High-chromium heat-resistant steel

Information

  • Patent Grant
  • 11105501
  • Patent Number
    11,105,501
  • Date Filed
    Tuesday, June 24, 2014
    10 years ago
  • Date Issued
    Tuesday, August 31, 2021
    3 years ago
Abstract
The present invention provides a high-chromium heat-resistant steel. The steel contains in mass %, C: 0.08% to 0.13%; Si: 0.15% to 0.45%; Mn: 0.1% to 1.0%; Ni: 0.01% to 0.5%; Cr: 10.0% to 11.5%; Mo: 0.3% to 0.6%; V: 0.10% to 0.25%; Nb: 0.01% to 0.06%; N: 0.015% to 0.07%; B: ≤0.005%, and Al: ≤0.04%. The balance consists of Fe and inevitable impurity elements. The steel shows a martensitic microstructure.
Description
FIELD OF THE INVENTION

The present invention relates to a high-chromium heat-resistant steel.


BACKGROUND OF THE INVENTION

Until now, several 9% Cr heat-resistant steels containing delta ferrite have been proposed as high-chromium steels to improve weldability, and some of them have already been used for steam contacting components in thermal power plants. However, since 9% Cr heat-resistant steels are greatly impaired in long-term creep strength and impact properties, 9% Cr-1% Mo steels having martensitic microstructure not containing delta ferrite are mainly used now. In recent years, temperatures and pressures of steam conditions have been greatly increased to improve thermal efficiency in thermal power plants. Therefore, the operating conditions of power plants are changing from supercritical pressure to ultra supercritical pressure. In addition, plants operable under more severe steam conditions are planned. With such increasing severity in the steam conditions, the presently used 9% Cr-1% Mo steels (Grade 91 steels) cannot be adapted to boiler tubes in future plants because of their limited oxidation resistance and high temperature strength. Meanwhile, austenitic heat resisting stainless steels can be candidate materials to be used for future plants, but the application thereof is limited by economical efficiency. Hence, the development of heat-resistant steels is desired for the usage in steam conditions with even higher temperatures.


Under these circumstances, new types of high chromium steels primarily to improve the creep strength have been developed as disclosed in JP-A-1993-311342, JP-A-1993-311345 and JP-A-1997-291308. These steels have improved creep rupture strength and toughness by the addition of W as a solid-solution hardening element and, further, by the addition of alloy elements such as Co, Ni, and Cu. In addition, JP-A-1988-89644 discloses steels with optimized contents of W and Nb and improved creep strength. U.S. Pat. No. 4,564,392 describes Cr-containing steels in which the ratio of C/N is optimized. The steels exemplified in the latter US patent document contain relatively large amounts of Mo and N. Steel containing 12% Cr is considered particularly suitable for use at high temperatures and under high stress. All of these known steels allegedly have improved creep strength by the addition of alloy elements, such as W and Co to conventional heat-resistant steels through the solid-solution hardening. However, since W and Co are expensive elements leading to increase of material prices, the use of these elements is limited from the viewpoint of economical effects.


Further, the improvement of steam oxidation resistance is indispensable against high temperature steam. In addition, increasing the Cr content from the conventional 9% Cr steels is effective to improve the steam oxidation resistance in the existing condition. However, since increasing the Cr content results in the formation of delta ferrite, the austenite forming elements such as C and Ni are needed to be increased to obtain the tempered martensite structure. However, the contents of these elements are limited because the increase in C and Ni contents reduces the weldability and the long-term creep strength, respectively. Although there are cases where Co or the like is added to suppress the formation of delta ferrite, such an element is expensive, therefore resulting in decrease in the economical efficiency.


DISCLOSURE OF INVENTION

In view of the circumstances described above, an object of the present invention is to provide an improved high-chromium heat-resistant steel, consisting of in mass %, C: 0.08% to 0.13%; Si: 0.15% to 0.45%; Mn: 0.1% to 1.0%; Ni: 0.01% to 0.5%; Cr: 10.0% to 11.5%; Mo: 0.3% to 0.6%; V: 0.10% to 0.25%; Nb: 0.01% to 0.06%; N: 0.015% to 0.07%, B: ≤0.005%, and Al: ≤0.04%, wherein the balance is Fe and inevitable impurity elements. A further object is to provide steel capable of being used for ultra supercritical pressure boilers. A further object is to provide steel improved in creep rupture strength and in steam oxidation properties for high temperature steam under the base of economical steels without addition of expensive elements, such as W and Co.


The steel composition of the present invention comprises low carbon (C), manganese (Mn), silicon (Si), chromium (Cr), nickel (Ni), molybdenum (Mo), vanadium (V), niobium (Nb) and nitrogen (N).


In an embodiment, one or more of the following elements can be added: aluminum (Al) and Boron (B).


The remainder of the composition comprises iron (Fe) and inevitable impurities.


The present invention relates to a high-chromium heat-resistant steel. Embodiments thereof are shown in the following Table 1 (compositions are expressed in mass %), wherein the balance is Fe and inevitable impurity elements:














TABLE 1









Range (mass %)

Preferred Range













Legend
Element
Min
Max
Min
Max















M
C
0.08
0.13
0.08
0.11


M
Si
0.15
0.45
0.15
0.35


M
Mn
0.10
1.00
0.40
0.60


M
Ni
0.01
0.50
0.01
0.20


M
Cr
10.00
11.50
10.45
11.00


M
Mo
0.30
0.60
0.45
0.55


M
V
0.10
0.25
0.15
0.25


M
Nb
0.010
0.060
0.035
0.060


M
N
0.0150
0.0700
0.0400
0.0700


O
Al

0.040

0.025


O
B
0.001
0.005
0.002
0.004


I
P

0.030

0.018


I
S

0.010

0.005


I
Sn

0.0200

0.0200


I
Pb

0.0030

0.0030


I
As

0.0120

0.0120


I
Sb

0.0040

0.0040


I
Cu

0.25

0.25


I
Co

0.020

0.020





Legends:


M = Mandatory;


O = Optional;


I = Inevitable impurity element that may be present






In an embodiment of the high-chromium heat-resistant steel B is in the range of 0.001% to 0.005% by mass.


In an embodiment of the high-chromium heat-resistant steel, the mass % of the inevitable impurity elements is lower than 0.4%.


In an embodiment of the high-chromium heat-resistant steel, the inevitable impurity elements comprises elements other than: C, Si, Mn, Ni, Cr, Mo, V, Nb, N, Fe.


In an embodiment of the high-chromium heat-resistant steel, the inevitable impurities may comprise one or more of phosphorus (P), sulfur (S), cobalt (Co), copper (Cu), antimony (Sb), arsenic (As), tin (Sn) and lead (Pb).


In an embodiment of the high-chromium heat-resistant steel, P+S+Co+Cu+Sb+As+Sn+Pb≤0.40% (in mass %).


In an embodiment of the high-chromium heat-resistant steel, P+S+Co+Cu+Sb+As+Sn+Pb≤0.35% (in mass %).


The inevitable impurity elements relate to the normal contamination as result of the production of steel.


The present invention has provided a high-chromium heat-resistant steel with improved properties in both the creep rupture strength and steam oxidation resistance, which as hitherto been difficult in the conventional 9Cr-1Mo steel. In addition, the main composition of the present invention does not contain expensive elements such as W and Co and contain a smaller amount of Mo, therefore being advantageous in economical efficiency. Thus, the present invention can meet to the usage for future thermal power plants with higher temperature and pressure as steam conditions.


The invention further relates to a steam contacting component, e.g. a tube, made from a high-chromium heat-resistant steel according to the invention. The tube can be a seamless or welded tube.


The invention further relates to a pressure boiler comprising one or more steam contacting components, e.g. a boiler drum and/or a tube, made from a high-chromium heat-resistant steel according to the invention.


The invention further relates to a thermal power plant comprising a steam contacting component according to the invention.


The invention further relates to a thermal power plant comprising a pressure boiler according to the invention.







DETAILED DESCRIPTION FOR CARRYING OUT THE INVENTION

Reasons for limitations for the individual elements will be discussed below.


C: 0.08% to 0.13%;


C is an austenite forming element suppressing ferrite formation. Hence, an appropriate amount of C is determined with ferrite forming elements such as Cr, in order to obtain the tempered martensite structure. In addition, C precipitates as carbides of the MC type (M represents an alloying element (The same will applies hereinafter.)) and M23C6 type, which greatly affect the high temperature strength, and in particular, creep rupture strength. With C content of less than 0.08%, the amount of precipitation is insufficient for precipitation strengthening, and also the suppression of delta ferrite phase is imperfect. For this reason, the lower limit thereof is set to 0.08%. With the addition of more than 0.13% of C, weldability is impaired and toughness is decreased. Further, agglomerated coarsening of carbides is accelerated resulting in a decrease in the creep rupture strength on the high-temperature and long term side. For this reason, the range thereof is set to 0.08% to 0.13%, preferably within the range of 0.08% to 0.11% (mass percentage)


Si: 0.15% to 0.45%;


Si is added as a deoxidizing agent and for oxidation resistance. However, Si is a strong ferrite forming element and toughness is impaired by the ferrite phase. For this reason, the range thereof is set to 0.15% to 0.45% to balance the oxidation resistance and the tempered martensite structure; preferably within the range of 0.15% to 0.35% (mass percentage)


Mn: 0.1% to 1.0%;


Mn is added as a deoxidizing agent and a desulfurizing agent. In addition, it is also an austenite forming element suppressing the delta ferrite phase, but excessive addition thereof impairs the creep strength. For this reason, the range thereof is set to 0.1% to 1%; preferably within the range of 0.40% to 0.60% (mass percentage)


Ni: 0.01% to 0.5%;


Ni is a strong austenite forming element suppressing ferrite phase formation. However, excessive addition thereof impairs long-term creep rupture strength. For this reason, the range suggested is set from 0.01% to 0.5%, preferably within the range of 0.01% to 0.20% (mass percentage)


Cr: 10.0% to 11.5%;


Cr is an important element for securing steam oxidation resistance. Cr content of 10.0% or more is necessary from the viewpoint of steam oxidation resistance for high temperature steam. However, excessive addition of Cr as well as Si causes ferrite formation and also causes formation of brittle phases in long-term creep, thereby impairing the rupture strength. For this reason, the upper limit thereof is set to 11.5%, preferably within the range of 10.45% to 11% (mass percentage)


Mo: 0.3% to 0.6%;


Mo is a ferrite forming element while it increases the creep strength due to the effect of solid-solution hardening. However, excessive addition thereof results in the formation of delta ferrite and the precipitation of coarse intermetallic compounds not contributing to the creep rupture strength. For this reason, the range thereof is set to 0.3% to 0.6%, preferably within the range of 0.45% to 0.55% (mass percentage)


V: 0.10% to 0.25%;


V precipitates as fine carbonitrides and thereby improves both high temperature strength and creep rupture strength. With a content of less than 0.1%, the amount of precipitation is insufficient to increase the creep strength. In contrast, excessive addition thereof results in formation of bulky V (C, N) precipitates not contributing to the creep strength. For this reason, the range thereof is set to 0.1% to 0.25%, preferably within the range of 0.15% to 0.25% (mass percentage)


Nb: 0.01% to 0.06%;


Nb also precipitates as fine carbonitrides, and is an important element improving the creep rupture strength. A content of 0.01% or more is necessary to obtain this effect. However, similarly as V, excessive addition of Nb results in formation of bulky carbonitrides to reduce the creep rupture strength. Hence, the range thereof is set to 0.01% to 0.06%, preferably within the range of 0.035% to 0.06% (mass percentage)


N: 0.015% to 0.07%,


N precipitates as either nitrides or carbonitrides thereby to improve the creep rupture strength. It is also an austenite forming element to suppress delta ferrite phases. However, excessive addition thereof impairs toughness. For this reason, the range thereof is set to 0.015% to 0.070%, preferably within the range of 0.040% to 0.070% (mass percentage)


Al: ≤0.04%; and


Al can be used as a deoxidizing agent, but it impairs the long-term creep rupture strength with excessive addition. For this reason, when optionally used, the upper limit thereof is set to 0.04%, preferably less than 0.025% (mass percentage)


B: 0.001% to 0.005%.


B is an element strengthening the grain boundary and that has also the effect of the precipitation hardening as M23(C,B)6, thus being effective for improving the creep rupture strength. However, excessive addition thereof impairs workability under high temperatures leading to a cause of cracking, and also impairs the creep rupture ductility. For this reason, when optionally used, the range thereof is set to 0.001% to 0.005%, preferably from 0.002% to 0.004% (mass percentage).


P: ≤0.03%;


P is an Inevitable impurity element contained in melting raw materials and not easily reduced in steel making process. It impairs toughness at room temperatures and high temperatures as well as hot workability. If present, the upper limit is set to 0.03%, preferably lees than 0.018% (mass percentage)


S: ≤0.01%;


S is also an inevitable impurity element and it impairs hot workability. It also can be a cause of cracks, scratches, or the like. If present, the upper limit is set to 0.01%, preferably lees than 0.005% (mass percentage)


In the present invention, the manufacturing conditions are not specifically limited. The tempered martensite structure can be obtained by conventional normalizing treatment heated at temperatures in the range of 950 to 1150 degree centigrade followed by air cooling and tempering treatment heated at temperatures in the range of 700 to 800 degree centigrade.


EXAMPLES

Steels according to the present invention (Nos. A to C) and comparative steels (Nos. D to F) having chemical compositions shown in Table 2 were melted using a vacuum induction melting furnace, cast into 50 kg or 70 kg ingot, and then hot-rolled into steel plates with a thickness of 12 mm to 15 mm. Then, the steel plates were heat treated by normalizing and then tempering. The normalizing temperature is in a range of 1050° C. to 1100° C., and the tempering temperature is in a range of 770° C. to 780° C. Obtained microstructure is a tempered martensite structure, not containing delta ferrite. Among comparative steels, Steel D has a component system of 9Cr-1Mo steels called Grade 91 steels, which are widely used at present. Steel D was used as a steel representing existing materials.























TABLE 2





Division
Steel
C
Si
Mn
P
S
Ni
Cr
Mo
V
Nb
Al
N
B







Inventive steel
A
0.09
0.21
0.25
0.012
0.002
0.20
10.6
0.51
0.22
0.04
0.012
0.044



Inventive steel
B
0.12
0.42
0.75
0.009
0.003
0.15
10.3
0.55
0.18
0.05
0.008
0.028



Inventive steel
C
0.11
0.18
0.48
0.013
0.001
0.41
11.3
0.34
0.20
0.03
0.015
0.040
0.0025


Comparative
D
0.10
0.32
0.47
0.011
0.003
0.20
8.5

0.98

0.25

0.07

0.013
0.045



steel
















Grade91
















Comparative
E
0.13
0.29
0.53
0.015
0.004
0.17

12.2

0.48
0.21
0.03
0.007
0.048



steel
















Comparative
F
0.09
0.36
0.38
0.009
0.002
0.31
9.2
0.38
0.16
0.04
0.019
0.035



steel










(mass %) The underlined figures indicate the value that is out of the range in the present invention.


Test specimens were taken from the heat treated plates and were subjected to creep rupture testing and steam oxidation testing. Creep rupture testing was performed using a 6 mm diameter specimen under testing temperature of 650° C. and stresses of 110 MPa and 70 MPa. For steels of this type, testing requires tens of thousands hours to clarify superiority or inferiority at testing temperature of 600° C., which is an actual temperature for real thermal power plants. Therefore, the testing temperature was elevated to 650° C., and two stress conditions were applied with estimated rupture time periods of about 1,000 hours and about 10,000 hours. Since the difference in the rupture time among steels is assumed to be small on a short-term side testing of about 1,000 hours using a 110 MPa testing condition, 70 MPa testing condition was applied as long-term testing of about 10,000 hours to differentiate the rupture strength among steels.


For steam oxidation testing, the temperature was set to 650° C., which is the same as that for the creep rupture testing. In the testing, an average thickness of scale formed on the surface of the specimen subjected to 1,000-hour steam oxidation testing was measured using an optical microscope. In this manner, the steam oxidation resistance was evaluated. The specimen is a small sample of 15 mm×20 mm×10 mm taken from the heat treated plate material.


The results of the creep rupture testing and the steam oxidation testing are shown in Table 3.












TABLE 3









Creep rupture time (h) Test
Steam oxidation



temperature 650° C.
testing 650° C.,













Stress:
Stress:
1000 h Average


Division
Steel
110 MPa
70 MPa
scale thickness (μm)














Inventive steel
A
883
25,451
39


Inventive steel
B
923
23,801
40


Inventive steel
C
783
21,985
33


Comparative
D
482
8,862
92


steel


Comparative
E
1,034
7,075
30


steel


Comparative
F
804
21,904
72


steel










Compared to the steel D equivalent to the existing Grade 91 steel, steels for the present invention demonstrate excellent high temperature properties. For example, the rupture time is three times or more in the long-term testing with the stress of 70 MPa and the average thickness of scale formed in steam oxidation is no more than half. Thus, significant improvements are shown in the creep rupture strength and the steam oxidation resistance.


Comparative steel E having higher Cr content of 12.2% significantly improves the steam oxidation resistance, however it decreases the long-term creep rupture strength. Although the microstructure of Steel E is tempered martensite, not containing delta ferrite, the decreased creep rupture strength is considered owing to an increase in Cr content. Comparative steel F having equivalent Cr content to the existing Grade 91 steels cannot improve the steam oxidation properties with considerably thick scales compared with steels of the present invention.


INDUSTRIAL APPLICABILITY

According to the present invention, it is possible to provide a high-chromium heat-resistant steel that enhances both the creep rupture strength and the steam oxidation resistance even not containing expensive elements such as W and Co and less containing Mo. Therefore the present invention provides excellent economical efficiency. The inventive steel can be advantageously used for steam contacting components, e.g. tubes for a pressure boiler and/or a boiler drum.

Claims
  • 1. A high-chromium heat-resistant steel, consisting of, in mass %: C: 0.08% to 0.13%;Si: 0.15% to 0.45%;Mn: 0.1% to 1.0%;Ni: 0.01% to 0.5%;Cr: 10.0% to 11.5%;Mo: 0.3% to 0.6%;V: 0.15% to 0.25%;Nb: 0.01% to 0.06%;N: 0.015% to 0.07%,B: 0 to 0.005%; andAl: 0 to 0.04%;wherein the balance is Fe and inevitable impurity elements.
  • 2. The high-chromium heat-resistant steel of claim 1, wherein B is in the range of 0.001% to 0.005% by mass.
  • 3. The high-chromium heat-resistant steel of claim 1, wherein the mass % of the inevitable impurity elements is lower than 0.4%.
  • 4. The high-chromium heat resistant steel of claim 1, consisting of, in mass %: C: 0.08% to 0.11%;Si: 0.15% to 0.35%;Mn: 0.40% to 0.60%;Ni: 0.01% to 0.2%;Cr: 10.45% to 11.0%;Mo: 0.45% to 0.55%;V: 0.15% to 0.25%;Nb: 0.035% to 0.06%;N: 0.040% to 0.070%;B: 0 to 0.005%; andAl: 0 to 0.04%;wherein the balance is Fe and inevitable impurity elements.
  • 5. The high-chromium heat-resistant steel of claim 4, wherein B is in the range of 0.002% to 0.004%.
  • 6. The high-chromium heat-resistant steel of claim 4, wherein Al: 0 to 0.025% by mass.
  • 7. A steam contacting component made from the high-chromium heat-resistant steel of claim 1.
  • 8. A pressure boiler comprising one or more steam contacting components made from the high-chromium heat-resistant steel of claim 1.
  • 9. A thermal power plant comprising the steam contacting component of claim 7.
  • 10. A thermal power plant comprising the pressure boiler of claim 8.
  • 11. The steam contacting component of claim 7, wherein the steam contacting component is a tube.
  • 12. The pressure boiler of claim 8, wherein the one or more steam contacting components is a boiler drum.
  • 13. The pressure boiler of claim 8, wherein the one or more steam contacting components is a tube.
  • 14. The high-chromium heat-resistant steel of claim 1, wherein the steel has a martensitic microstructure.
  • 15. The high-chromium heat-resistant steel of claim 14, wherein the steel does not contain delta ferrite.
  • 16. The high-chromium heat-resistant steel of claim 1, wherein the steel has a creep rupture time of at least 21,985 hours under a temperature of 650° C. and a stress of 70 MPa.
  • 17. The high-chromium heat-resistant steel of claim 1, wherein the steel has a creep rupture time of at least 23,801 hours under a stress of 70 MPa at a temperature of 650° C.
  • 18. The high-chromium heat-resistant steel of claim 1, wherein the steel has a creep rupture time of at least 25,451 hours under a stress of 70 MPa at a temperature of 650° C.
  • 19. The high-chromium heat-resistant steel of claim 1, wherein the steel has a creep rupture time of between 21,985 and 25,451 hours under a stress of 70 MPa at a temperature of 650° C.
  • 20. The high-chromium heat-resistant steel of claim 1, wherein the steel forms an average scale thickness of at most 33 μm under a steam oxidation temperature of 650° C. for 1000 hours.
  • 21. The high-chromium heat-resistant steel of claim 1, wherein the steel forms an average scale thickness of at most 39 μm of under a steam oxidation temperature of 650° C. for 1000 hours.
  • 22. The high-chromium heat-resistant steel of claim 1, wherein the steel forms an average scale thickness of at most 40 μm under a steam oxidation temperature of 650° C. for 1000 hours.
  • 23. The high-chromium heat-resistant steel of claim 1, wherein the steel forms an average scale thickness of 33 to 40 μm under a steam oxidation temperature of 650° C. for 1000 hours.
  • 24. The high-chromium heat-resistant steel of claim 1, wherein the steel has a creep rupture time of between 21,985 and 25,451 hours under a stress of 70 MPa at a temperature of 650° C., and wherein the steel forms an average scale thickness of 33 to 40 μm under a steam oxidation temperature of 650° C. for 1000 hours.
  • 25. The high-chromium heat-resistant steel of claim 1, wherein Ni is in the range of 0.01% to 0.2% by mass.
  • 26. The high-chromium heat-resistant steel of claim 1, wherein Mo is in the range of 0.45% to 0.6% by mass.
Priority Claims (1)
Number Date Country Kind
13173530 Jun 2013 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2014/062561 6/24/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/207656 12/31/2014 WO A
US Referenced Citations (296)
Number Name Date Kind
3316395 Lavin Apr 1967 A
3316396 Trott et al. Apr 1967 A
3325174 Weaver Jun 1967 A
3362731 Gasche et al. Jan 1968 A
3366392 Kennel Jan 1968 A
3413166 Zackay et al. Nov 1968 A
3489437 Duret Jan 1970 A
3512789 Tanner May 1970 A
3552781 Helland Jan 1971 A
3572777 Blose et al. Mar 1971 A
3575430 Alpine Apr 1971 A
3592491 Glover Jul 1971 A
3599931 Hanson Aug 1971 A
3655465 Snape et al. Apr 1972 A
3733093 Seiler May 1973 A
3810793 Heller May 1974 A
3854760 Duret Dec 1974 A
3889989 Legris et al. Jun 1975 A
3891224 Ditcher Jun 1975 A
3893919 Flegel et al. Jul 1975 A
3915697 Giuliani et al. Oct 1975 A
3918726 Kramer Nov 1975 A
3986731 DeHoff Oct 1976 A
4014568 Carter et al. Mar 1977 A
4147368 Baker et al. Apr 1979 A
4163290 Sutherlin et al. Jul 1979 A
4219204 Pippert Aug 1980 A
4231555 Saito Nov 1980 A
4299412 Parmann Oct 1981 A
4305059 Benton Dec 1981 A
4310163 Pippert Jan 1982 A
4336081 Hijikata et al. Jun 1982 A
4345739 Wheatley Aug 1982 A
4354882 Greer Oct 1982 A
4366971 Lula Jan 1983 A
4368894 Parmann Jan 1983 A
4373750 Mantelle et al. Feb 1983 A
4376528 Ohshimatani et al. Mar 1983 A
4379482 Suzuki et al. Apr 1983 A
4384737 Reusser May 1983 A
4406561 Ewing Sep 1983 A
4407681 Ina et al. Oct 1983 A
4426095 Buttner Jan 1984 A
4445265 Olson et al. May 1984 A
4473471 Robichaud et al. Sep 1984 A
4475839 Strandberg Oct 1984 A
4491725 Pritchard Jan 1985 A
4506432 Smith Mar 1985 A
4526628 Ohno et al. Jul 1985 A
4527815 Smith Jul 1985 A
4564392 Ohhashi et al. Jan 1986 A
4570982 Blose et al. Feb 1986 A
4591195 Chelette et al. May 1986 A
4592558 Hopkins Jun 1986 A
4601491 Bell, Jr. et al. Jul 1986 A
4602807 Bowers Jul 1986 A
4623173 Handa et al. Nov 1986 A
4629218 Dubois Dec 1986 A
4662659 Blose et al. May 1987 A
4674756 Fallon et al. Jun 1987 A
4688832 Ortloff et al. Aug 1987 A
4706997 Carstensen Nov 1987 A
4710245 Roether Dec 1987 A
4721536 Koch et al. Jan 1988 A
4758025 Frick Jul 1988 A
4762344 Perkins et al. Aug 1988 A
4812182 Fang et al. Mar 1989 A
4814141 Imai et al. Mar 1989 A
4844517 Beiley et al. Jul 1989 A
4856828 Kessler et al. Aug 1989 A
4955645 Weems Sep 1990 A
4958862 Cappelli et al. Sep 1990 A
4988127 Cartensen Jan 1991 A
5007665 Bovisio et al. Apr 1991 A
5067874 Foote Nov 1991 A
5137310 Noel et al. Aug 1992 A
5143381 Temple Sep 1992 A
5154534 Guerin et al. Oct 1992 A
5180008 Aldridge et al. Jan 1993 A
5191911 Dubois Mar 1993 A
5242199 Hann et al. Sep 1993 A
5328158 Lewis et al. Jul 1994 A
5348350 Blose et al. Sep 1994 A
5352406 Barteri et al. Oct 1994 A
5360239 Klementich Nov 1994 A
5449420 Okada et al. Sep 1995 A
5454883 Yoshie et al. Oct 1995 A
5456405 Stagg Oct 1995 A
5505502 Smith et al. Apr 1996 A
5515707 Smith May 1996 A
5538566 Gallagher Jul 1996 A
5592988 Meroni et al. Jan 1997 A
5598735 Saito et al. Feb 1997 A
5653452 Jarvenkyla Aug 1997 A
5712706 Castore et al. Jan 1998 A
5794985 Mallis Aug 1998 A
5810401 Mosing et al. Sep 1998 A
5860680 Drijver et al. Jan 1999 A
5870976 Cooke Feb 1999 A
5879030 Clayson et al. Mar 1999 A
5879474 Bhadeshia et al. Mar 1999 A
5944921 Cumino et al. Aug 1999 A
5993570 Gray Nov 1999 A
6006789 Toyooka et al. Dec 1999 A
6030470 Hensger et al. Feb 2000 A
6044539 Guzowksi Apr 2000 A
6045165 Sugino et al. Apr 2000 A
6056324 Reimert et al. May 2000 A
6070912 Latham Jun 2000 A
6173968 Nelson et al. Jan 2001 B1
6188037 Hamada et al. Feb 2001 B1
6196530 Muhr et al. Mar 2001 B1
6217676 Takabe et al. Apr 2001 B1
6248187 Asahi et al. Jun 2001 B1
6257056 Shibayama et al. Jul 2001 B1
6267828 Kushida et al. Jul 2001 B1
6311965 Muhr et al. Nov 2001 B1
6331216 Toyooka et al. Dec 2001 B1
6347814 Cerruti Feb 2002 B1
6349979 Noel et al. Feb 2002 B1
6358336 Miyata Mar 2002 B1
6384388 Anderson et al. May 2002 B1
6412831 Noel et al. Jul 2002 B1
6447025 Smith Sep 2002 B1
6478344 Pallini, Jr. et al. Nov 2002 B2
6481760 Noel et al. Nov 2002 B1
6494499 Galle, Sr. et al. Dec 2002 B1
6514359 Kawano Feb 2003 B2
6527056 Newman Mar 2003 B2
6540848 Miyata et al. Apr 2003 B2
6550822 Mannella et al. Apr 2003 B2
6557906 Carcagno May 2003 B1
6558484 Onoe et al. May 2003 B1
6581940 Dittel Jun 2003 B2
6632296 Yoshinaga et al. Oct 2003 B2
6648991 Turconi et al. Nov 2003 B2
6669285 Park et al. Dec 2003 B1
6669789 Edelman et al. Dec 2003 B1
6682610 Inoue Jan 2004 B1
6683834 Ohara et al. Jan 2004 B2
6709534 Kusinski et al. Mar 2004 B2
6752436 Verdillon Jun 2004 B1
6755447 Galle, Jr. et al. Jun 2004 B2
6764108 Ernst et al. Jul 2004 B2
6767417 Fujita et al. Jul 2004 B2
6814358 Keck Nov 2004 B2
6851727 Carcagno et al. Feb 2005 B2
6857668 Otten et al. Feb 2005 B2
6883804 Cobb Apr 2005 B2
6905150 Carcagno et al. Jun 2005 B2
6921110 Morotti et al. Jul 2005 B2
6958099 Nakamura et al. Oct 2005 B2
6971681 Dell'Erba et al. Dec 2005 B2
6991267 Ernst et al. Jan 2006 B2
7014223 Della Pina et al. Mar 2006 B2
7066499 Della Pina et al. Jun 2006 B2
7074283 Omura Jul 2006 B2
7083686 Itou Aug 2006 B2
7108063 Carstensen Sep 2006 B2
7118637 Kusinski et al. Oct 2006 B2
7182140 Wood Feb 2007 B2
7214278 Kusinski et al. May 2007 B2
7255374 Carcagno et al. Aug 2007 B2
7264684 Numata et al. Sep 2007 B2
7284770 Dell'erba et al. Oct 2007 B2
7310867 Corbett, Jr. Dec 2007 B2
7431347 Ernst et al. Oct 2008 B2
7464449 Santi et al. Dec 2008 B2
7475476 Roussie Jan 2009 B2
7478842 Reynolds, Jr. et al. Jan 2009 B2
7506900 Carcagno et al. Mar 2009 B2
7621034 Roussie Nov 2009 B2
7635406 Numata et al. Dec 2009 B2
7735879 Toscano et al. Jun 2010 B2
7744708 López et al. Jun 2010 B2
7753416 Mazzaferro et al. Jul 2010 B2
7862667 Turconi et al. Jan 2011 B2
8002910 Tivelli et al. Aug 2011 B2
8007601 López et al. Aug 2011 B2
8007603 Garcia et al. Aug 2011 B2
8016362 Itoga Sep 2011 B2
8215680 Santi Jul 2012 B2
8221562 Valdez et al. Jul 2012 B2
8262094 Beele Sep 2012 B2
8262140 Santi et al. Sep 2012 B2
8317946 Arai et al. Nov 2012 B2
8322754 Carcagno Dec 2012 B2
8328958 Turconi et al. Dec 2012 B2
8328960 Gomez et al. Dec 2012 B2
8333409 Santi et al. Dec 2012 B2
8414715 Altschuler et al. Apr 2013 B2
8544304 Santi Oct 2013 B2
8636856 Altschuler et al. Jan 2014 B2
8821653 Anelli et al. Sep 2014 B2
8840152 Carcagno et al. Sep 2014 B2
8926771 Agazzi Jan 2015 B2
9004544 Carcagno et al. Apr 2015 B2
9163296 Valdez et al. Oct 2015 B2
9187811 Gomez et al. Nov 2015 B2
9188252 Altschuler et al. Nov 2015 B2
9222156 Altschuler et al. Dec 2015 B2
9234612 Santi et al. Jan 2016 B2
9340847 Altschuler et al. May 2016 B2
9383045 Santi et al. Jul 2016 B2
9598746 Anelli et al. Mar 2017 B2
9644248 Anelli et al. May 2017 B2
9708681 Eguchi et al. Jul 2017 B2
9970242 Narikawa et al. May 2018 B2
20010035235 Kawano Nov 2001 A1
20020011284 Von Hagen et al. Jan 2002 A1
20020153671 Raymond et al. Oct 2002 A1
20020158469 Mannella et al. Oct 2002 A1
20030019549 Turconi et al. Jan 2003 A1
20030111146 Kusinski et al. Jun 2003 A1
20030116238 Fujita Jun 2003 A1
20030155052 Kondo et al. Aug 2003 A1
20030165098 Ohara et al. Sep 2003 A1
20030168859 Watts Sep 2003 A1
20040118490 Klueh et al. Jun 2004 A1
20040118569 Brill et al. Jun 2004 A1
20040131876 Ohgami et al. Jul 2004 A1
20040139780 Cai et al. Jul 2004 A1
20040187971 Omura Sep 2004 A1
20040195835 Noel et al. Oct 2004 A1
20040262919 Dutilleul et al. Dec 2004 A1
20050012278 Delange Jan 2005 A1
20050076975 Lopez Apr 2005 A1
20050087269 Merwin Apr 2005 A1
20050093250 Santi et al. May 2005 A1
20050166986 Dell'erba et al. Aug 2005 A1
20060006600 Roussie Jan 2006 A1
20060124211 Takano et al. Jun 2006 A1
20060137781 Kusinski et al. Jun 2006 A1
20060157539 Dubois Jul 2006 A1
20060169368 Lopez et al. Aug 2006 A1
20060231168 Nakamura et al. Oct 2006 A1
20060243355 Haiderer et al. Nov 2006 A1
20060273586 Reynolds, Jr. et al. Dec 2006 A1
20070039147 Roussie Feb 2007 A1
20070089813 Tivelli Apr 2007 A1
20070137736 Omura et al. Jun 2007 A1
20070216126 Lopez et al. Sep 2007 A1
20070246219 Manella et al. Oct 2007 A1
20080047635 Kondo et al. Feb 2008 A1
20080115863 McCrink et al. May 2008 A1
20080129044 Carcagno et al. Jun 2008 A1
20080219878 Konda et al. Sep 2008 A1
20080226396 Garcia et al. Sep 2008 A1
20080226491 Satou et al. Sep 2008 A1
20080257459 Arai et al. Oct 2008 A1
20080264129 Cheppe et al. Oct 2008 A1
20080303274 Mazzaferro et al. Dec 2008 A1
20080314481 Garcia et al. Dec 2008 A1
20090010794 Lopez et al. Jan 2009 A1
20090033087 Carcagno et al. Feb 2009 A1
20090047166 Tomomatsu et al. Feb 2009 A1
20090101242 Lopez et al. Apr 2009 A1
20090114318 Arai et al. May 2009 A1
20090226491 Satou et al. Sep 2009 A1
20100068549 Agazzi Mar 2010 A1
20100136363 Valdez et al. Jun 2010 A1
20100187808 Santi Jul 2010 A1
20100193085 Garcia Aug 2010 A1
20100206553 Bailey et al. Aug 2010 A1
20100294401 Gomez Nov 2010 A1
20100319814 Perez Dec 2010 A1
20100327550 Lopez Dec 2010 A1
20110042946 Santi Feb 2011 A1
20110077089 Hirai et al. Mar 2011 A1
20110097235 Turconi et al. Apr 2011 A1
20110133449 Mazzaferro Jun 2011 A1
20110233925 Pina Sep 2011 A1
20110247733 Arai et al. Oct 2011 A1
20110259482 Peters et al. Oct 2011 A1
20110284137 Kami et al. Nov 2011 A1
20120018056 Nakagawa et al. Jan 2012 A1
20120199255 Anelli Aug 2012 A1
20120204994 Anelli Aug 2012 A1
20120211132 Altschuler Aug 2012 A1
20120267014 Hitoshio et al. Oct 2012 A1
20130000790 Arai et al. Jan 2013 A1
20130004787 Ishiyama et al. Jan 2013 A1
20130264123 Altschuler Oct 2013 A1
20140021244 DuBois Jan 2014 A1
20140027497 Rowland et al. Jan 2014 A1
20140057121 Altschuler Feb 2014 A1
20140137992 Ishiguro et al. May 2014 A1
20140251512 Gomez Sep 2014 A1
20140272448 Valdez et al. Sep 2014 A1
20140299235 Anelli Oct 2014 A1
20140299236 Anelli Oct 2014 A1
20150368986 Narikawa Dec 2015 A1
20160024625 Valdez Jan 2016 A1
20160102856 Minami Apr 2016 A1
20160281188 Valdez et al. Sep 2016 A1
20160305192 Buhler Oct 2016 A1
Foreign Referenced Citations (171)
Number Date Country
0050159 Oct 2006 AR
388791 Aug 1989 AT
2319926 Jul 2008 CA
1401809 Mar 2003 CN
1487112 Apr 2004 CN
1292429 Dec 2006 CN
101480671 Jul 2009 CN
101542002 Sep 2009 CN
101613829 Dec 2009 CN
101413089 Nov 2010 CN
3310226 Oct 1984 DE
4446806 May 1996 DE
010037 Jun 2008 EA
012256 Aug 2009 EA
0 032 265 Jul 1981 EP
0 092 815 Nov 1983 EP
0 104 720 Apr 1984 EP
0 159 385 Oct 1985 EP
0 309 179 Mar 1989 EP
0 340 385 Nov 1989 EP
0 329 990 Nov 1992 EP
0 658 632 Jun 1995 EP
0 753 595 Jan 1997 EP
0 788 850 Aug 1997 EP
0 828 007 Mar 1998 EP
0 989 196 Mar 2000 EP
1 008 660 Jun 2000 EP
01027944 Aug 2000 EP
1 065 423 Jan 2001 EP
828 007 Nov 2001 EP
1 277 848 Jan 2003 EP
1 288 316 Mar 2003 EP
1 296 088 Mar 2003 EP
1 362977 Nov 2003 EP
1 413 639 Apr 2004 EP
1 182 268 Sep 2004 EP
0 788 850 Aug 2005 EP
1 705 415 Sep 2006 EP
1 717 324 Nov 2006 EP
1 726 861 Nov 2006 EP
1 876 254 Jan 2008 EP
1 914 324 Apr 2008 EP
1 554 518 Jan 2009 EP
2 028 284 Feb 2009 EP
2 133 442 Dec 2009 EP
2 216 576 Aug 2010 EP
2 239 343 Oct 2010 EP
2 778 239 Sep 2014 EP
1 149 513 Dec 1957 FR
2 704 042 Oct 1994 FR
2 848 282 Jun 2004 FR
2855587 Dec 2004 FR
498 472 Jan 1939 GB
1 398 214 Jun 1973 GB
1 428 433 Mar 1976 GB
2 104 919 Mar 1983 GB
2 234 308 Jan 1991 GB
2 276 647 Oct 1994 GB
2 388 169 Nov 2003 GB
58-187684 Dec 1983 JP
60-086209 May 1985 JP
S60 116796 Jun 1985 JP
60-215719 Oct 1985 JP
36025719 Oct 1985 JP
S61-103061 May 1986 JP
61270355 Nov 1986 JP
63004046 Jan 1988 JP
63004047 Jan 1988 JP
63230847 Sep 1988 JP
63230851 Sep 1988 JP
01-242761 Sep 1989 JP
01 259124 Oct 1989 JP
01 259125 Oct 1989 JP
01 283322 Nov 1989 JP
H0288716 Mar 1990 JP
05-098350 Dec 1990 JP
403006329 Jan 1991 JP
04 021718 Jan 1992 JP
04 107214 Apr 1992 JP
04 231414 Aug 1992 JP
05 287381 Nov 1993 JP
H06-042645 Feb 1994 JP
06-093339 Apr 1994 JP
06 172859 Jun 1994 JP
06-220536 Aug 1994 JP
07-003330 Jan 1995 JP
07 041856 Feb 1995 JP
07-139666 May 1995 JP
07 197125 Aug 1995 JP
08 311551 Nov 1996 JP
09 067624 Mar 1997 JP
09-235617 Sep 1997 JP
2704042 Oct 1997 JP
10 140250 May 1998 JP
10176239 Jun 1998 JP
10 280037 Oct 1998 JP
11 050148 Feb 1999 JP
11140580 May 1999 JP
11229079 Aug 1999 JP
2000-063940 Feb 2000 JP
2000-178645 Jun 2000 JP
2000-248337 Sep 2000 JP
2000-313919 Nov 2000 JP
2000248337 Dec 2000 JP
2001-131698 May 2001 JP
2001-164338 Jun 2001 JP
2001-172739 Jun 2001 JP
2001-220653 Aug 2001 JP
2001-271134 Oct 2001 JP
2002-096105 Apr 2002 JP
2002-130554 May 2002 JP
2003-041341 Feb 2003 JP
2004-011009 Jan 2004 JP
2007-031769 Jul 2005 JP
60 174822 Sep 2005 JP
2005-350754 Dec 2005 JP
2009293063 Dec 2009 JP
0245031 Mar 2000 KR
1418 Dec 1994 KZ
2506 Sep 1995 KZ
2673 Dec 1995 KZ
WO 1984002947 Aug 1984 WO
WO 199429627 Dec 1994 WO
WO 199622396 Jul 1996 WO
WO 200006931 Feb 2000 WO
WO 200070107 Nov 2000 WO
WO 2001075345 Oct 2001 WO
WO 200188210 Nov 2001 WO
WO 200229290 Apr 2002 WO
WO 2002035128 May 2002 WO
WO 2002068854 Sep 2002 WO
WO 2002086369 Oct 2002 WO
WO 2002093045 Nov 2002 WO
WO 2003033856 Apr 2003 WO
WO 2003048623 Jun 2003 WO
WO 2003087646 Oct 2003 WO
WO 2004023020 Mar 2004 WO
WO 2004031420 Apr 2004 WO
WO 2004033951 Apr 2004 WO
WO 2004053376 Jun 2004 WO
WO 2004097059 Nov 2004 WO
WO 2004109173 Dec 2004 WO
WO 2006003775 Jun 2005 WO
WO 2006009142 Jan 2006 WO
WO 2006087361 Apr 2006 WO
WO 2006078768 Jul 2006 WO
WO 2007002576 Jan 2007 WO
WO 2007017082 Feb 2007 WO
WO 2007017161 Feb 2007 WO
WO 2007023806 Mar 2007 WO
WO 2007028443 Mar 2007 WO
WO 2007034063 Mar 2007 WO
WO 2007063079 Jun 2007 WO
WO 2008003000 Jan 2008 WO
WO 2008007737 Jan 2008 WO
WO 2008090411 Jul 2008 WO
WO 2008110494 Sep 2008 WO
WO 2008127084 Oct 2008 WO
WO 2009000851 Dec 2008 WO
WO 2009000766 Jan 2009 WO
WO 2009010507 Jan 2009 WO
WO 2009027308 Mar 2009 WO
WO 2009027309 Mar 2009 WO
WO 2009044297 Apr 2009 WO
WO 2009065432 May 2009 WO
WO 2009106623 Sep 2009 WO
WO 2010061882 Jun 2010 WO
WO 2010122431 Oct 2010 WO
WO 2011152240 Dec 2011 WO
WO 2013007729 Jan 2013 WO
WO 2013094179 Jun 2013 WO
Non-Patent Literature Citations (94)
Entry
Machine translation of JP2009-293063A. (Year: 2009).
Search Report and Written Opinion for International App No. PCT/IB2014/062561 dated Sep. 25, 2014, 11 pages.
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 1: Non-alloy Steel Tubes with Specified Room Temperature Properties” British Standard BS EN 10216-1:2002 E:1-26, published May 2002.
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 2: Non-alloy and Alloy Steel Tubes with Specified Elevated Temperature Properties” British Standard BS EN 10216-2:2002+A2:2007:E:1-45, published Aug. 2007.
“Seamless Steel Tubes for Pressure Purposes—Technical Delivery Conditions—Part 3: Alloy Fine Grain Steel Tubes” British Standard BS EN 10216-3:2002 +A1:2004 E:1-34, published Mar. 2004.
Aggarwal, R. K., et al.: “Qualification of Solutions for Improving Fatigue Life at SCR Touch Down Zone”, Deep Offshore Technology Conference, Nov. 8-10, 2005, Vitoria, Espirito Santo, Brazil, in 12 pages.
Anelli, E., D. Colleluori, M. Pontremoli, G. Cumino, A. Izquierdo, H. Quintanilla, “Metallurgical design of advanced heavy wall seamless pipes for deep-water applications”, 4th International Conference on Pipeline Technology, May 9 to 13, 2004, Ostend, Belgium.
Asahi, et al., Development of Ultra-high-strength Linepipe, X120, Nippon Steel Technical Report, Jul. 2004, Issue 90, pp. 82-87.
ASM Handbook, Mechanical Tubing and Cold Finishing, Metals Handbook Desk Edition, (2000), 5 pages.
Bai, M., D. Liu, Y. Lou, X. Mao, L. Li, X. Huo, “Effects of Ti addition on low carbon hot strips produced by CSP process”, Journal of University of Science and Technology Beijing, 2006, vol. 13, No. 3, p. 230.
Beretta, Stefano et al., “Fatigue Assessment of Tubular Automotive Components in Presence of Inhomogeneities”, Proceedings of IMECE2004, ASME International Mechanical Engineering Congress, Nov. 13-19, 2004, pp. 1-8.
Berner, Robert A., “Tetragonal Iron Sulfide”, Science, Aug. 31, 1962, vol. 137, Issue 3531, pp. 669.
Berstein et al.,“The Role of Traps in the Microstructural Control of Hydrogen Embrittlement of Steels” Hydrogen Degradation of Ferrous Alloys, Ed. T. Oriani, J. Hirth, and M. Smialowski, Noyes Publications, 1988, pp. 641-685.
Boulegue, Jacques, “Equilibria in a sulfide rich water from Enghien-les-Bains, France”, Geochimica et Cosmochimica Acta, Pergamom Press, 1977, vol. 41, pp. 1751-1758, Great Britain.
Bruzzoni et al.: “Study of Hydrogen Permeation Through Passive Films on Iron Using Electrochemical Impedance Spectroscopy,” 2003.
Cancio et al., “Characterization of microalloy precipitates in the austenitic range of high strength low alloy steels”, Steel Research, 2002, vol. 73, pp. 340-346.
Carboni, A., A. Pigani, G. Megahed, S. Paul, “Casting and rolling of API X 70 grades for artic application in a thin slab rolling plant”, Stahl u Eisen, 2008, No. 1, p. 131-134.
Chang, L.C., “Microstructures and reaction kinetics of bainite transformation in Si-rich steels,” XP0024874, Materials Science and Engineering, vol. 368, No. 1-2, Mar. 15, 2004, pp. 175-182, Abstract, Table 1.
Clark: “Some Comments on the Composition and Stability Relations of Mackinawite,” 1966.
Craig, Bruce D.: “Effect of Copper on the Protectiveness of Iron Sulfide Films,” 1984.
D.O.T. 178.68 Spec. 39, pp. 831-840, Non reusable (non refillable) cylinders, Oct. 1, 2002.
De Medicis, Rinaldo, “Cubic FeS, a Metastable Iron Sulfide”, Science, American Association for the Advancement of Science, Steenbock Memorial Library, Dec. 11, 1970, vol. 170, Issue 3963, pp. 723-728.
Echaniz, “The effect of microstructure on the KISSC of low alloy carbon steels”, Nace Corrosion '98, EE. UU., Mar. 1998, pp. 22-27, San Diego.
Echaniz, G., Morales, C., Perez, T., “Advances in Corrosion Control and Materials in Oil and Gas Production” Papers from Eurocorr 97 and Eurocorr 98, 13, P. S. Jackman and L.M. Smith, Published for the European Federation of Corrosion, No. 26, European Federation of Corrosion Publications, 1999.
Fang, Hong-Sheng, et al.: “The Developing Prospect of Air-cooled Baintitic Steels”, International Journal of Issi, vol. 2, No. 2, Feb. 1, 2005, pp. 9-18.
Gojic, Mirko and Kosec, Ladislav “The Susceptibility to the Hydrogen Embrittlement of Low Alloy Cr and CrMo Steels”, ISIJ International, 1997, vol. 37, Issue 4, pp. 412-418.
Heckmann, et al., Development of low carbon Nb—Ti—B microalloyed steels for high strength large diameter linepipe, Ironmaking and Steelmaking, 2005, vol. 32, Issue 4, pp. 337-341.
Howells, et al.: “Challenges for Ultra-Deep Water Riser Systems”, IIR, London, Apr. 1997, 11 pages.
Hutchings et al.: “Ratio of Specimen thickness to charging area for reliable hydrogen permeation measurement,” 1993.
Iino et al., “Aciers pour pipe-lines resistant au cloquage et au criquage dus a l'hydrogene”, Revue de Metallurgie, 1979, vol. 76, Issue 8-9, pp. 591-609.
Ikeda et al., “Influence of Environmental Conditions and Metallurgical Factors on Hydrogen Induced Cracking of Line Pipe Steel”, Corrosion/80, National Association of Corrosion Engineers, 1980, vol. 8, pp. 8/1-8/18, Houston, Texas.
Izquierdo, et al.: “Qualification of Weldable X65 Grade Riser Sections with Upset Ends to Improve Fatigue Performance of Deepwater Steel Catenary Risers”, Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, Jul. 6-11, 2008, p. 71.
Jacobs, Lucinda and Emerson, Steven, “Trace Metal Solubility in an Anoxid Fjord”, Earth and Planetary Sci. Letters, Elsevier Scientific Publishing Company, 1982, vol. 60, pp. 237-252, Amsterdam, Netherlands.
Johnston, P. W., G.Brooks, “Effect of Al2O3 and TiO2 Additions on the Lubrication Characteristics of Mould Fluxes”, Molten Slags, Fluxes and Salts '97 Conference, 1997 pp. 845-850.
Keizer, Joel, “Statistical Thermodynamics of Nonequilibrium Processes”, Spinger-Verlag, 1987.
Kishi, T., H.Takeucgi, M.Yamamiya, H.Tsuboi, T.Nakano, T.Ando, “Mold Powder Technology for Continuous Casting of Ti-Stabilized Stainless Steels”, Nippon Steel Technical Report, No. 34, Jul. 1987, pp. 11-19.
Korolev, D. F., “The Role of Iron Sulfides in the Accumulation of Molybdenum in Sedimentary Rocks of the Reduced Zone”, Geochemistry, 1958, vol. 4, pp. 452-463.
Lee, Sung Man and Lee, Jai Young, “The Effect of the Interface Character of TiC Particles on Hydrogen Trapping in Steel”, Acta Metall., 1987, vol. 35, Issue 11, pp. 2695-2700.
Mehling, Wilfred L.: “Hot Upset Forging,” ASM Handbook vol. 14, 1998, pp. 84-95.
Mishael, et al., “Practical Applications of Hydrogen Permeation Monitoring,” Corrosion, Mar. 28-Apr. 1, 2004.
Morice et al.: “Moessbauer Studies of Iron Sulphides,” 1969.
Mukongo, T., P.C.Pistorius, and A.M.Garbers-Craig, “Viscosity Effect of Titanium Pickup by Mould Fluxes for Stainless Steel”, Ironmaking and Steelmaking, 2004, vol. 31, No. 2, pp. 135-143.
Mullet et al., “Surface Chemistry and Structural Properties of Mackinawite Prepared by Reaction of Sulfide Ions with Metallic Iron”, Geochemica et Cosmochemica Acta, 2002, vol. 66, Issue 5, pp. 829-836.
Murcowchick, James B. and Barnes, H.L., “Formation of a cubic FeS”, American Mineralogist, 1986, vol. 71, pp. 1243-1246.
Nagata, M., J. Speer, D. Matlock, “Titanium nitride precipitation behavior in thin slab cast high strength low alloyed steels”, Metallurgical and Materials Transactions A, 2002 ,vol. 33A, p. 3099-3110.
Nakai et al., “Development of Steels Resistant to Hydrogen Induced Cracking in Wet Hydrogen Sulfide Environment”, Transactions of the ISIJ, 1979, vol. 19, pp. 401-410.
Pressure Equipment Directive 97/23/EC, May 29, 1997, downloaded from website:http://ec.europa.eu/enterprise/pressure_equipment/ped/index_en.html on Aug. 4, 2010.
Prevéy, Paul, et al., “Introduction of Residual Stresses to Enhance Fatigue Performance in the Initial Design”, Proceedings of Turbo Expo 2004, Jun. 14-17, 2004, pp. 1-9.
Rickard, D.T., “The Chemistry of Iron Sulphide Formation at Low Tempuratures”, Stockholm Contrib. Geol., 1969, vol. 26, pp. 67-95.
Riecke, Ernst and Bohnenkamp, Konrad, “Uber den Einfluss von Gittersoerstellen in Eisen auf die Wassersroffdiffusion”, Z. Metallkde.., 1984, vol. 75, pp. 76-81.
Shanabarger, M.R. and Moorhead, R. Dale, “H2O Adsorption onto clean oxygen covered iron films”, Surface Science, 1996, vol. 365, pp. 614-624.
Shoesmith, et al., “Formation of Ferrous Monosulfide Polymorphs During Corrosion of Iron by Aqueous Hydrogen Sulfide at 21 degrees C”, Journal of the Electrochemical Society, 1980, vol. 127, Issue 5, pp. 1007-1015.
Skoczylas, G., A.Dasgupta, R.Bommaraju, “Characterization of the chemical interactions during casting of High-titanium low carbon enameling steels”, 1991 Steelmaking Conference Proceeding, pp. 707-717.
Smyth, D., et al.: Steel Tublar Products, Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, ASM Handbook, ASM International, 1990, p. 327-336.
Spry, Alan, “Metamorphic Textures”, Perganom Press, 1969, New York.
Taira et al., “HIC and SSC Resistance of Line Pipes for Sour Gas Service”, Nippon Kokan Technical Report, 1981, vol. 31, Issue 1-13.
Taira et al., “Study on the Evaluation of Environmental Condition of Wet Sour Gas”, Corrosion 83 (Reprint. No. 156, National Association of Corrosion Engineers), 1983, pp. 156/2-156/13, Houston, Texas.
Takeno et al., “Metastable Cubic Iron Sulfide—With Special Reference to Mackinawite”, American Mineralogist, 1970, vol. 55, pp. 1639-1649.
Tenaris Newsletter for Pipeline Services, Apr. 2005, p. 1-8.
Tenaris Newsletter for Pipeline Services, May 2003, p. 1-8.
Thethi, et al.: “Alternative Construction for High Pressure High Temperature Steel Catenary Risers”, OPT USA, Sep. 2003, p. 1-13.
Thewlis, G., Weldability of X100 linepipe, Science and Technology of Welding and Joining, 2000, vol. 5, Issue 6, pp. 365-377.
Tivelli, M., G. Cumino, A. Izquierdo, E. Anelli, A. Di Schino, “Metallurgical Aspects of Heavy Wall—High Strength Seamless Pipes for Deep Water Applications”, RioPipeline 2005, Oct. 17 to 19, 2005, Rio (Brasil), Paper No. IBP 1008_05.
Todoroki, T. Ishii, K. Mizuno, A. Hongo, “Effect of crystallization behavior of mold flux on slab surface quality of a Ti-bearing Fe—Cr⇒Ni super alloy cast by means of continuous casting process”, Materials Science and Engineering A, 2005, vol. 413-414, p. 121-128.
Turconi, G. L.: “Improvement of resistance to SSC initiation and propagation of high strength OCTG through microstruture and precipitation control”; “Paper 01077”, NACE International, Houston, TX, Mar. 16, 2001. (XP009141583).
Vaughan, D. J. And Ridout, M.S., “Moessbauer Studies of Some Sulphide Minerals”, J. Inorg Nucl. Chem., 1971, vol. 33, pp. 741-746.
Wegst, C.W., “Stahlüssel”, Auflage 1989, Seite 119, 2 pages.
Astm, “E112-13 Standard Test Methods for Determining Average Grain Size,” ASTM International. 2012. p. 1-28.
Chitwood, G. B., et al.: “High- Strength Coiled Tubing Expands Service Capabilities”, as presented at the 24th Annual OTC in Houston, Texas, May 4-7, 1992, in 15 pages.
Davis, J.R., et al. “ASM—Speciality Handbook—Carbon and alloy steels” ASM Speciality Handbook, Carbon and Alloy Steels, 1996, pp. 12-27, XP002364757 US.
Drill Rod Joint Depth Capacity Chart, downloaded Jan. 15, 2013; http://www.boartlongyear.com/drill-rod-joint-depth-capacity-chart.
E. Anelli, et al., “Metallurgical Design of Advanced Heavy Wall Seamless pipes for Deepwater Applications”, 4th International Conference on Pipeline Technology, May 9-13, 2004, Ostend, Belgium.
Extrait du Catalogue N 940, 1994.
Fratini et al.: “Improving friction stir welding of blanks of different thicknesses,” Materials Science and Engineering A 459 (2007).
Fritz T et al, “Characterization of electroplated nickel”, Microsystem Technologies, Dec. 31, 2002, vol. 9, No. 1-2, pp. 87-91, Berlin, DE.
Gomez, G., et al.: “Air cooled bainitic steels for strong, seamless pipes—Part 1—allowy design, kinetics and microstructure”, Materials Science and Technology, vol. 25, No. 12, Dec. 1, 2009. (XP002611498).
Hollomon, J.H., et al., Time-tempered Relations in Tempering Steel. New York Meeting, pp. 223-249, 1945.
ISO. Petroleum and natural gas industries—Materials for use in H2Scontaining environments in oil and gas production. ANSI/NACE ISO, 145 pages, 2009.
Kazutoshi Ohashi et al, “Evaluation of r-value of steels using Vickers hardness test”, Journal of Physics: Conference Series, Aug. 7, 2012, p. 12045, vol. 379, No. 1, Institute of Physics Publishing, Bristol, GB.
Tivelli et al., “Metakkurgical Aspects of Heavy Wall—High Strength Seamless Pipes for Deep Water Applications”, RioPipeline, Oct. 17-19, 2005, Rio, Brasil.
Mechanical Tubing and Cold Finishing, Metals Handbook Desk Edition, (2000), 5 pages.
NACE MR0175/ISO 15156-1 Petroleum and natural gas industries—Materials for use in H2S-containing Environments in oil and gas production—Part 1: General principles for selection of cracking-resistant materials, Jun. 28, 2007.
Nandan et al.: “Recent advances in friction-stir welding—Process, weldment structure and properties,” Progress in Materials Science 53 (2008) 980-1023.
Pollack, Herman, W., Materials Science and Metallurgy, Fourth Edition, pp. 96 and 97, 1988.
Savatori et al.: European Commssion Report, EUR 2006, EUR2207, 3 pp STN_Abstract.
Seamless Steel Tubes for Pressure Purposes-Technical Delivery Conditions—Part 4: Non-alloy and Alloy Steel Tubes with Specified Low Temperature Properties British Standard BS EN 10216-4:2002 + A1:2004 E:1-30, published Mar. 2004.
Specification for Threading, Gauging and Thread Inspection of Casing, Tubing, and Line Pipe Threads, American Petroleum Institute, Specification 5B, Apr. 2008, 15th Edition (Excerpts Only).
Tenaris brochure. Coiled Tubes HS8OCRA, 2 pages, 2008.
Tenaris brochure. Coiled Tubes Suggested Field Welding Procedure (GTAW) for Coiled Tubing Grads HS70, HS80, HS90, HS11 0, 3 pages, 2007.
Tenaris brochure. Coiled Tubing for Downhole Applications, 10 pages, 2007.
“2019 ASME Boiler and Pressure Vessel Code: An International Code” New York: American Society of Mechanical Engineers, 2019, pp. 1044-1053.
F. Garofalo. Fundamentals of Creep and Creep-rupture in Metals. Macmillan, 1965.. Total Pgs. 8.
D. Jones, et al. Thor 115 Welding Experience. Proceedings from the Eight International Conference on Advantages in Materials for Fossil Power Plants, 2016. pp. 1048-1059.
USGS, Ferroalloys Statistics and Information. 2017 Annual Publication. Retrieved from https://www.usgs.gov/centers/nmic/ferroalloys-statistics-and-information on Dec. 23, 2020. Total Pgs. 10.
Related Publications (1)
Number Date Country
20160102856 A1 Apr 2016 US