The present invention relates to a high-chromium heat-resistant steel.
Until now, several 9% Cr heat-resistant steels containing delta ferrite have been proposed as high-chromium steels to improve weldability, and some of them have already been used for steam contacting components in thermal power plants. However, since 9% Cr heat-resistant steels are greatly impaired in long-term creep strength and impact properties, 9% Cr-1% Mo steels having martensitic microstructure not containing delta ferrite are mainly used now. In recent years, temperatures and pressures of steam conditions have been greatly increased to improve thermal efficiency in thermal power plants. Therefore, the operating conditions of power plants are changing from supercritical pressure to ultra supercritical pressure. In addition, plants operable under more severe steam conditions are planned. With such increasing severity in the steam conditions, the presently used 9% Cr-1% Mo steels (Grade 91 steels) cannot be adapted to boiler tubes in future plants because of their limited oxidation resistance and high temperature strength. Meanwhile, austenitic heat resisting stainless steels can be candidate materials to be used for future plants, but the application thereof is limited by economical efficiency. Hence, the development of heat-resistant steels is desired for the usage in steam conditions with even higher temperatures.
Under these circumstances, new types of high chromium steels primarily to improve the creep strength have been developed as disclosed in JP-A-1993-311342, JP-A-1993-311345 and JP-A-1997-291308. These steels have improved creep rupture strength and toughness by the addition of W as a solid-solution hardening element and, further, by the addition of alloy elements such as Co, Ni, and Cu. In addition, JP-A-1988-89644 discloses steels with optimized contents of W and Nb and improved creep strength. U.S. Pat. No. 4,564,392 describes Cr-containing steels in which the ratio of C/N is optimized. The steels exemplified in the latter US patent document contain relatively large amounts of Mo and N. Steel containing 12% Cr is considered particularly suitable for use at high temperatures and under high stress. All of these known steels allegedly have improved creep strength by the addition of alloy elements, such as W and Co to conventional heat-resistant steels through the solid-solution hardening. However, since W and Co are expensive elements leading to increase of material prices, the use of these elements is limited from the viewpoint of economical effects.
Further, the improvement of steam oxidation resistance is indispensable against high temperature steam. In addition, increasing the Cr content from the conventional 9% Cr steels is effective to improve the steam oxidation resistance in the existing condition. However, since increasing the Cr content results in the formation of delta ferrite, the austenite forming elements such as C and Ni are needed to be increased to obtain the tempered martensite structure. However, the contents of these elements are limited because the increase in C and Ni contents reduces the weldability and the long-term creep strength, respectively. Although there are cases where Co or the like is added to suppress the formation of delta ferrite, such an element is expensive, therefore resulting in decrease in the economical efficiency.
In view of the circumstances described above, an object of the present invention is to provide an improved high-chromium heat-resistant steel, consisting of in mass %, C: 0.08% to 0.13%; Si: 0.15% to 0.45%; Mn: 0.1% to 1.0%; Ni: 0.01% to 0.5%; Cr: 10.0% to 11.5%; Mo: 0.3% to 0.6%; V: 0.10% to 0.25%; Nb: 0.01% to 0.06%; N: 0.015% to 0.07%, B: ≤0.005%, and Al: ≤0.04%, wherein the balance is Fe and inevitable impurity elements. A further object is to provide steel capable of being used for ultra supercritical pressure boilers. A further object is to provide steel improved in creep rupture strength and in steam oxidation properties for high temperature steam under the base of economical steels without addition of expensive elements, such as W and Co.
The steel composition of the present invention comprises low carbon (C), manganese (Mn), silicon (Si), chromium (Cr), nickel (Ni), molybdenum (Mo), vanadium (V), niobium (Nb) and nitrogen (N).
In an embodiment, one or more of the following elements can be added: aluminum (Al) and Boron (B).
The remainder of the composition comprises iron (Fe) and inevitable impurities.
The present invention relates to a high-chromium heat-resistant steel. Embodiments thereof are shown in the following Table 1 (compositions are expressed in mass %), wherein the balance is Fe and inevitable impurity elements:
In an embodiment of the high-chromium heat-resistant steel B is in the range of 0.001% to 0.005% by mass.
In an embodiment of the high-chromium heat-resistant steel, the mass % of the inevitable impurity elements is lower than 0.4%.
In an embodiment of the high-chromium heat-resistant steel, the inevitable impurity elements comprises elements other than: C, Si, Mn, Ni, Cr, Mo, V, Nb, N, Fe.
In an embodiment of the high-chromium heat-resistant steel, the inevitable impurities may comprise one or more of phosphorus (P), sulfur (S), cobalt (Co), copper (Cu), antimony (Sb), arsenic (As), tin (Sn) and lead (Pb).
In an embodiment of the high-chromium heat-resistant steel, P+S+Co+Cu+Sb+As+Sn+Pb≤0.40% (in mass %).
In an embodiment of the high-chromium heat-resistant steel, P+S+Co+Cu+Sb+As+Sn+Pb≤0.35% (in mass %).
The inevitable impurity elements relate to the normal contamination as result of the production of steel.
The present invention has provided a high-chromium heat-resistant steel with improved properties in both the creep rupture strength and steam oxidation resistance, which as hitherto been difficult in the conventional 9Cr-1Mo steel. In addition, the main composition of the present invention does not contain expensive elements such as W and Co and contain a smaller amount of Mo, therefore being advantageous in economical efficiency. Thus, the present invention can meet to the usage for future thermal power plants with higher temperature and pressure as steam conditions.
The invention further relates to a steam contacting component, e.g. a tube, made from a high-chromium heat-resistant steel according to the invention. The tube can be a seamless or welded tube.
The invention further relates to a pressure boiler comprising one or more steam contacting components, e.g. a boiler drum and/or a tube, made from a high-chromium heat-resistant steel according to the invention.
The invention further relates to a thermal power plant comprising a steam contacting component according to the invention.
The invention further relates to a thermal power plant comprising a pressure boiler according to the invention.
Reasons for limitations for the individual elements will be discussed below.
C: 0.08% to 0.13%;
C is an austenite forming element suppressing ferrite formation. Hence, an appropriate amount of C is determined with ferrite forming elements such as Cr, in order to obtain the tempered martensite structure. In addition, C precipitates as carbides of the MC type (M represents an alloying element (The same will applies hereinafter.)) and M23C6 type, which greatly affect the high temperature strength, and in particular, creep rupture strength. With C content of less than 0.08%, the amount of precipitation is insufficient for precipitation strengthening, and also the suppression of delta ferrite phase is imperfect. For this reason, the lower limit thereof is set to 0.08%. With the addition of more than 0.13% of C, weldability is impaired and toughness is decreased. Further, agglomerated coarsening of carbides is accelerated resulting in a decrease in the creep rupture strength on the high-temperature and long term side. For this reason, the range thereof is set to 0.08% to 0.13%, preferably within the range of 0.08% to 0.11% (mass percentage)
Si: 0.15% to 0.45%;
Si is added as a deoxidizing agent and for oxidation resistance. However, Si is a strong ferrite forming element and toughness is impaired by the ferrite phase. For this reason, the range thereof is set to 0.15% to 0.45% to balance the oxidation resistance and the tempered martensite structure; preferably within the range of 0.15% to 0.35% (mass percentage)
Mn: 0.1% to 1.0%;
Mn is added as a deoxidizing agent and a desulfurizing agent. In addition, it is also an austenite forming element suppressing the delta ferrite phase, but excessive addition thereof impairs the creep strength. For this reason, the range thereof is set to 0.1% to 1%; preferably within the range of 0.40% to 0.60% (mass percentage)
Ni: 0.01% to 0.5%;
Ni is a strong austenite forming element suppressing ferrite phase formation. However, excessive addition thereof impairs long-term creep rupture strength. For this reason, the range suggested is set from 0.01% to 0.5%, preferably within the range of 0.01% to 0.20% (mass percentage)
Cr: 10.0% to 11.5%;
Cr is an important element for securing steam oxidation resistance. Cr content of 10.0% or more is necessary from the viewpoint of steam oxidation resistance for high temperature steam. However, excessive addition of Cr as well as Si causes ferrite formation and also causes formation of brittle phases in long-term creep, thereby impairing the rupture strength. For this reason, the upper limit thereof is set to 11.5%, preferably within the range of 10.45% to 11% (mass percentage)
Mo: 0.3% to 0.6%;
Mo is a ferrite forming element while it increases the creep strength due to the effect of solid-solution hardening. However, excessive addition thereof results in the formation of delta ferrite and the precipitation of coarse intermetallic compounds not contributing to the creep rupture strength. For this reason, the range thereof is set to 0.3% to 0.6%, preferably within the range of 0.45% to 0.55% (mass percentage)
V: 0.10% to 0.25%;
V precipitates as fine carbonitrides and thereby improves both high temperature strength and creep rupture strength. With a content of less than 0.1%, the amount of precipitation is insufficient to increase the creep strength. In contrast, excessive addition thereof results in formation of bulky V (C, N) precipitates not contributing to the creep strength. For this reason, the range thereof is set to 0.1% to 0.25%, preferably within the range of 0.15% to 0.25% (mass percentage)
Nb: 0.01% to 0.06%;
Nb also precipitates as fine carbonitrides, and is an important element improving the creep rupture strength. A content of 0.01% or more is necessary to obtain this effect. However, similarly as V, excessive addition of Nb results in formation of bulky carbonitrides to reduce the creep rupture strength. Hence, the range thereof is set to 0.01% to 0.06%, preferably within the range of 0.035% to 0.06% (mass percentage)
N: 0.015% to 0.07%,
N precipitates as either nitrides or carbonitrides thereby to improve the creep rupture strength. It is also an austenite forming element to suppress delta ferrite phases. However, excessive addition thereof impairs toughness. For this reason, the range thereof is set to 0.015% to 0.070%, preferably within the range of 0.040% to 0.070% (mass percentage)
Al: ≤0.04%; and
Al can be used as a deoxidizing agent, but it impairs the long-term creep rupture strength with excessive addition. For this reason, when optionally used, the upper limit thereof is set to 0.04%, preferably less than 0.025% (mass percentage)
B: 0.001% to 0.005%.
B is an element strengthening the grain boundary and that has also the effect of the precipitation hardening as M23(C,B)6, thus being effective for improving the creep rupture strength. However, excessive addition thereof impairs workability under high temperatures leading to a cause of cracking, and also impairs the creep rupture ductility. For this reason, when optionally used, the range thereof is set to 0.001% to 0.005%, preferably from 0.002% to 0.004% (mass percentage).
P: ≤0.03%;
P is an Inevitable impurity element contained in melting raw materials and not easily reduced in steel making process. It impairs toughness at room temperatures and high temperatures as well as hot workability. If present, the upper limit is set to 0.03%, preferably lees than 0.018% (mass percentage)
S: ≤0.01%;
S is also an inevitable impurity element and it impairs hot workability. It also can be a cause of cracks, scratches, or the like. If present, the upper limit is set to 0.01%, preferably lees than 0.005% (mass percentage)
In the present invention, the manufacturing conditions are not specifically limited. The tempered martensite structure can be obtained by conventional normalizing treatment heated at temperatures in the range of 950 to 1150 degree centigrade followed by air cooling and tempering treatment heated at temperatures in the range of 700 to 800 degree centigrade.
Steels according to the present invention (Nos. A to C) and comparative steels (Nos. D to F) having chemical compositions shown in Table 2 were melted using a vacuum induction melting furnace, cast into 50 kg or 70 kg ingot, and then hot-rolled into steel plates with a thickness of 12 mm to 15 mm. Then, the steel plates were heat treated by normalizing and then tempering. The normalizing temperature is in a range of 1050° C. to 1100° C., and the tempering temperature is in a range of 770° C. to 780° C. Obtained microstructure is a tempered martensite structure, not containing delta ferrite. Among comparative steels, Steel D has a component system of 9Cr-1Mo steels called Grade 91 steels, which are widely used at present. Steel D was used as a steel representing existing materials.
0.98
0.07
12.2
(mass %) The underlined figures indicate the value that is out of the range in the present invention.
Test specimens were taken from the heat treated plates and were subjected to creep rupture testing and steam oxidation testing. Creep rupture testing was performed using a 6 mm diameter specimen under testing temperature of 650° C. and stresses of 110 MPa and 70 MPa. For steels of this type, testing requires tens of thousands hours to clarify superiority or inferiority at testing temperature of 600° C., which is an actual temperature for real thermal power plants. Therefore, the testing temperature was elevated to 650° C., and two stress conditions were applied with estimated rupture time periods of about 1,000 hours and about 10,000 hours. Since the difference in the rupture time among steels is assumed to be small on a short-term side testing of about 1,000 hours using a 110 MPa testing condition, 70 MPa testing condition was applied as long-term testing of about 10,000 hours to differentiate the rupture strength among steels.
For steam oxidation testing, the temperature was set to 650° C., which is the same as that for the creep rupture testing. In the testing, an average thickness of scale formed on the surface of the specimen subjected to 1,000-hour steam oxidation testing was measured using an optical microscope. In this manner, the steam oxidation resistance was evaluated. The specimen is a small sample of 15 mm×20 mm×10 mm taken from the heat treated plate material.
The results of the creep rupture testing and the steam oxidation testing are shown in Table 3.
Compared to the steel D equivalent to the existing Grade 91 steel, steels for the present invention demonstrate excellent high temperature properties. For example, the rupture time is three times or more in the long-term testing with the stress of 70 MPa and the average thickness of scale formed in steam oxidation is no more than half. Thus, significant improvements are shown in the creep rupture strength and the steam oxidation resistance.
Comparative steel E having higher Cr content of 12.2% significantly improves the steam oxidation resistance, however it decreases the long-term creep rupture strength. Although the microstructure of Steel E is tempered martensite, not containing delta ferrite, the decreased creep rupture strength is considered owing to an increase in Cr content. Comparative steel F having equivalent Cr content to the existing Grade 91 steels cannot improve the steam oxidation properties with considerably thick scales compared with steels of the present invention.
According to the present invention, it is possible to provide a high-chromium heat-resistant steel that enhances both the creep rupture strength and the steam oxidation resistance even not containing expensive elements such as W and Co and less containing Mo. Therefore the present invention provides excellent economical efficiency. The inventive steel can be advantageously used for steam contacting components, e.g. tubes for a pressure boiler and/or a boiler drum.
Number | Date | Country | Kind |
---|---|---|---|
13173530 | Jun 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/062561 | 6/24/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/207656 | 12/31/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3316395 | Lavin | Apr 1967 | A |
3316396 | Trott et al. | Apr 1967 | A |
3325174 | Weaver | Jun 1967 | A |
3362731 | Gasche et al. | Jan 1968 | A |
3366392 | Kennel | Jan 1968 | A |
3413166 | Zackay et al. | Nov 1968 | A |
3489437 | Duret | Jan 1970 | A |
3512789 | Tanner | May 1970 | A |
3552781 | Helland | Jan 1971 | A |
3572777 | Blose et al. | Mar 1971 | A |
3575430 | Alpine | Apr 1971 | A |
3592491 | Glover | Jul 1971 | A |
3599931 | Hanson | Aug 1971 | A |
3655465 | Snape et al. | Apr 1972 | A |
3733093 | Seiler | May 1973 | A |
3810793 | Heller | May 1974 | A |
3854760 | Duret | Dec 1974 | A |
3889989 | Legris et al. | Jun 1975 | A |
3891224 | Ditcher | Jun 1975 | A |
3893919 | Flegel et al. | Jul 1975 | A |
3915697 | Giuliani et al. | Oct 1975 | A |
3918726 | Kramer | Nov 1975 | A |
3986731 | DeHoff | Oct 1976 | A |
4014568 | Carter et al. | Mar 1977 | A |
4147368 | Baker et al. | Apr 1979 | A |
4163290 | Sutherlin et al. | Jul 1979 | A |
4219204 | Pippert | Aug 1980 | A |
4231555 | Saito | Nov 1980 | A |
4299412 | Parmann | Oct 1981 | A |
4305059 | Benton | Dec 1981 | A |
4310163 | Pippert | Jan 1982 | A |
4336081 | Hijikata et al. | Jun 1982 | A |
4345739 | Wheatley | Aug 1982 | A |
4354882 | Greer | Oct 1982 | A |
4366971 | Lula | Jan 1983 | A |
4368894 | Parmann | Jan 1983 | A |
4373750 | Mantelle et al. | Feb 1983 | A |
4376528 | Ohshimatani et al. | Mar 1983 | A |
4379482 | Suzuki et al. | Apr 1983 | A |
4384737 | Reusser | May 1983 | A |
4406561 | Ewing | Sep 1983 | A |
4407681 | Ina et al. | Oct 1983 | A |
4426095 | Buttner | Jan 1984 | A |
4445265 | Olson et al. | May 1984 | A |
4473471 | Robichaud et al. | Sep 1984 | A |
4475839 | Strandberg | Oct 1984 | A |
4491725 | Pritchard | Jan 1985 | A |
4506432 | Smith | Mar 1985 | A |
4526628 | Ohno et al. | Jul 1985 | A |
4527815 | Smith | Jul 1985 | A |
4564392 | Ohhashi et al. | Jan 1986 | A |
4570982 | Blose et al. | Feb 1986 | A |
4591195 | Chelette et al. | May 1986 | A |
4592558 | Hopkins | Jun 1986 | A |
4601491 | Bell, Jr. et al. | Jul 1986 | A |
4602807 | Bowers | Jul 1986 | A |
4623173 | Handa et al. | Nov 1986 | A |
4629218 | Dubois | Dec 1986 | A |
4662659 | Blose et al. | May 1987 | A |
4674756 | Fallon et al. | Jun 1987 | A |
4688832 | Ortloff et al. | Aug 1987 | A |
4706997 | Carstensen | Nov 1987 | A |
4710245 | Roether | Dec 1987 | A |
4721536 | Koch et al. | Jan 1988 | A |
4758025 | Frick | Jul 1988 | A |
4762344 | Perkins et al. | Aug 1988 | A |
4812182 | Fang et al. | Mar 1989 | A |
4814141 | Imai et al. | Mar 1989 | A |
4844517 | Beiley et al. | Jul 1989 | A |
4856828 | Kessler et al. | Aug 1989 | A |
4955645 | Weems | Sep 1990 | A |
4958862 | Cappelli et al. | Sep 1990 | A |
4988127 | Cartensen | Jan 1991 | A |
5007665 | Bovisio et al. | Apr 1991 | A |
5067874 | Foote | Nov 1991 | A |
5137310 | Noel et al. | Aug 1992 | A |
5143381 | Temple | Sep 1992 | A |
5154534 | Guerin et al. | Oct 1992 | A |
5180008 | Aldridge et al. | Jan 1993 | A |
5191911 | Dubois | Mar 1993 | A |
5242199 | Hann et al. | Sep 1993 | A |
5328158 | Lewis et al. | Jul 1994 | A |
5348350 | Blose et al. | Sep 1994 | A |
5352406 | Barteri et al. | Oct 1994 | A |
5360239 | Klementich | Nov 1994 | A |
5449420 | Okada et al. | Sep 1995 | A |
5454883 | Yoshie et al. | Oct 1995 | A |
5456405 | Stagg | Oct 1995 | A |
5505502 | Smith et al. | Apr 1996 | A |
5515707 | Smith | May 1996 | A |
5538566 | Gallagher | Jul 1996 | A |
5592988 | Meroni et al. | Jan 1997 | A |
5598735 | Saito et al. | Feb 1997 | A |
5653452 | Jarvenkyla | Aug 1997 | A |
5712706 | Castore et al. | Jan 1998 | A |
5794985 | Mallis | Aug 1998 | A |
5810401 | Mosing et al. | Sep 1998 | A |
5860680 | Drijver et al. | Jan 1999 | A |
5870976 | Cooke | Feb 1999 | A |
5879030 | Clayson et al. | Mar 1999 | A |
5879474 | Bhadeshia et al. | Mar 1999 | A |
5944921 | Cumino et al. | Aug 1999 | A |
5993570 | Gray | Nov 1999 | A |
6006789 | Toyooka et al. | Dec 1999 | A |
6030470 | Hensger et al. | Feb 2000 | A |
6044539 | Guzowksi | Apr 2000 | A |
6045165 | Sugino et al. | Apr 2000 | A |
6056324 | Reimert et al. | May 2000 | A |
6070912 | Latham | Jun 2000 | A |
6173968 | Nelson et al. | Jan 2001 | B1 |
6188037 | Hamada et al. | Feb 2001 | B1 |
6196530 | Muhr et al. | Mar 2001 | B1 |
6217676 | Takabe et al. | Apr 2001 | B1 |
6248187 | Asahi et al. | Jun 2001 | B1 |
6257056 | Shibayama et al. | Jul 2001 | B1 |
6267828 | Kushida et al. | Jul 2001 | B1 |
6311965 | Muhr et al. | Nov 2001 | B1 |
6331216 | Toyooka et al. | Dec 2001 | B1 |
6347814 | Cerruti | Feb 2002 | B1 |
6349979 | Noel et al. | Feb 2002 | B1 |
6358336 | Miyata | Mar 2002 | B1 |
6384388 | Anderson et al. | May 2002 | B1 |
6412831 | Noel et al. | Jul 2002 | B1 |
6447025 | Smith | Sep 2002 | B1 |
6478344 | Pallini, Jr. et al. | Nov 2002 | B2 |
6481760 | Noel et al. | Nov 2002 | B1 |
6494499 | Galle, Sr. et al. | Dec 2002 | B1 |
6514359 | Kawano | Feb 2003 | B2 |
6527056 | Newman | Mar 2003 | B2 |
6540848 | Miyata et al. | Apr 2003 | B2 |
6550822 | Mannella et al. | Apr 2003 | B2 |
6557906 | Carcagno | May 2003 | B1 |
6558484 | Onoe et al. | May 2003 | B1 |
6581940 | Dittel | Jun 2003 | B2 |
6632296 | Yoshinaga et al. | Oct 2003 | B2 |
6648991 | Turconi et al. | Nov 2003 | B2 |
6669285 | Park et al. | Dec 2003 | B1 |
6669789 | Edelman et al. | Dec 2003 | B1 |
6682610 | Inoue | Jan 2004 | B1 |
6683834 | Ohara et al. | Jan 2004 | B2 |
6709534 | Kusinski et al. | Mar 2004 | B2 |
6752436 | Verdillon | Jun 2004 | B1 |
6755447 | Galle, Jr. et al. | Jun 2004 | B2 |
6764108 | Ernst et al. | Jul 2004 | B2 |
6767417 | Fujita et al. | Jul 2004 | B2 |
6814358 | Keck | Nov 2004 | B2 |
6851727 | Carcagno et al. | Feb 2005 | B2 |
6857668 | Otten et al. | Feb 2005 | B2 |
6883804 | Cobb | Apr 2005 | B2 |
6905150 | Carcagno et al. | Jun 2005 | B2 |
6921110 | Morotti et al. | Jul 2005 | B2 |
6958099 | Nakamura et al. | Oct 2005 | B2 |
6971681 | Dell'Erba et al. | Dec 2005 | B2 |
6991267 | Ernst et al. | Jan 2006 | B2 |
7014223 | Della Pina et al. | Mar 2006 | B2 |
7066499 | Della Pina et al. | Jun 2006 | B2 |
7074283 | Omura | Jul 2006 | B2 |
7083686 | Itou | Aug 2006 | B2 |
7108063 | Carstensen | Sep 2006 | B2 |
7118637 | Kusinski et al. | Oct 2006 | B2 |
7182140 | Wood | Feb 2007 | B2 |
7214278 | Kusinski et al. | May 2007 | B2 |
7255374 | Carcagno et al. | Aug 2007 | B2 |
7264684 | Numata et al. | Sep 2007 | B2 |
7284770 | Dell'erba et al. | Oct 2007 | B2 |
7310867 | Corbett, Jr. | Dec 2007 | B2 |
7431347 | Ernst et al. | Oct 2008 | B2 |
7464449 | Santi et al. | Dec 2008 | B2 |
7475476 | Roussie | Jan 2009 | B2 |
7478842 | Reynolds, Jr. et al. | Jan 2009 | B2 |
7506900 | Carcagno et al. | Mar 2009 | B2 |
7621034 | Roussie | Nov 2009 | B2 |
7635406 | Numata et al. | Dec 2009 | B2 |
7735879 | Toscano et al. | Jun 2010 | B2 |
7744708 | López et al. | Jun 2010 | B2 |
7753416 | Mazzaferro et al. | Jul 2010 | B2 |
7862667 | Turconi et al. | Jan 2011 | B2 |
8002910 | Tivelli et al. | Aug 2011 | B2 |
8007601 | López et al. | Aug 2011 | B2 |
8007603 | Garcia et al. | Aug 2011 | B2 |
8016362 | Itoga | Sep 2011 | B2 |
8215680 | Santi | Jul 2012 | B2 |
8221562 | Valdez et al. | Jul 2012 | B2 |
8262094 | Beele | Sep 2012 | B2 |
8262140 | Santi et al. | Sep 2012 | B2 |
8317946 | Arai et al. | Nov 2012 | B2 |
8322754 | Carcagno | Dec 2012 | B2 |
8328958 | Turconi et al. | Dec 2012 | B2 |
8328960 | Gomez et al. | Dec 2012 | B2 |
8333409 | Santi et al. | Dec 2012 | B2 |
8414715 | Altschuler et al. | Apr 2013 | B2 |
8544304 | Santi | Oct 2013 | B2 |
8636856 | Altschuler et al. | Jan 2014 | B2 |
8821653 | Anelli et al. | Sep 2014 | B2 |
8840152 | Carcagno et al. | Sep 2014 | B2 |
8926771 | Agazzi | Jan 2015 | B2 |
9004544 | Carcagno et al. | Apr 2015 | B2 |
9163296 | Valdez et al. | Oct 2015 | B2 |
9187811 | Gomez et al. | Nov 2015 | B2 |
9188252 | Altschuler et al. | Nov 2015 | B2 |
9222156 | Altschuler et al. | Dec 2015 | B2 |
9234612 | Santi et al. | Jan 2016 | B2 |
9340847 | Altschuler et al. | May 2016 | B2 |
9383045 | Santi et al. | Jul 2016 | B2 |
9598746 | Anelli et al. | Mar 2017 | B2 |
9644248 | Anelli et al. | May 2017 | B2 |
9708681 | Eguchi et al. | Jul 2017 | B2 |
9970242 | Narikawa et al. | May 2018 | B2 |
20010035235 | Kawano | Nov 2001 | A1 |
20020011284 | Von Hagen et al. | Jan 2002 | A1 |
20020153671 | Raymond et al. | Oct 2002 | A1 |
20020158469 | Mannella et al. | Oct 2002 | A1 |
20030019549 | Turconi et al. | Jan 2003 | A1 |
20030111146 | Kusinski et al. | Jun 2003 | A1 |
20030116238 | Fujita | Jun 2003 | A1 |
20030155052 | Kondo et al. | Aug 2003 | A1 |
20030165098 | Ohara et al. | Sep 2003 | A1 |
20030168859 | Watts | Sep 2003 | A1 |
20040118490 | Klueh et al. | Jun 2004 | A1 |
20040118569 | Brill et al. | Jun 2004 | A1 |
20040131876 | Ohgami et al. | Jul 2004 | A1 |
20040139780 | Cai et al. | Jul 2004 | A1 |
20040187971 | Omura | Sep 2004 | A1 |
20040195835 | Noel et al. | Oct 2004 | A1 |
20040262919 | Dutilleul et al. | Dec 2004 | A1 |
20050012278 | Delange | Jan 2005 | A1 |
20050076975 | Lopez | Apr 2005 | A1 |
20050087269 | Merwin | Apr 2005 | A1 |
20050093250 | Santi et al. | May 2005 | A1 |
20050166986 | Dell'erba et al. | Aug 2005 | A1 |
20060006600 | Roussie | Jan 2006 | A1 |
20060124211 | Takano et al. | Jun 2006 | A1 |
20060137781 | Kusinski et al. | Jun 2006 | A1 |
20060157539 | Dubois | Jul 2006 | A1 |
20060169368 | Lopez et al. | Aug 2006 | A1 |
20060231168 | Nakamura et al. | Oct 2006 | A1 |
20060243355 | Haiderer et al. | Nov 2006 | A1 |
20060273586 | Reynolds, Jr. et al. | Dec 2006 | A1 |
20070039147 | Roussie | Feb 2007 | A1 |
20070089813 | Tivelli | Apr 2007 | A1 |
20070137736 | Omura et al. | Jun 2007 | A1 |
20070216126 | Lopez et al. | Sep 2007 | A1 |
20070246219 | Manella et al. | Oct 2007 | A1 |
20080047635 | Kondo et al. | Feb 2008 | A1 |
20080115863 | McCrink et al. | May 2008 | A1 |
20080129044 | Carcagno et al. | Jun 2008 | A1 |
20080219878 | Konda et al. | Sep 2008 | A1 |
20080226396 | Garcia et al. | Sep 2008 | A1 |
20080226491 | Satou et al. | Sep 2008 | A1 |
20080257459 | Arai et al. | Oct 2008 | A1 |
20080264129 | Cheppe et al. | Oct 2008 | A1 |
20080303274 | Mazzaferro et al. | Dec 2008 | A1 |
20080314481 | Garcia et al. | Dec 2008 | A1 |
20090010794 | Lopez et al. | Jan 2009 | A1 |
20090033087 | Carcagno et al. | Feb 2009 | A1 |
20090047166 | Tomomatsu et al. | Feb 2009 | A1 |
20090101242 | Lopez et al. | Apr 2009 | A1 |
20090114318 | Arai et al. | May 2009 | A1 |
20090226491 | Satou et al. | Sep 2009 | A1 |
20100068549 | Agazzi | Mar 2010 | A1 |
20100136363 | Valdez et al. | Jun 2010 | A1 |
20100187808 | Santi | Jul 2010 | A1 |
20100193085 | Garcia | Aug 2010 | A1 |
20100206553 | Bailey et al. | Aug 2010 | A1 |
20100294401 | Gomez | Nov 2010 | A1 |
20100319814 | Perez | Dec 2010 | A1 |
20100327550 | Lopez | Dec 2010 | A1 |
20110042946 | Santi | Feb 2011 | A1 |
20110077089 | Hirai et al. | Mar 2011 | A1 |
20110097235 | Turconi et al. | Apr 2011 | A1 |
20110133449 | Mazzaferro | Jun 2011 | A1 |
20110233925 | Pina | Sep 2011 | A1 |
20110247733 | Arai et al. | Oct 2011 | A1 |
20110259482 | Peters et al. | Oct 2011 | A1 |
20110284137 | Kami et al. | Nov 2011 | A1 |
20120018056 | Nakagawa et al. | Jan 2012 | A1 |
20120199255 | Anelli | Aug 2012 | A1 |
20120204994 | Anelli | Aug 2012 | A1 |
20120211132 | Altschuler | Aug 2012 | A1 |
20120267014 | Hitoshio et al. | Oct 2012 | A1 |
20130000790 | Arai et al. | Jan 2013 | A1 |
20130004787 | Ishiyama et al. | Jan 2013 | A1 |
20130264123 | Altschuler | Oct 2013 | A1 |
20140021244 | DuBois | Jan 2014 | A1 |
20140027497 | Rowland et al. | Jan 2014 | A1 |
20140057121 | Altschuler | Feb 2014 | A1 |
20140137992 | Ishiguro et al. | May 2014 | A1 |
20140251512 | Gomez | Sep 2014 | A1 |
20140272448 | Valdez et al. | Sep 2014 | A1 |
20140299235 | Anelli | Oct 2014 | A1 |
20140299236 | Anelli | Oct 2014 | A1 |
20150368986 | Narikawa | Dec 2015 | A1 |
20160024625 | Valdez | Jan 2016 | A1 |
20160102856 | Minami | Apr 2016 | A1 |
20160281188 | Valdez et al. | Sep 2016 | A1 |
20160305192 | Buhler | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
0050159 | Oct 2006 | AR |
388791 | Aug 1989 | AT |
2319926 | Jul 2008 | CA |
1401809 | Mar 2003 | CN |
1487112 | Apr 2004 | CN |
1292429 | Dec 2006 | CN |
101480671 | Jul 2009 | CN |
101542002 | Sep 2009 | CN |
101613829 | Dec 2009 | CN |
101413089 | Nov 2010 | CN |
3310226 | Oct 1984 | DE |
4446806 | May 1996 | DE |
010037 | Jun 2008 | EA |
012256 | Aug 2009 | EA |
0 032 265 | Jul 1981 | EP |
0 092 815 | Nov 1983 | EP |
0 104 720 | Apr 1984 | EP |
0 159 385 | Oct 1985 | EP |
0 309 179 | Mar 1989 | EP |
0 340 385 | Nov 1989 | EP |
0 329 990 | Nov 1992 | EP |
0 658 632 | Jun 1995 | EP |
0 753 595 | Jan 1997 | EP |
0 788 850 | Aug 1997 | EP |
0 828 007 | Mar 1998 | EP |
0 989 196 | Mar 2000 | EP |
1 008 660 | Jun 2000 | EP |
01027944 | Aug 2000 | EP |
1 065 423 | Jan 2001 | EP |
828 007 | Nov 2001 | EP |
1 277 848 | Jan 2003 | EP |
1 288 316 | Mar 2003 | EP |
1 296 088 | Mar 2003 | EP |
1 362977 | Nov 2003 | EP |
1 413 639 | Apr 2004 | EP |
1 182 268 | Sep 2004 | EP |
0 788 850 | Aug 2005 | EP |
1 705 415 | Sep 2006 | EP |
1 717 324 | Nov 2006 | EP |
1 726 861 | Nov 2006 | EP |
1 876 254 | Jan 2008 | EP |
1 914 324 | Apr 2008 | EP |
1 554 518 | Jan 2009 | EP |
2 028 284 | Feb 2009 | EP |
2 133 442 | Dec 2009 | EP |
2 216 576 | Aug 2010 | EP |
2 239 343 | Oct 2010 | EP |
2 778 239 | Sep 2014 | EP |
1 149 513 | Dec 1957 | FR |
2 704 042 | Oct 1994 | FR |
2 848 282 | Jun 2004 | FR |
2855587 | Dec 2004 | FR |
498 472 | Jan 1939 | GB |
1 398 214 | Jun 1973 | GB |
1 428 433 | Mar 1976 | GB |
2 104 919 | Mar 1983 | GB |
2 234 308 | Jan 1991 | GB |
2 276 647 | Oct 1994 | GB |
2 388 169 | Nov 2003 | GB |
58-187684 | Dec 1983 | JP |
60-086209 | May 1985 | JP |
S60 116796 | Jun 1985 | JP |
60-215719 | Oct 1985 | JP |
36025719 | Oct 1985 | JP |
S61-103061 | May 1986 | JP |
61270355 | Nov 1986 | JP |
63004046 | Jan 1988 | JP |
63004047 | Jan 1988 | JP |
63230847 | Sep 1988 | JP |
63230851 | Sep 1988 | JP |
01-242761 | Sep 1989 | JP |
01 259124 | Oct 1989 | JP |
01 259125 | Oct 1989 | JP |
01 283322 | Nov 1989 | JP |
H0288716 | Mar 1990 | JP |
05-098350 | Dec 1990 | JP |
403006329 | Jan 1991 | JP |
04 021718 | Jan 1992 | JP |
04 107214 | Apr 1992 | JP |
04 231414 | Aug 1992 | JP |
05 287381 | Nov 1993 | JP |
H06-042645 | Feb 1994 | JP |
06-093339 | Apr 1994 | JP |
06 172859 | Jun 1994 | JP |
06-220536 | Aug 1994 | JP |
07-003330 | Jan 1995 | JP |
07 041856 | Feb 1995 | JP |
07-139666 | May 1995 | JP |
07 197125 | Aug 1995 | JP |
08 311551 | Nov 1996 | JP |
09 067624 | Mar 1997 | JP |
09-235617 | Sep 1997 | JP |
2704042 | Oct 1997 | JP |
10 140250 | May 1998 | JP |
10176239 | Jun 1998 | JP |
10 280037 | Oct 1998 | JP |
11 050148 | Feb 1999 | JP |
11140580 | May 1999 | JP |
11229079 | Aug 1999 | JP |
2000-063940 | Feb 2000 | JP |
2000-178645 | Jun 2000 | JP |
2000-248337 | Sep 2000 | JP |
2000-313919 | Nov 2000 | JP |
2000248337 | Dec 2000 | JP |
2001-131698 | May 2001 | JP |
2001-164338 | Jun 2001 | JP |
2001-172739 | Jun 2001 | JP |
2001-220653 | Aug 2001 | JP |
2001-271134 | Oct 2001 | JP |
2002-096105 | Apr 2002 | JP |
2002-130554 | May 2002 | JP |
2003-041341 | Feb 2003 | JP |
2004-011009 | Jan 2004 | JP |
2007-031769 | Jul 2005 | JP |
60 174822 | Sep 2005 | JP |
2005-350754 | Dec 2005 | JP |
2009293063 | Dec 2009 | JP |
0245031 | Mar 2000 | KR |
1418 | Dec 1994 | KZ |
2506 | Sep 1995 | KZ |
2673 | Dec 1995 | KZ |
WO 1984002947 | Aug 1984 | WO |
WO 199429627 | Dec 1994 | WO |
WO 199622396 | Jul 1996 | WO |
WO 200006931 | Feb 2000 | WO |
WO 200070107 | Nov 2000 | WO |
WO 2001075345 | Oct 2001 | WO |
WO 200188210 | Nov 2001 | WO |
WO 200229290 | Apr 2002 | WO |
WO 2002035128 | May 2002 | WO |
WO 2002068854 | Sep 2002 | WO |
WO 2002086369 | Oct 2002 | WO |
WO 2002093045 | Nov 2002 | WO |
WO 2003033856 | Apr 2003 | WO |
WO 2003048623 | Jun 2003 | WO |
WO 2003087646 | Oct 2003 | WO |
WO 2004023020 | Mar 2004 | WO |
WO 2004031420 | Apr 2004 | WO |
WO 2004033951 | Apr 2004 | WO |
WO 2004053376 | Jun 2004 | WO |
WO 2004097059 | Nov 2004 | WO |
WO 2004109173 | Dec 2004 | WO |
WO 2006003775 | Jun 2005 | WO |
WO 2006009142 | Jan 2006 | WO |
WO 2006087361 | Apr 2006 | WO |
WO 2006078768 | Jul 2006 | WO |
WO 2007002576 | Jan 2007 | WO |
WO 2007017082 | Feb 2007 | WO |
WO 2007017161 | Feb 2007 | WO |
WO 2007023806 | Mar 2007 | WO |
WO 2007028443 | Mar 2007 | WO |
WO 2007034063 | Mar 2007 | WO |
WO 2007063079 | Jun 2007 | WO |
WO 2008003000 | Jan 2008 | WO |
WO 2008007737 | Jan 2008 | WO |
WO 2008090411 | Jul 2008 | WO |
WO 2008110494 | Sep 2008 | WO |
WO 2008127084 | Oct 2008 | WO |
WO 2009000851 | Dec 2008 | WO |
WO 2009000766 | Jan 2009 | WO |
WO 2009010507 | Jan 2009 | WO |
WO 2009027308 | Mar 2009 | WO |
WO 2009027309 | Mar 2009 | WO |
WO 2009044297 | Apr 2009 | WO |
WO 2009065432 | May 2009 | WO |
WO 2009106623 | Sep 2009 | WO |
WO 2010061882 | Jun 2010 | WO |
WO 2010122431 | Oct 2010 | WO |
WO 2011152240 | Dec 2011 | WO |
WO 2013007729 | Jan 2013 | WO |
WO 2013094179 | Jun 2013 | WO |
Entry |
---|
Machine translation of JP2009-293063A. (Year: 2009). |
Search Report and Written Opinion for International App No. PCT/IB2014/062561 dated Sep. 25, 2014, 11 pages. |
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 1: Non-alloy Steel Tubes with Specified Room Temperature Properties” British Standard BS EN 10216-1:2002 E:1-26, published May 2002. |
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 2: Non-alloy and Alloy Steel Tubes with Specified Elevated Temperature Properties” British Standard BS EN 10216-2:2002+A2:2007:E:1-45, published Aug. 2007. |
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 3: Alloy Fine Grain Steel Tubes” British Standard BS EN 10216-3:2002 +A1:2004 E:1-34, published Mar. 2004. |
Aggarwal, R. K., et al.: “Qualification of Solutions for Improving Fatigue Life at SCR Touch Down Zone”, Deep Offshore Technology Conference, Nov. 8-10, 2005, Vitoria, Espirito Santo, Brazil, in 12 pages. |
Anelli, E., D. Colleluori, M. Pontremoli, G. Cumino, A. Izquierdo, H. Quintanilla, “Metallurgical design of advanced heavy wall seamless pipes for deep-water applications”, 4th International Conference on Pipeline Technology, May 9 to 13, 2004, Ostend, Belgium. |
Asahi, et al., Development of Ultra-high-strength Linepipe, X120, Nippon Steel Technical Report, Jul. 2004, Issue 90, pp. 82-87. |
ASM Handbook, Mechanical Tubing and Cold Finishing, Metals Handbook Desk Edition, (2000), 5 pages. |
Bai, M., D. Liu, Y. Lou, X. Mao, L. Li, X. Huo, “Effects of Ti addition on low carbon hot strips produced by CSP process”, Journal of University of Science and Technology Beijing, 2006, vol. 13, No. 3, p. 230. |
Beretta, Stefano et al., “Fatigue Assessment of Tubular Automotive Components in Presence of Inhomogeneities”, Proceedings of IMECE2004, ASME International Mechanical Engineering Congress, Nov. 13-19, 2004, pp. 1-8. |
Berner, Robert A., “Tetragonal Iron Sulfide”, Science, Aug. 31, 1962, vol. 137, Issue 3531, pp. 669. |
Berstein et al.,“The Role of Traps in the Microstructural Control of Hydrogen Embrittlement of Steels” Hydrogen Degradation of Ferrous Alloys, Ed. T. Oriani, J. Hirth, and M. Smialowski, Noyes Publications, 1988, pp. 641-685. |
Boulegue, Jacques, “Equilibria in a sulfide rich water from Enghien-les-Bains, France”, Geochimica et Cosmochimica Acta, Pergamom Press, 1977, vol. 41, pp. 1751-1758, Great Britain. |
Bruzzoni et al.: “Study of Hydrogen Permeation Through Passive Films on Iron Using Electrochemical Impedance Spectroscopy,” 2003. |
Cancio et al., “Characterization of microalloy precipitates in the austenitic range of high strength low alloy steels”, Steel Research, 2002, vol. 73, pp. 340-346. |
Carboni, A., A. Pigani, G. Megahed, S. Paul, “Casting and rolling of API X 70 grades for artic application in a thin slab rolling plant”, Stahl u Eisen, 2008, No. 1, p. 131-134. |
Chang, L.C., “Microstructures and reaction kinetics of bainite transformation in Si-rich steels,” XP0024874, Materials Science and Engineering, vol. 368, No. 1-2, Mar. 15, 2004, pp. 175-182, Abstract, Table 1. |
Clark: “Some Comments on the Composition and Stability Relations of Mackinawite,” 1966. |
Craig, Bruce D.: “Effect of Copper on the Protectiveness of Iron Sulfide Films,” 1984. |
D.O.T. 178.68 Spec. 39, pp. 831-840, Non reusable (non refillable) cylinders, Oct. 1, 2002. |
De Medicis, Rinaldo, “Cubic FeS, a Metastable Iron Sulfide”, Science, American Association for the Advancement of Science, Steenbock Memorial Library, Dec. 11, 1970, vol. 170, Issue 3963, pp. 723-728. |
Echaniz, “The effect of microstructure on the KISSC of low alloy carbon steels”, Nace Corrosion '98, EE. UU., Mar. 1998, pp. 22-27, San Diego. |
Echaniz, G., Morales, C., Perez, T., “Advances in Corrosion Control and Materials in Oil and Gas Production” Papers from Eurocorr 97 and Eurocorr 98, 13, P. S. Jackman and L.M. Smith, Published for the European Federation of Corrosion, No. 26, European Federation of Corrosion Publications, 1999. |
Fang, Hong-Sheng, et al.: “The Developing Prospect of Air-cooled Baintitic Steels”, International Journal of Issi, vol. 2, No. 2, Feb. 1, 2005, pp. 9-18. |
Gojic, Mirko and Kosec, Ladislav “The Susceptibility to the Hydrogen Embrittlement of Low Alloy Cr and CrMo Steels”, ISIJ International, 1997, vol. 37, Issue 4, pp. 412-418. |
Heckmann, et al., Development of low carbon Nb—Ti—B microalloyed steels for high strength large diameter linepipe, Ironmaking and Steelmaking, 2005, vol. 32, Issue 4, pp. 337-341. |
Howells, et al.: “Challenges for Ultra-Deep Water Riser Systems”, IIR, London, Apr. 1997, 11 pages. |
Hutchings et al.: “Ratio of Specimen thickness to charging area for reliable hydrogen permeation measurement,” 1993. |
Iino et al., “Aciers pour pipe-lines resistant au cloquage et au criquage dus a l'hydrogene”, Revue de Metallurgie, 1979, vol. 76, Issue 8-9, pp. 591-609. |
Ikeda et al., “Influence of Environmental Conditions and Metallurgical Factors on Hydrogen Induced Cracking of Line Pipe Steel”, Corrosion/80, National Association of Corrosion Engineers, 1980, vol. 8, pp. 8/1-8/18, Houston, Texas. |
Izquierdo, et al.: “Qualification of Weldable X65 Grade Riser Sections with Upset Ends to Improve Fatigue Performance of Deepwater Steel Catenary Risers”, Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, Jul. 6-11, 2008, p. 71. |
Jacobs, Lucinda and Emerson, Steven, “Trace Metal Solubility in an Anoxid Fjord”, Earth and Planetary Sci. Letters, Elsevier Scientific Publishing Company, 1982, vol. 60, pp. 237-252, Amsterdam, Netherlands. |
Johnston, P. W., G.Brooks, “Effect of Al2O3 and TiO2 Additions on the Lubrication Characteristics of Mould Fluxes”, Molten Slags, Fluxes and Salts '97 Conference, 1997 pp. 845-850. |
Keizer, Joel, “Statistical Thermodynamics of Nonequilibrium Processes”, Spinger-Verlag, 1987. |
Kishi, T., H.Takeucgi, M.Yamamiya, H.Tsuboi, T.Nakano, T.Ando, “Mold Powder Technology for Continuous Casting of Ti-Stabilized Stainless Steels”, Nippon Steel Technical Report, No. 34, Jul. 1987, pp. 11-19. |
Korolev, D. F., “The Role of Iron Sulfides in the Accumulation of Molybdenum in Sedimentary Rocks of the Reduced Zone”, Geochemistry, 1958, vol. 4, pp. 452-463. |
Lee, Sung Man and Lee, Jai Young, “The Effect of the Interface Character of TiC Particles on Hydrogen Trapping in Steel”, Acta Metall., 1987, vol. 35, Issue 11, pp. 2695-2700. |
Mehling, Wilfred L.: “Hot Upset Forging,” ASM Handbook vol. 14, 1998, pp. 84-95. |
Mishael, et al., “Practical Applications of Hydrogen Permeation Monitoring,” Corrosion, Mar. 28-Apr. 1, 2004. |
Morice et al.: “Moessbauer Studies of Iron Sulphides,” 1969. |
Mukongo, T., P.C.Pistorius, and A.M.Garbers-Craig, “Viscosity Effect of Titanium Pickup by Mould Fluxes for Stainless Steel”, Ironmaking and Steelmaking, 2004, vol. 31, No. 2, pp. 135-143. |
Mullet et al., “Surface Chemistry and Structural Properties of Mackinawite Prepared by Reaction of Sulfide Ions with Metallic Iron”, Geochemica et Cosmochemica Acta, 2002, vol. 66, Issue 5, pp. 829-836. |
Murcowchick, James B. and Barnes, H.L., “Formation of a cubic FeS”, American Mineralogist, 1986, vol. 71, pp. 1243-1246. |
Nagata, M., J. Speer, D. Matlock, “Titanium nitride precipitation behavior in thin slab cast high strength low alloyed steels”, Metallurgical and Materials Transactions A, 2002 ,vol. 33A, p. 3099-3110. |
Nakai et al., “Development of Steels Resistant to Hydrogen Induced Cracking in Wet Hydrogen Sulfide Environment”, Transactions of the ISIJ, 1979, vol. 19, pp. 401-410. |
Pressure Equipment Directive 97/23/EC, May 29, 1997, downloaded from website:http://ec.europa.eu/enterprise/pressure_equipment/ped/index_en.html on Aug. 4, 2010. |
Prevéy, Paul, et al., “Introduction of Residual Stresses to Enhance Fatigue Performance in the Initial Design”, Proceedings of Turbo Expo 2004, Jun. 14-17, 2004, pp. 1-9. |
Rickard, D.T., “The Chemistry of Iron Sulphide Formation at Low Tempuratures”, Stockholm Contrib. Geol., 1969, vol. 26, pp. 67-95. |
Riecke, Ernst and Bohnenkamp, Konrad, “Uber den Einfluss von Gittersoerstellen in Eisen auf die Wassersroffdiffusion”, Z. Metallkde.., 1984, vol. 75, pp. 76-81. |
Shanabarger, M.R. and Moorhead, R. Dale, “H2O Adsorption onto clean oxygen covered iron films”, Surface Science, 1996, vol. 365, pp. 614-624. |
Shoesmith, et al., “Formation of Ferrous Monosulfide Polymorphs During Corrosion of Iron by Aqueous Hydrogen Sulfide at 21 degrees C”, Journal of the Electrochemical Society, 1980, vol. 127, Issue 5, pp. 1007-1015. |
Skoczylas, G., A.Dasgupta, R.Bommaraju, “Characterization of the chemical interactions during casting of High-titanium low carbon enameling steels”, 1991 Steelmaking Conference Proceeding, pp. 707-717. |
Smyth, D., et al.: Steel Tublar Products, Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, ASM Handbook, ASM International, 1990, p. 327-336. |
Spry, Alan, “Metamorphic Textures”, Perganom Press, 1969, New York. |
Taira et al., “HIC and SSC Resistance of Line Pipes for Sour Gas Service”, Nippon Kokan Technical Report, 1981, vol. 31, Issue 1-13. |
Taira et al., “Study on the Evaluation of Environmental Condition of Wet Sour Gas”, Corrosion 83 (Reprint. No. 156, National Association of Corrosion Engineers), 1983, pp. 156/2-156/13, Houston, Texas. |
Takeno et al., “Metastable Cubic Iron Sulfide—With Special Reference to Mackinawite”, American Mineralogist, 1970, vol. 55, pp. 1639-1649. |
Tenaris Newsletter for Pipeline Services, Apr. 2005, p. 1-8. |
Tenaris Newsletter for Pipeline Services, May 2003, p. 1-8. |
Thethi, et al.: “Alternative Construction for High Pressure High Temperature Steel Catenary Risers”, OPT USA, Sep. 2003, p. 1-13. |
Thewlis, G., Weldability of X100 linepipe, Science and Technology of Welding and Joining, 2000, vol. 5, Issue 6, pp. 365-377. |
Tivelli, M., G. Cumino, A. Izquierdo, E. Anelli, A. Di Schino, “Metallurgical Aspects of Heavy Wall—High Strength Seamless Pipes for Deep Water Applications”, RioPipeline 2005, Oct. 17 to 19, 2005, Rio (Brasil), Paper No. IBP 1008_05. |
Todoroki, T. Ishii, K. Mizuno, A. Hongo, “Effect of crystallization behavior of mold flux on slab surface quality of a Ti-bearing Fe—Cr⇒Ni super alloy cast by means of continuous casting process”, Materials Science and Engineering A, 2005, vol. 413-414, p. 121-128. |
Turconi, G. L.: “Improvement of resistance to SSC initiation and propagation of high strength OCTG through microstruture and precipitation control”; “Paper 01077”, NACE International, Houston, TX, Mar. 16, 2001. (XP009141583). |
Vaughan, D. J. And Ridout, M.S., “Moessbauer Studies of Some Sulphide Minerals”, J. Inorg Nucl. Chem., 1971, vol. 33, pp. 741-746. |
Wegst, C.W., “Stahlüssel”, Auflage 1989, Seite 119, 2 pages. |
Astm, “E112-13 Standard Test Methods for Determining Average Grain Size,” ASTM International. 2012. p. 1-28. |
Chitwood, G. B., et al.: “High- Strength Coiled Tubing Expands Service Capabilities”, as presented at the 24th Annual OTC in Houston, Texas, May 4-7, 1992, in 15 pages. |
Davis, J.R., et al. “ASM—Speciality Handbook—Carbon and alloy steels” ASM Speciality Handbook, Carbon and Alloy Steels, 1996, pp. 12-27, XP002364757 US. |
Drill Rod Joint Depth Capacity Chart, downloaded Jan. 15, 2013; http://www.boartlongyear.com/drill-rod-joint-depth-capacity-chart. |
E. Anelli, et al., “Metallurgical Design of Advanced Heavy Wall Seamless pipes for Deepwater Applications”, 4th International Conference on Pipeline Technology, May 9-13, 2004, Ostend, Belgium. |
Extrait du Catalogue N 940, 1994. |
Fratini et al.: “Improving friction stir welding of blanks of different thicknesses,” Materials Science and Engineering A 459 (2007). |
Fritz T et al, “Characterization of electroplated nickel”, Microsystem Technologies, Dec. 31, 2002, vol. 9, No. 1-2, pp. 87-91, Berlin, DE. |
Gomez, G., et al.: “Air cooled bainitic steels for strong, seamless pipes—Part 1—allowy design, kinetics and microstructure”, Materials Science and Technology, vol. 25, No. 12, Dec. 1, 2009. (XP002611498). |
Hollomon, J.H., et al., Time-tempered Relations in Tempering Steel. New York Meeting, pp. 223-249, 1945. |
ISO. Petroleum and natural gas industries—Materials for use in H2Scontaining environments in oil and gas production. ANSI/NACE ISO, 145 pages, 2009. |
Kazutoshi Ohashi et al, “Evaluation of r-value of steels using Vickers hardness test”, Journal of Physics: Conference Series, Aug. 7, 2012, p. 12045, vol. 379, No. 1, Institute of Physics Publishing, Bristol, GB. |
Tivelli et al., “Metakkurgical Aspects of Heavy Wall—High Strength Seamless Pipes for Deep Water Applications”, RioPipeline, Oct. 17-19, 2005, Rio, Brasil. |
Mechanical Tubing and Cold Finishing, Metals Handbook Desk Edition, (2000), 5 pages. |
NACE MR0175/ISO 15156-1 Petroleum and natural gas industries—Materials for use in H2S-containing Environments in oil and gas production—Part 1: General principles for selection of cracking-resistant materials, Jun. 28, 2007. |
Nandan et al.: “Recent advances in friction-stir welding—Process, weldment structure and properties,” Progress in Materials Science 53 (2008) 980-1023. |
Pollack, Herman, W., Materials Science and Metallurgy, Fourth Edition, pp. 96 and 97, 1988. |
Savatori et al.: European Commssion Report, EUR 2006, EUR2207, 3 pp STN_Abstract. |
Seamless Steel Tubes for Pressure Purposes-Technical Delivery Conditions—Part 4: Non-alloy and Alloy Steel Tubes with Specified Low Temperature Properties British Standard BS EN 10216-4:2002 + A1:2004 E:1-30, published Mar. 2004. |
Specification for Threading, Gauging and Thread Inspection of Casing, Tubing, and Line Pipe Threads, American Petroleum Institute, Specification 5B, Apr. 2008, 15th Edition (Excerpts Only). |
Tenaris brochure. Coiled Tubes HS8OCRA, 2 pages, 2008. |
Tenaris brochure. Coiled Tubes Suggested Field Welding Procedure (GTAW) for Coiled Tubing Grads HS70, HS80, HS90, HS11 0, 3 pages, 2007. |
Tenaris brochure. Coiled Tubing for Downhole Applications, 10 pages, 2007. |
“2019 ASME Boiler and Pressure Vessel Code: An International Code” New York: American Society of Mechanical Engineers, 2019, pp. 1044-1053. |
F. Garofalo. Fundamentals of Creep and Creep-rupture in Metals. Macmillan, 1965.. Total Pgs. 8. |
D. Jones, et al. Thor 115 Welding Experience. Proceedings from the Eight International Conference on Advantages in Materials for Fossil Power Plants, 2016. pp. 1048-1059. |
USGS, Ferroalloys Statistics and Information. 2017 Annual Publication. Retrieved from https://www.usgs.gov/centers/nmic/ferroalloys-statistics-and-information on Dec. 23, 2020. Total Pgs. 10. |
Number | Date | Country | |
---|---|---|---|
20160102856 A1 | Apr 2016 | US |