodiments, the cell density can be at least about 2500 cpsi, at least about 3000 cpsi, at least about 3500 cpsi, at least about 4000 cpsi, at least about 4500 cpsi, or at least about 5000 cpsi. However, while the disclosure allows for access to much higher capacities and increased cell densities, the disclosure is not limited to only those smaller features. Monoliths with lower cell densities can be created, including with densities between about 100 to 900 cpsi.
When the passageways in the structure are channels, the structure can also be described based on the distance between the channels. Current extruded monoliths can be limited by the size of the die and the requirement for extruding material, and limited by the ability to pass a coating solution through the channel. This disclosure is not limited by these formation issues or capillary action problems. Channels in the structure can be created where the distance between channels is less than about 900 microns. The distance between channels can be at least about 800 microns, at least about 700 microns, at least about 600 microns, or at least about 500 microns. The distance between channels can also be greater than 50 microns, greater than 75 microns, or greater than about 100 microns. The distance between channels can be between about 50 to 900 microns, between about 50 to 800 microns, or between about 50 to about 700 microns. The distance between the channels can be about 100 microns to about 900 microns, about 100 microns to about 800 microns, or about 100 microns to about 700 microns. While the disclosure allows for access to smaller channel sizes, the disclosure is not limited to only those smaller channels, and monoliths can be created with distances between about 900 μm to 2000 μm.
As discussed above, the composite can include an active material. The composite can further include a binder. The composite can have active material throughout the composite. And the composite can have more than one active material. The active material does not need to be at the surface of the composite, unlike typical monoliths where the material is coated only on the exterior surfaces of the monolith. Some amount of active material can be enclosed within the composite, meaning the amount of active material not directly exposed at the surface of a composite. In an embodiment, at least about 5% of the active material can be enclosed within the composite of the layered structure. The amount of active material enclosed within the composite of the layered structure can be at least about 10%, at least about 15%, or at least about 20%. The amount of active material enclosed within the composite can be up to about 100% of the active material.
However, despite being enclosed within the composite, the active material can be in fluid communication with the passageways in the structure, even when enclosed within the composite. The paste and process conditions can be selected to design a composite having a porous character, herein referred to as mesoporous, that can allow the active material within the composite to interact with the passageway. The nature of the mesoporosity in the composite provides for tortuous pathways within the composite. As a result, the active material can be in fluid communication with the passageways of the structure. The composite can have a mesoporosity of at least about 10%, at least about 15%, or at least about 20%. The mesoporosity can be up to about 90%, up to about 85%, or up to about 80%. The porosity can be about 15-85%, or about 20-80%. Thus, in an embodiment, the composite can be porous, e.g. mesoporous, and having tortuous pathways through the composite. In an embodiment, composite can include a binder, an active material, and mesopores within the composite. In an embodiment, composite can include a binder, an active material, and tortuous pathways through the composite for fluid communication of the adsorbent with the passageways.
Because the composite includes the active material within its structure, the amount of active material in a structure can be higher than traditional monoliths, where the active material was only coated on the surface to the structures. This increase leads to higher loadings of active material in this disclosure, and therefore higher capacity monoliths. The amount of active material loaded in the structure can be described as the weight of active material per weight of paste, where the range can be between 10 and 60% w/w of active material in the paste, for example at least about 15%, at least about 20%, at least about 25%, at least about 33%, at least about 40% or at least about 50%. The amount of active material loaded in structure can be described as the weight of active material per weight of composite, where the range can be between 20 to up to 100% w/w of active material in the composite, including at least about 25%, at least about 33%, at least about 40%, at least about 50%, at least about 66% or at least about 75%.
It is to be understood that the embodiments and claims disclosed herein are not limited in their application to the details of construction and arrangement of the components set forth in the description and illustrated in the drawings. Rather, the description and the drawings provide examples of the embodiments envisioned. The embodiments and claims disclosed herein are further capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purposes of description and should not be regarded as limiting the claims.
Accordingly, those skilled in the art will appreciate that the conception upon which the application and claims are based may be readily utilized as a basis for the design of other structures, methods, and systems for carrying out the several purposes of the embodiments and claims presented in this application. It is important, therefore, that the claims be regarded as including such equivalent constructions.
A coating method is demonstrated. Flat stainless steel foil (316 SS) was cleaned with a 10% bleach solution and calcined in air at 500° C. for 4 hours. After calcination, a thin coating (1-2 um) of Zirconium-based primer (80% Aremco Ceramabond 685-N, 20% H2O by weight) was applied to the surface of the foil via spray coating. The primer was allowed to set by heating the sample to 250° F. for 4 hours in air. The foil was then held flat and a thin layer of paste was applied to the surface. The paste contained a zeolite, colloidal silica binder, sodium silicate, water, and methyl cellulose polymer. The paste was allowed to briefly set (very slight drying). Then a piece of corrugated SS foil was treated with a release agent (e.g. WD40) and subsequently pressed into the thin layer of paste. The corrugated foil was then removed from the paste, leaving behind the inverse features of the corrugated foil. After air drying, the imprinted structure was then calcined at 400° C. for 4 hours.
The final layered structure is shown in
A coating method is demonstrated. A corrugated SS foil was placed flat on a surface and treated with a release agent (e.g. WD40). Next a piece of oxidized and primed mesh, with same pretreatment as for the flat foil in Example 1, was placed directly on top of the corrugated foil. The paste from Example 1 was pressed through the mesh (similar to silk screening), and the paste filled the corrugations of the underlying foil while simultaneously coating the mesh. Upon drying, the mesh was lifted from the corrugated foil (the “mold”), and the imprinted features remain on the mesh. This integrated ceramic/metal structure can undergo bending to a degree required for rolling into a monolith,
An example of construction of a structure is demonstrated. A structure from Example 2 was fabricated to dimensions of 6″×60″. This was then calcined at 700° C. for 4 hours. The leading edge of the coated foil was tack-welded to an arbor of ½″ diameter. This arbor has screw holes in both ends so that it can be assembled into a winding device. The foil and arbor was assembled into the winding device such that the molded features of the substrate were pointing down, and the flat side facing upwards. Tension was applied to keep the substrate taught. The substrate was then saturated with water so the subsequent paste would not dry quickly when applied to the exposed flat side. A thin layer of paste of the same composition from Example 2 was applied to the exposed face of the foil as the foil was wound around the arbor. The resulting structure was then allowed to dry in air for 10 hours and then slowly heated in an oven ramped to 200° F. over 5 hours. Finally, the structure was then calcined at 700° C. for 4 hours. An image of the spiral structure is shown in
Additionally or alternately, the disclosure can include one or more of the following embodiments.
A structure comprising layered coated supports and passageways between adjacent layered coated supports, wherein each layered coated support comprises a support having a first and second side, and a composite on at least the first side of the support, the composite comprising an active material, and having features in the surface of the composite; and the passageways being formed at the contact of the features in a coating on the first side of a layered structure with a side of an adjacent layered structure. The composite can further comprise a binder.
A monolith comprising layered coated supports and channels between adjacent layered coated supports, wherein each layered coated support comprises a support having a first and second side, and a composite on at least the first side of the support, the composite comprising an active material, and having grooves in the surface of the composite; and the channels being formed at the contact of the grooves in a coating on the first side of a layered structure with a side of an adjacent layered structure. The composite can further comprise a binder.
A method for preparing a structure or monolith, the method comprising coating, on a support having a first side and a second side, a paste to the first side; creating features in the paste; layering a first coated support with a second coated support by contacting the paste on the first side of the coated support with a side of the second coated support to form enclosed passageways; and calcining the layered supports to form the structure or monolith.
The structures, monoliths, or methods of one of the previous embodiments, wherein the support comprises a metal substrate, or the support comprises a sheet, foil or mesh.
The structures, monoliths, or methods of one of the previous embodiments, wherein the active material comprises a catalyst or adsorbent, or wherein the active material comprises a zeolite.
The structures, monoliths, or methods of one of the previous embodiments, wherein the cell density of the monolith is at least 900 cpsi, or at least 1000 cpsi, or at least 1500 cpsi, or wherein the features are channels, and the distance between channels is less than about 900 microns, or less than about 800 microns, or less than about 700 microns, or less than about 600 microns, or less than about 500 microns.
The structures, monoliths, or methods of one of the previous embodiments, wherein the layered coated support comprises a composite or paste on the second side, or wherein the passageways are formed at the contact of the features in the coating on the first side of a coated support with a composite or paste on the second side an adjacent support.
The structures, monoliths, or methods of one of the previous embodiments, wherein the layered coated supports comprises separate supports, and the passageways are formed at the contact of the first side of one support with the second side of a separate support.
The structures, monoliths, or methods of one of the previous embodiments, wherein the layered coated supports comprises one or more coated supports layered together, coiled in a spiral, and the passageways are formed at the contact of the first side of the coated support with the second side of the coated support.
The structures, monoliths, or methods of one of the previous embodiments, wherein a paste layer is coated on the second side of the support, and features are created in the paste on the second side.
The structures, monoliths, or methods of one of the previous embodiments, wherein features in the coating or composite can be created by imprinting, stamping, molding, dragging or 3-D printing to form the features in the paste, and subsequent drying and/or calcining to produce the features in the composite.
The structures, monoliths, or methods of one of the previous embodiments, wherein the composite has tortuous pathways through the composite for fluid communication of the adsorbent with the passageways. The composite can have a mesoporosity of at least about 10%, at least about 15%, or at least about 20%, and up to about 90%, up to about 85%, or up to about 80%.
The structures, monoliths, or methods of one of the previous embodiments, wherein the active material is enclosed within the composite at at least about 5%, at least about 10%, at least about 15%, or at least about 20%.
It is to be understood that the embodiments and claims disclosed herein are not limited in their application to the details of construction and arrangement of the components set forth in the description and illustrated in the drawings. Rather, the description and the drawings provide examples of the embodiments envisioned. The embodiments and claims disclosed herein are further capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purposes of description and should not be regarded as limiting the claims.
Accordingly, those skilled in the art will appreciate that the conception upon which the application and claims are based may be readily utilized as a basis for the design of other structures, methods, and systems for carrying out the several purposes of the embodiments and claims presented in this application. It is important, therefore, that the claims be regarded as including such equivalent constructions.
This is a divisional of U.S. patent application Ser. No. 14/880,557, filed Oct. 12, 2015, which claims the priority benefit of U.S. Provisional Patent Application 62/077,977 filed Nov. 11, 2014 entitled HIGH CAPACITY STRUCTURES AND MONOLITHS VIA PASTE IMPRINTING, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1868138 | Fisk | Jul 1932 | A |
3103425 | Meyer | Sep 1963 | A |
3124152 | Payne | Mar 1964 | A |
3142547 | Marsh et al. | Jul 1964 | A |
3508758 | Strub | Apr 1970 | A |
3594983 | Yearout | Jul 1971 | A |
3602247 | Bunn et al. | Aug 1971 | A |
3788036 | Lee et al. | Jan 1974 | A |
3967464 | Cormier et al. | Jul 1976 | A |
4187092 | Woolley | Feb 1980 | A |
4261815 | Kelland | Apr 1981 | A |
4324565 | Benkmann | Apr 1982 | A |
4325565 | Winchell | Apr 1982 | A |
4329162 | Pitcher | May 1982 | A |
4340398 | Doshi et al. | Jul 1982 | A |
4386947 | Mizuno et al. | Jun 1983 | A |
4421531 | Dalton, Jr. et al. | Dec 1983 | A |
4445441 | Tanca | May 1984 | A |
4461630 | Cassidy et al. | Jul 1984 | A |
4496376 | Hradek | Jan 1985 | A |
4631073 | Null et al. | Dec 1986 | A |
4693730 | Miller et al. | Sep 1987 | A |
4705627 | Miwa et al. | Nov 1987 | A |
4711968 | Oswald et al. | Dec 1987 | A |
4737170 | Searle | Apr 1988 | A |
4770676 | Sircar et al. | Sep 1988 | A |
4783205 | Searle | Nov 1988 | A |
4784672 | Sircar | Nov 1988 | A |
4790272 | Woolenweber | Dec 1988 | A |
4814146 | Brand et al. | Mar 1989 | A |
4816039 | Krishnamurthy et al. | Mar 1989 | A |
4877429 | Hunter | Oct 1989 | A |
4977745 | Heichberger | Dec 1990 | A |
5110328 | Yokota et al. | May 1992 | A |
5125934 | Krishnamurthy et al. | Jun 1992 | A |
5169006 | Stelzer | Dec 1992 | A |
5174796 | Davis et al. | Dec 1992 | A |
5224350 | Mehra | Jul 1993 | A |
5234472 | Krishnamurthy et al. | Aug 1993 | A |
5292990 | Kantner et al. | Mar 1994 | A |
5306331 | Auvil et al. | Apr 1994 | A |
5354346 | Kumar | Oct 1994 | A |
5365011 | Ramachandran et al. | Nov 1994 | A |
5370728 | LaSala et al. | Dec 1994 | A |
5486227 | Kumar et al. | Jan 1996 | A |
5547641 | Smith et al. | Aug 1996 | A |
5565018 | Baksh et al. | Oct 1996 | A |
5672196 | Acharya et al. | Sep 1997 | A |
5700310 | Bowman et al. | Dec 1997 | A |
5733451 | Coellner et al. | Mar 1998 | A |
5735938 | Baksh et al. | Apr 1998 | A |
5750026 | Gadkaree et al. | May 1998 | A |
5769928 | Leavitt | Jun 1998 | A |
5779768 | Anand et al. | Jul 1998 | A |
5792239 | Reinhold, III et al. | Aug 1998 | A |
5807423 | Lemcoff et al. | Sep 1998 | A |
5811616 | Holub et al. | Sep 1998 | A |
5827358 | Kulish et al. | Oct 1998 | A |
5827577 | Spencer | Oct 1998 | A |
5882380 | Sircar | Mar 1999 | A |
5906673 | Reinhold, III et al. | May 1999 | A |
5908480 | Ban et al. | Jun 1999 | A |
5912426 | Smolarek et al. | Jun 1999 | A |
5914294 | Park et al. | Jun 1999 | A |
5924307 | Nenov | Jul 1999 | A |
5935444 | Johnson et al. | Aug 1999 | A |
5968234 | Midgett, II et al. | Oct 1999 | A |
5976221 | Bowman et al. | Nov 1999 | A |
5997617 | Czabala et al. | Dec 1999 | A |
6007606 | Baksh et al. | Dec 1999 | A |
6011192 | Baker et al. | Jan 2000 | A |
6023942 | Thomas et al. | Feb 2000 | A |
6053966 | Moreau et al. | Apr 2000 | A |
6063161 | Keefer et al. | May 2000 | A |
6096115 | Kleinberg | Aug 2000 | A |
6099621 | Ho | Aug 2000 | A |
6102985 | Naheiri et al. | Aug 2000 | A |
6129780 | Millet et al. | Oct 2000 | A |
6136222 | Friesen et al. | Oct 2000 | A |
6147126 | DeGeorge et al. | Nov 2000 | A |
6152991 | Ackley | Nov 2000 | A |
6156101 | Naheiri | Dec 2000 | A |
6171371 | Derive et al. | Jan 2001 | B1 |
6176897 | Keefer | Jan 2001 | B1 |
6179900 | Behling et al. | Jan 2001 | B1 |
6183538 | Naheiri | Feb 2001 | B1 |
6194079 | Hekal | Feb 2001 | B1 |
6210466 | Whysall et al. | Apr 2001 | B1 |
6231302 | Bonardi | May 2001 | B1 |
6245127 | Kane et al. | Jun 2001 | B1 |
6284021 | Lu et al. | Sep 2001 | B1 |
6311719 | Hill et al. | Nov 2001 | B1 |
6345954 | Al-Himyary et al. | Feb 2002 | B1 |
6398853 | Keefer et al. | Jun 2002 | B1 |
6402813 | Monereau et al. | Jun 2002 | B2 |
6406523 | Connor et al. | Jun 2002 | B1 |
6425938 | Xu et al. | Jul 2002 | B1 |
6432379 | Heung | Aug 2002 | B1 |
6436171 | Wang et al. | Aug 2002 | B1 |
6444012 | Dolan et al. | Sep 2002 | B1 |
6444014 | Mullhaupt et al. | Sep 2002 | B1 |
6444523 | Fan et al. | Sep 2002 | B1 |
6444610 | Yamamoto | Sep 2002 | B1 |
6451095 | Keefer et al. | Sep 2002 | B1 |
6457485 | Hill et al. | Oct 2002 | B2 |
6458187 | Fritz et al. | Oct 2002 | B1 |
6464761 | Bugli | Oct 2002 | B1 |
6471749 | Kawai et al. | Oct 2002 | B1 |
6471939 | Boix et al. | Oct 2002 | B1 |
6488747 | Keefer et al. | Dec 2002 | B1 |
6497750 | Butwell et al. | Dec 2002 | B2 |
6500234 | Ackley et al. | Dec 2002 | B1 |
6500241 | Reddy | Dec 2002 | B2 |
6500404 | Camblor Fernandez et al. | Dec 2002 | B1 |
6503299 | Baksh et al. | Jan 2003 | B2 |
6506351 | Jain et al. | Jan 2003 | B1 |
6514318 | Keefer | Feb 2003 | B2 |
6514319 | Keefer et al. | Feb 2003 | B2 |
6517609 | Monereau et al. | Feb 2003 | B1 |
6531516 | Davis et al. | Mar 2003 | B2 |
6533846 | Keefer et al. | Mar 2003 | B1 |
6565627 | Golden et al. | May 2003 | B1 |
6565635 | Keefer et al. | May 2003 | B2 |
6565825 | Ohji et al. | May 2003 | B2 |
6572678 | Wijmans et al. | Jun 2003 | B1 |
6579341 | Baker et al. | Jun 2003 | B2 |
6593541 | Herren | Jul 2003 | B1 |
6595233 | Pulli | Jul 2003 | B2 |
6605136 | Graham et al. | Aug 2003 | B1 |
6607584 | Moreau et al. | Aug 2003 | B2 |
6630012 | Wegeng et al. | Oct 2003 | B2 |
6631626 | Hahn | Oct 2003 | B1 |
6641645 | Lee et al. | Nov 2003 | B1 |
6651645 | Nunez Suarez | Nov 2003 | B1 |
6660064 | Golden et al. | Dec 2003 | B2 |
6660065 | Byrd et al. | Dec 2003 | B2 |
6692626 | Keefer et al. | Feb 2004 | B2 |
6712087 | Hill et al. | Mar 2004 | B2 |
6742507 | Keefer et al. | Jun 2004 | B2 |
6746515 | Wegeng et al. | Jun 2004 | B2 |
6752852 | Jacksier et al. | Jun 2004 | B1 |
6770120 | Neu et al. | Aug 2004 | B2 |
6773225 | Yuri et al. | Aug 2004 | B2 |
6802889 | Graham et al. | Oct 2004 | B2 |
6814771 | Scardino et al. | Nov 2004 | B2 |
6835354 | Woods et al. | Dec 2004 | B2 |
6840985 | Keefer | Jan 2005 | B2 |
6866950 | Connor et al. | Mar 2005 | B2 |
6889710 | Wagner | May 2005 | B2 |
6890376 | Arquin et al. | May 2005 | B2 |
6893483 | Golden et al. | May 2005 | B2 |
6902602 | Keefer et al. | Jun 2005 | B2 |
6916358 | Nakamura et al. | Jul 2005 | B2 |
6918953 | Lomax, Jr. et al. | Jul 2005 | B2 |
6921597 | Keefer et al. | Jul 2005 | B2 |
6974496 | Wegeng et al. | Dec 2005 | B2 |
7025801 | Monereau | Apr 2006 | B2 |
7027929 | Wang | Apr 2006 | B2 |
7029521 | Johansson | Apr 2006 | B2 |
7074323 | Ghijsen | Jul 2006 | B2 |
7077891 | Jaffe et al. | Jul 2006 | B2 |
7087331 | Keefer et al. | Aug 2006 | B2 |
7094275 | Keefer et al. | Aug 2006 | B2 |
7097925 | Keefer et al. | Aug 2006 | B2 |
7112239 | Kimbara et al. | Sep 2006 | B2 |
7117669 | Kaboord et al. | Oct 2006 | B2 |
7122073 | Notaro et al. | Oct 2006 | B1 |
7128775 | Celik et al. | Oct 2006 | B2 |
7144016 | Gozdawa | Dec 2006 | B2 |
7160356 | Koros et al. | Jan 2007 | B2 |
7160367 | Babicki et al. | Jan 2007 | B2 |
7166149 | Dunne et al. | Jan 2007 | B2 |
7172645 | Pfister et al. | Feb 2007 | B1 |
7189280 | Alizadeh-Khiavi et al. | Mar 2007 | B2 |
7243679 | Thelen | Jul 2007 | B2 |
7250073 | Keefer et al. | Jul 2007 | B2 |
7250074 | Tonkovich et al. | Jul 2007 | B2 |
7255727 | Monereau et al. | Aug 2007 | B2 |
7258725 | Ohmi et al. | Aug 2007 | B2 |
7276107 | Baksh et al. | Oct 2007 | B2 |
7279029 | Occhialini et al. | Oct 2007 | B2 |
7285350 | Keefer et al. | Oct 2007 | B2 |
7297279 | Johnson et al. | Nov 2007 | B2 |
7311763 | Neary | Dec 2007 | B2 |
RE40006 | Keefer et al. | Jan 2008 | E |
7314503 | Landrum et al. | Jan 2008 | B2 |
7354562 | Ying et al. | Apr 2008 | B2 |
7387849 | Keefer et al. | Jun 2008 | B2 |
7390350 | Weist, Jr. et al. | Jun 2008 | B2 |
7404846 | Golden et al. | Jul 2008 | B2 |
7438079 | Cohen et al. | Oct 2008 | B2 |
7449049 | Thomas et al. | Nov 2008 | B2 |
7456131 | Klett et al. | Nov 2008 | B2 |
7510601 | Whitley et al. | Mar 2009 | B2 |
7527670 | Ackley et al. | May 2009 | B2 |
7553568 | Keefer | Jun 2009 | B2 |
7578864 | Watanabe et al. | Aug 2009 | B2 |
7604682 | Seaton | Oct 2009 | B2 |
7637989 | Bong | Dec 2009 | B2 |
7641716 | Lomax, Jr. et al. | Jan 2010 | B2 |
7645324 | Rode et al. | Jan 2010 | B2 |
7651549 | Whitley | Jan 2010 | B2 |
7674319 | Lomax, Jr. et al. | Mar 2010 | B2 |
7674539 | Keefer et al. | Mar 2010 | B2 |
7687044 | Keefer et al. | Mar 2010 | B2 |
7713333 | Rege et al. | May 2010 | B2 |
7717981 | LaBuda et al. | May 2010 | B2 |
7722700 | Sprinkle | May 2010 | B2 |
7731782 | Kelley et al. | Jun 2010 | B2 |
7740687 | Reinhold, III | Jun 2010 | B2 |
7744676 | Leitmayr et al. | Jun 2010 | B2 |
7744677 | Barclay et al. | Jun 2010 | B2 |
7758051 | Roberts-Haritonov et al. | Jul 2010 | B2 |
7758988 | Keefer et al. | Jul 2010 | B2 |
7763098 | Alizadeh-Khiavi et al. | Jul 2010 | B2 |
7763099 | Verma et al. | Jul 2010 | B2 |
7792983 | Mishra et al. | Sep 2010 | B2 |
7793675 | Cohen et al. | Sep 2010 | B2 |
7806965 | Stinson | Oct 2010 | B2 |
7819948 | Wagner | Oct 2010 | B2 |
7828877 | Sawada et al. | Nov 2010 | B2 |
7828880 | Moriya et al. | Nov 2010 | B2 |
7854793 | Rarig et al. | Dec 2010 | B2 |
7858169 | Yamashita | Dec 2010 | B2 |
7862645 | Whitley et al. | Jan 2011 | B2 |
7867320 | Baksh et al. | Jan 2011 | B2 |
7902114 | Bowie et al. | Mar 2011 | B2 |
7938886 | Hershkowitz et al. | May 2011 | B2 |
7947118 | Rarig et al. | May 2011 | B2 |
7947120 | Deckman et al. | May 2011 | B2 |
7959720 | Deckman et al. | Jun 2011 | B2 |
8016918 | LaBuda et al. | Sep 2011 | B2 |
8034164 | Lomax, Jr. et al. | Oct 2011 | B2 |
8071063 | Reyes et al. | Dec 2011 | B2 |
8128734 | Song | Mar 2012 | B2 |
8142745 | Reyes et al. | Mar 2012 | B2 |
8142746 | Reyes et al. | Mar 2012 | B2 |
8192709 | Reyes et al. | Jun 2012 | B2 |
8210772 | Gillecriosd | Jul 2012 | B2 |
8227121 | Adams et al. | Jul 2012 | B2 |
8262773 | Northrop et al. | Sep 2012 | B2 |
8262783 | Stoner et al. | Sep 2012 | B2 |
8268043 | Celik et al. | Sep 2012 | B2 |
8268044 | Wright et al. | Sep 2012 | B2 |
8272401 | McLean | Sep 2012 | B2 |
8287629 | Fujita et al. | Oct 2012 | B2 |
8319090 | Kitamura | Nov 2012 | B2 |
8337594 | Corma Canos et al. | Dec 2012 | B2 |
8361200 | Sayari et al. | Jan 2013 | B2 |
8361205 | Desai et al. | Jan 2013 | B2 |
8377173 | Chuang | Feb 2013 | B2 |
8444750 | Deckman et al. | May 2013 | B2 |
8449649 | Greenough | May 2013 | B2 |
8470395 | Khiavi et al. | Jun 2013 | B2 |
8480795 | Siskin et al. | Jul 2013 | B2 |
8512569 | Eaton et al. | Aug 2013 | B2 |
8518356 | Schaffer et al. | Aug 2013 | B2 |
8529662 | Kelley et al. | Sep 2013 | B2 |
8529663 | Reyes et al. | Sep 2013 | B2 |
8529664 | Deckman et al. | Sep 2013 | B2 |
8529665 | Manning et al. | Sep 2013 | B2 |
8535414 | Johnson et al. | Sep 2013 | B2 |
8545602 | Chance et al. | Oct 2013 | B2 |
8551444 | Agnihotri et al. | Oct 2013 | B2 |
8573124 | Havran et al. | Nov 2013 | B2 |
8591627 | Jain | Nov 2013 | B2 |
8591634 | Winchester et al. | Nov 2013 | B2 |
8616233 | McLean et al. | Dec 2013 | B2 |
8657922 | Yamawaki et al. | Feb 2014 | B2 |
8673059 | Leta et al. | Mar 2014 | B2 |
8680344 | Weston et al. | Mar 2014 | B2 |
8715617 | Genkin et al. | May 2014 | B2 |
8752390 | Wright et al. | Jun 2014 | B2 |
8753428 | Lomax, Jr. et al. | Jun 2014 | B2 |
8778051 | Weist, Jr. et al. | Jul 2014 | B2 |
8784533 | Leta et al. | Jul 2014 | B2 |
8784534 | Kamakoti et al. | Jul 2014 | B2 |
8784535 | Ravikovitch et al. | Jul 2014 | B2 |
8790618 | Adams et al. | Jul 2014 | B2 |
8795411 | Hufton et al. | Aug 2014 | B2 |
8808425 | Genkin et al. | Aug 2014 | B2 |
8808426 | Sundaram | Aug 2014 | B2 |
8814985 | Gerds et al. | Aug 2014 | B2 |
8852322 | Gupta et al. | Oct 2014 | B2 |
8858683 | Deckman | Oct 2014 | B2 |
8875483 | Wettstein | Nov 2014 | B2 |
8906138 | Rasmussen et al. | Dec 2014 | B2 |
8921637 | Sundaram et al. | Dec 2014 | B2 |
8939014 | Kamakoti et al. | Jan 2015 | B2 |
9005561 | Leta | Apr 2015 | B2 |
9017457 | Tammera | Apr 2015 | B2 |
9028595 | Sundaram et al. | May 2015 | B2 |
9034078 | Wanni et al. | May 2015 | B2 |
9034079 | Deckman et al. | May 2015 | B2 |
9050553 | Alizadeh-Khiavi et al. | Jun 2015 | B2 |
9067168 | Frederick et al. | Jun 2015 | B2 |
9067169 | Patel | Jun 2015 | B2 |
9095809 | Deckman et al. | Aug 2015 | B2 |
9108145 | Kalbassi et al. | Aug 2015 | B2 |
9120049 | Sundaram et al. | Sep 2015 | B2 |
9126138 | Deckman et al. | Sep 2015 | B2 |
9162175 | Sundaram | Oct 2015 | B2 |
9168483 | Ravikovitch et al. | Oct 2015 | B2 |
9168485 | Deckman et al. | Oct 2015 | B2 |
9272264 | Coupland | Mar 2016 | B2 |
9278338 | Coupland | Mar 2016 | B2 |
9358493 | Tammera et al. | Jun 2016 | B2 |
9573116 | Johnson et al. | Feb 2017 | B2 |
9597655 | Beeckman | Mar 2017 | B2 |
9737846 | Carstensen et al. | Aug 2017 | B2 |
9744521 | Brody et al. | Aug 2017 | B2 |
10040022 | Fowler et al. | Aug 2018 | B2 |
10080991 | Johnson et al. | Sep 2018 | B2 |
10080992 | Nagavarapu et al. | Sep 2018 | B2 |
10124286 | McMahon et al. | Nov 2018 | B2 |
20010047824 | Hill et al. | Dec 2001 | A1 |
20020053547 | Schlegel et al. | May 2002 | A1 |
20020124885 | Hill et al. | Sep 2002 | A1 |
20020162452 | Butwell et al. | Nov 2002 | A1 |
20030075485 | Ghijsen | Apr 2003 | A1 |
20030129101 | Zettel | Jul 2003 | A1 |
20030131728 | Kanazirev et al. | Jul 2003 | A1 |
20030145726 | Gueret et al. | Aug 2003 | A1 |
20030170527 | Finn et al. | Sep 2003 | A1 |
20030188635 | Lomax, Jr. et al. | Oct 2003 | A1 |
20030202918 | Ashida et al. | Oct 2003 | A1 |
20030205130 | Neu et al. | Nov 2003 | A1 |
20030223856 | Yuri et al. | Dec 2003 | A1 |
20040099142 | Arquin et al. | May 2004 | A1 |
20040118277 | Kim | Jun 2004 | A1 |
20040118747 | Cutler et al. | Jun 2004 | A1 |
20040197596 | Connor et al. | Oct 2004 | A1 |
20040232622 | Gozdawa | Nov 2004 | A1 |
20050045041 | Hechinger et al. | Mar 2005 | A1 |
20050109419 | Ohmi et al. | May 2005 | A1 |
20050114032 | Wang | May 2005 | A1 |
20050129952 | Sawada et al. | Jun 2005 | A1 |
20050014511 | Keefer et al. | Jul 2005 | A1 |
20050145111 | Keefer et al. | Jul 2005 | A1 |
20050150378 | Dunne et al. | Jul 2005 | A1 |
20050229782 | Monereau et al. | Oct 2005 | A1 |
20050252378 | Celik et al. | Nov 2005 | A1 |
20060017940 | Takayama | Jan 2006 | A1 |
20060048648 | Gibbs et al. | Mar 2006 | A1 |
20060049102 | Miller et al. | Mar 2006 | A1 |
20060076270 | Poshusta et al. | Apr 2006 | A1 |
20060099096 | Shaffer et al. | May 2006 | A1 |
20060105158 | Fritz et al. | May 2006 | A1 |
20060116430 | Wentink et al. | Jun 2006 | A1 |
20060116460 | Georget et al. | Jun 2006 | A1 |
20060162556 | Ackley et al. | Jul 2006 | A1 |
20060165574 | Sayari | Jul 2006 | A1 |
20060169142 | Rode et al. | Aug 2006 | A1 |
20060236862 | Golden et al. | Oct 2006 | A1 |
20070084241 | Kretchmer et al. | Apr 2007 | A1 |
20070084344 | Moriya et al. | Apr 2007 | A1 |
20070222160 | Roberts-Haritonov et al. | Sep 2007 | A1 |
20070253872 | Keefer et al. | Nov 2007 | A1 |
20070261550 | Ota | Nov 2007 | A1 |
20070261557 | Gadkaree et al. | Nov 2007 | A1 |
20070283807 | Whitley | Dec 2007 | A1 |
20080051279 | Klett et al. | Feb 2008 | A1 |
20080072822 | White | Mar 2008 | A1 |
20080128655 | Garg et al. | Jun 2008 | A1 |
20080202336 | Hofer et al. | Aug 2008 | A1 |
20080282883 | Rarig et al. | Nov 2008 | A1 |
20080282884 | Kelley et al. | Nov 2008 | A1 |
20080282885 | Deckman et al. | Nov 2008 | A1 |
20080282886 | Reyes et al. | Nov 2008 | A1 |
20080282887 | Chance | Nov 2008 | A1 |
20080282892 | Deckman et al. | Nov 2008 | A1 |
20080289497 | Barclay et al. | Nov 2008 | A1 |
20080307966 | Stinson | Dec 2008 | A1 |
20080314550 | Greco | Dec 2008 | A1 |
20090004073 | Gleize et al. | Jan 2009 | A1 |
20090014902 | Koivunen et al. | Jan 2009 | A1 |
20090025553 | Keefer et al. | Jan 2009 | A1 |
20090025555 | Lively et al. | Jan 2009 | A1 |
20090037550 | Mishra et al. | Feb 2009 | A1 |
20090071333 | LaBuda et al. | Mar 2009 | A1 |
20090079870 | Matsui | Mar 2009 | A1 |
20090107332 | Wagner | Apr 2009 | A1 |
20090151559 | Verma et al. | Jun 2009 | A1 |
20090162268 | Hufton et al. | Jun 2009 | A1 |
20090180423 | Kroener | Jul 2009 | A1 |
20090241771 | Manning et al. | Oct 2009 | A1 |
20090284013 | Anand et al. | Nov 2009 | A1 |
20090294366 | Wright et al. | Dec 2009 | A1 |
20090308248 | Siskin et al. | Dec 2009 | A1 |
20090314159 | Haggerty | Dec 2009 | A1 |
20100059701 | McLean | Mar 2010 | A1 |
20100077920 | Baksh et al. | Apr 2010 | A1 |
20100089241 | Stoner et al. | Apr 2010 | A1 |
20100186445 | Minta et al. | Jul 2010 | A1 |
20100212493 | Rasmussen et al. | Aug 2010 | A1 |
20100251887 | Jain | Oct 2010 | A1 |
20100252497 | Ellison et al. | Oct 2010 | A1 |
20100263534 | Chuang | Oct 2010 | A1 |
20100282593 | Speirs et al. | Nov 2010 | A1 |
20100288704 | Amsden et al. | Nov 2010 | A1 |
20110011803 | Koros | Jan 2011 | A1 |
20110020202 | Gadkaree et al. | Jan 2011 | A1 |
20110031103 | Deckman et al. | Feb 2011 | A1 |
20110067440 | Van Aken | Mar 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110123878 | Jangbarwala | May 2011 | A1 |
20110146494 | Desai et al. | Jun 2011 | A1 |
20110217218 | Gupta et al. | Sep 2011 | A1 |
20110277620 | Havran et al. | Nov 2011 | A1 |
20110291051 | Hershkowitz et al. | Dec 2011 | A1 |
20110296871 | Van Soest-Vercammen et al. | Dec 2011 | A1 |
20110308524 | Brey et al. | Dec 2011 | A1 |
20120024150 | Moniot | Feb 2012 | A1 |
20120024152 | Yamawaki et al. | Feb 2012 | A1 |
20120031144 | Northrop et al. | Feb 2012 | A1 |
20120067216 | Corma-Canos et al. | Mar 2012 | A1 |
20120152115 | Gerds et al. | Jun 2012 | A1 |
20120222551 | Deckman | Sep 2012 | A1 |
20120222552 | Ravikovitch et al. | Sep 2012 | A1 |
20120222553 | Kamakoti et al. | Sep 2012 | A1 |
20120222554 | Leta et al. | Sep 2012 | A1 |
20120222555 | Gupta et al. | Sep 2012 | A1 |
20120255377 | Kamakoti et al. | Oct 2012 | A1 |
20120272823 | Halder et al. | Nov 2012 | A1 |
20120308456 | Leta et al. | Dec 2012 | A1 |
20120312163 | Leta et al. | Dec 2012 | A1 |
20130061755 | Frederick et al. | Mar 2013 | A1 |
20130095996 | Buelow et al. | Apr 2013 | A1 |
20130225898 | Sundaram et al. | Aug 2013 | A1 |
20140013955 | Tammera et al. | Jan 2014 | A1 |
20140060326 | Sundaram et al. | Mar 2014 | A1 |
20140157984 | Deckman et al. | Jun 2014 | A1 |
20140157986 | Ravikovitch et al. | Jun 2014 | A1 |
20140208797 | Kelley et al. | Jul 2014 | A1 |
20140216254 | Tammera et al. | Aug 2014 | A1 |
20150013377 | Oelfke | Jan 2015 | A1 |
20150068397 | Boulet et al. | Mar 2015 | A1 |
20150101483 | Perry et al. | Apr 2015 | A1 |
20150196870 | Albright et al. | Jul 2015 | A1 |
20150328578 | Deckman et al. | Nov 2015 | A1 |
20160023155 | Ramkumar et al. | Jan 2016 | A1 |
20160129433 | Tammera et al. | May 2016 | A1 |
20160166972 | Owens et al. | Jun 2016 | A1 |
20160236135 | Tammera et al. | Aug 2016 | A1 |
20160332105 | Tammera et al. | Nov 2016 | A1 |
20160332106 | Tammera et al. | Nov 2016 | A1 |
20170056814 | Marshall et al. | Mar 2017 | A1 |
20170113173 | Fowler et al. | Apr 2017 | A1 |
20170113175 | Fowler et al. | Apr 2017 | A1 |
20170136405 | Ravikovitch et al. | May 2017 | A1 |
20170266604 | Tammera et al. | Sep 2017 | A1 |
20170282114 | Owens et al. | Oct 2017 | A1 |
20170341011 | Nagavarapu et al. | Nov 2017 | A1 |
20170341012 | Nagavarapu et al. | Nov 2017 | A1 |
20180001301 | Brody et al. | Jan 2018 | A1 |
20180056229 | Denton et al. | Mar 2018 | A1 |
20180056235 | Wang et al. | Mar 2018 | A1 |
20180169565 | Brody et al. | Jun 2018 | A1 |
20180169617 | Brody et al. | Jun 2018 | A1 |
20180339263 | Dehaas et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
0257493 | Feb 1988 | EP |
0426937 | May 1991 | EP |
0904827 | Mar 1999 | EP |
1674555 | Jun 2006 | EP |
2823872 | Jan 2015 | EP |
2854819 | May 2003 | FR |
2924951 | Jun 2009 | FR |
58-114715 | Jul 1983 | JP |
59-232174 | Dec 1984 | JP |
60-189318 | Dec 1985 | JP |
2002-253818 | Oct 1990 | JP |
04-180978 | Jun 1992 | JP |
06006736 | Jun 1992 | JP |
H6-6736 | Jan 1994 | JP |
3477280 | Aug 1995 | JP |
2011-169640 | Jun 1999 | JP |
2011-280921 | Oct 1999 | JP |
2000-024445 | Aug 2001 | JP |
2002-348651 | Dec 2002 | JP |
2006-016470 | Jan 2006 | JP |
2006-036849 | Feb 2006 | JP |
2008-272534 | Nov 2008 | JP |
2013-244469 | Dec 2013 | JP |
101349424 | Jan 2014 | KR |
WO2002024309 | Mar 2002 | WO |
WO2002073728 | Sep 2002 | WO |
WO 03004438 | Jan 2003 | WO |
WO2005090793 | Sep 2005 | WO |
WO2010024643 | Mar 2010 | WO |
WO2011139894 | Nov 2011 | WO |
Entry |
---|
U.S. Appl. No. 16/252,975, filed Jan. 21, 2019, Krishna Nagavarapu et al. |
U.S. Appl. No. 16/258,266, filed Jan. 25, 2019, Barnes et al. |
U.S. Appl. No. 16/263,940, filed Jan. 31, 2019, Johnson. |
U.S. Appl. No. 62/783,766, filed Dec. 21, 2019, Fulton et al. |
Allen, M. P. et al., (1987) “Computer Simulation of Liquids” Clarendon Press, pp. 156-160. |
Asgari, M. et al., (2014) “Designing a Commercial Scale Pressure Swing Adsorber for Hydrogen Purification” Petroleum & Coal, vol. 56(5), pp. 552-561. |
Baerlocher, C. et al., (2017) International Zeolite Association's “Database of Zeolite Structures,” available at http://www.iza-structure.org/databases/, downloaded Jun. 15, 2018, 1 page. |
Burtch, N.C. et al., (2015) “Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal-Organic Frameworks,” J Am Chem Soc, 135, pp. 7172-7180. |
Beauvais, C. et al., (2004) “Distribution of Sodium Cations in Faujasite-Type Zeolite: A Canonical Parallel Tempering Simulation Study,” J Phys Chem B, 108, pp. 399-404. |
Cheung, O. et al., (2013) “Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA,” Appl Energ, 112, pp. 1326-1336. |
Cygan, R. T. et al., (2004) “Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field”, J Phys Chem B, vol. 108, pp. 1255-1266. |
Deem, M. W. et al., (2009) “Computational Discovery of New Zeolite-Like Materials”, J Phys Chem C, 113, pp. 21353-21360. |
Demiralp, E., et al., (1999) “Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass”, Physical Review Letters, vol. 82(8), pp. 1708-1711. |
Dubbeldam, D. et al. (2016) “RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials” Molecular Simulation, (published online Feb. 26, 2015), vol. 42(2), pp. 81-101. |
Dubbeldam, D., et al., (2013) “On the inner workings of Monte Carlo codes” Molecular Simulation, vol. 39, Nos. 14-15, pp. 1253-1292. |
Earl, D. J. et al., (2005) “Parallel tempering: Theory, applications, and new perspectives,” Phys Chem Chem Phys, vol. 7, pp. 3910-3916. |
ExxonMobil Research and Engineering and QuestAir (2008) “A New Commercialized Process for Lower Cost H2 Recovery—Rapid Cycle Pressure Swing Adsorption (RCPSA),” Brochure, 4 pgs. |
Fang, H. et al., (2013) “First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites,” Phys Chem Chem Phys, vol. 15, pp. 12882-12894. |
Fang, H., et al., (2012) “Prediction of CO2 Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations,” J Phys Chem C, 10692, 116, ACS Publications. |
Farooq, S. et al. (1990) “Continuous Countercurrent Flow Model for a Bulk PSA Separation Process,” AIChE J., v36 (2) p. 310-314. |
FlowServe (2005) “Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1, 8 pgs. |
Foster, M.D., et al. “A geometric solution to the largest-free-sphere problem in zeolite frameworks”, Microporous and Mesoporous Materials, vol. 90, pp. 32-38. |
Frenkel, D. et al., (2002) “Understanding Molecular Simulation: From Algorithms to Applications”, 2nd ed., Academic Press, pp. 292-301. |
Garcia, E. J., et al. (2014) “Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity”, Ind. Eng. Chem. Res., vol. 53, pp. 9860-9874. |
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florene, Italy, www.ge.com/oilandgas, 4 pgs. |
Harris, J. G. et al., (1995) “Carbon Dioxide's Liquid—Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model”, J Phys Chem, vol. 99, pp. 12021-12024. |
Hill, J. R. et al., (1995) “Molecular Mechanics Potential for Silica and Zeolite Catalysts Based on ab Initio Calculations. 2. Aluminosilicates”, J Phys Chem, vol. 99, pp. 9536-9550. |
Hopper, B. et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symposium, pp. 73-95. |
Jain, S., et al. (2003) “Heuristic design of pressure swing adsorption: a preliminary study”, Separation and Purification Technology, vol. 33, pp. 25-43. |
Kim J. et al. (2012) “Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture”, J. Am. Chem, Soc., vol. 134, pp. 18940-18940. |
Kärger, J., et al.(2012) “Diffusion in Nanoporous Materials”, Whiley-VCH publisher, vol. 1, Chapter 16, pp. 483-501. |
Kikkinides, E. S. et al. (1995) “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States,” Ind. Eng. Chem. Res. V. 34, pp. 255-262. |
Lin, L., et al. (2012) “In silico screening of carbon-capture materials”, Nature Materials, vol. 1, pp. 633-641. |
Liu, Q. et al., (2010) “NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2,” Chem Commun, vol. 46, pp. 4502-4504. |
Lowenstein, W., (1954) “The Distribution of Aluminum in the Tetra-Hedra of Silicates and Aluminates” Am Mineral, 92-96. |
Neimark, A. V. et al., (1997) “Calibration of Pore Volume in Adsorption Experiments and Theoretical Models”, Langmuir, vol. 13, pp. 5148-5160. |
Palomino, M., et al. (2009) “New Insights on CO2-Methane Seapration Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs”, Langmar, vol. 26(3), pp. 1910-1917. |
Patcas, F.C. et al.(2007) “CO Oxidation Over Structured Carriers: A Comparison of Ceramic Forms, Honeycombs and Beads”, Chem Engineering Science, v. 62, pp. 3984-3990. |
Peng, D. Y., et al., (1976) “A New Two-Constant Equation of State”, Ind Eng Chem Fundam, vol. 15, pp. 59-64. |
Pham, T. D. et al., (2013) “Carbon Dioxide and Nitrogen Adsorption on Cation-Exchanged SSZ-13 Zeolites”, Langmuir, vol. 29, pp. 832-839. |
Pophale, R., et al., (2011) “A database of new zeolite-like materials”, Phys Chem Chem Phys, vol. 13(27), pp. 12407-12412. |
Potoff, J. J. et al., (2001) “Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen”, AIChE J, vol. 47(7), pp. 1676-1682. |
Rameshni, Mahin “Strategies for Sour Gas Field Developments,” Worley Parsons-Brochure, 20 pp. |
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v101, pp. 614-622. |
Rezaei, F. et al. (2009) “Optimum Structured Adsorbents for Gas Separation Process”, Chem. Engineering Science, v. 64, pp. 5182-5191. |
Richardson, J.T. et al. (2000) “Properties of Ceramic Foam Catalyst Supports: Pressure Dop”, Applied Catalysis A: General v. 204, pp. 19-32. |
Robinson, D. B., et al., (1985) “The development of the Peng—Robinson Equation and its Application to Phase Equilibrium in a System Containing Methanol,” Fluid Phase Equilibria, vol. 24, pp. 25-41. |
Ruthven, D. M. et al. (1996) “Performance of a Parallel Passage Adsorbent Contactor,” Gas. Sep. Purif., vol. 10, No. 1, pp. 63-73. |
Stahley, J. S. (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Reliability in Centrifugal Compressors,” Dresser-Rand, Tech. Paper 134, 15 pages. |
Santos, M. S (2011) “New Cycle configuration to enhance performance of kinetic PSA processes” Chemical Engineering Science 66, pp. 1590-1599. |
Snurr, R. Q. et al., (1993) “Prediction of Adsorption of Aromatic Hydrocarbons in Silicalite from Grand Canonical Monte Carlo Simulations with Biased Insertions”, J Phys Chem, vol. 97, pp. 13742-13752. |
Stemmet, C.P. et al. (2006) “Solid Foam Packings for Multiphase Reactors: Modelling of Liquid Holdup and Mass Transfer”, Chem. Engineering Research and Design, v. 84(A12), pp. 1134-1141. |
Suzuki, M. (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73. |
Talu, O. et al., (2001), “Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 83-93, pp. 83-93. |
Walton, K. S. et al., (2006) “CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange,” Microporous and Mesoporous Mat, vol. 91, pp. 78-84. |
Willems, T. F. et al., (2012) “Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials” Microporous Mesoporous Mat, vol. 149, pp. 134-141. |
Zukal, A., et al., (2009) “Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations”, Adsorption, vol. 15, pp. 264-270. |
Number | Date | Country | |
---|---|---|---|
20190255521 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62077977 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14880557 | Oct 2015 | US |
Child | 16397573 | US |