This application relates to an electrical connector for use in a vehicle, in particular near a position connecting the door to the body of the vehicle or where a body panel rotates relative to another, such as any hinged closure.
When installed, electrical wiring may include bends to navigate about various obstacles and may be required to flex when routed between components that rotate relative to each other when mounted with hinges. For example, wiring installed in a vehicle may provide connections between components located in the vehicle doors and a central processor. This wiring may thus be required to bend regularly about the hinge as the vehicle doors are opened and closed.
The appended claims define this application. The present disclosure summarizes aspects of the embodiments and should not be used to limit the claims. Other implementations are contemplated in accordance with the techniques described herein, as will be apparent to one having ordinary skill in the art upon examination of the following drawings and detailed description, and these implementations are intended to be within the scope of this application.
Example embodiments are shown describing systems and apparatuses for connecting electrical wires together, in particular where the wiring must traverse a hinge or rotational axis. An example electrical connector includes a plurality of contact traces extending along a circumference of a tapered post, on a plurality of respective planes perpendicular to a post axis. The electrical connector also includes a tapered cup positioned over the tapered post, having a plurality of inward facing terminal contacts corresponding to the plurality of contact traces, wherein the terminal contacts are configured to maintain contact as the tapered cup rotates about the post axis.
Another example electrical connector includes a tapered post having a plurality of outward facing terminal contacts on a plurality of respective planes perpendicular to a post axis. The electrical connector also includes a tapered cup positioned over the tapered post having a plurality of contact traces corresponding to the plurality of terminal contacts, extending along an inner circumference of the tapered cup, wherein the terminal contacts are configured to maintain contact as the tapered cup rotates about the post axis.
For a better understanding of the invention, reference may be made to embodiments shown in the following drawings. The components in the drawings are not necessarily to scale and related elements may be omitted, or in some instances proportions may have been exaggerated, so as to emphasize and clearly illustrate the novel features described herein. In addition, system components can be variously arranged, as known in the art. Further, in the drawings, like reference numerals designate corresponding parts throughout the several views.
While the invention may be embodied in various forms, shown in the drawings and hereinafter described are some exemplary and non-limiting embodiments, with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiments illustrated.
As noted above, wiring may sometimes be used in situations where it must traverse a moving part, such as a hinge. For instance, vehicle doors often include switches, lights, sensors, and other electrical components that require a connection to a processor, power source, or other electrical device or system that is not located in the door. To connect these components, electrical wiring may be routed from the body of the vehicle through grommets in the door and vehicle body, positioned near the axis of the door hinge. The wires are then free to flex and bend as the door is opened and closed during normal use of the vehicle.
This setup can have several issues. For example, when wiring is routed inside grommets, burrs or rough surfaces may be present on the inside of the grommet which can cause fraying or other wear-and tear on the wires. Further, gaps may be present that can result in leaks or water entering the wiring area, which can cause corrosion and other ill effects. In addition, an increased number of wires being used can cause greater stress on the wiring during opening and closing of the door, which can lead to wire breakage and reduced reliability and robustness.
With these issues in mind, example embodiments disclosed herein may include making use of an electrical connector comprising separable components. Examples disclosed herein may be described with reference to a connector of wires between a vehicle door and body, however it should be noted that the connector described herein may be used in any location of the vehicle in which wires pass through a rotational axis, such as in a mechanism connecting the trunk of the vehicle to the body or a rotating seat. Further, it should be understood that the electrical connector disclosed herein may be used in other contexts aside from vehicle, in particular contexts in which a rotational axis is present over which the wiring must be connected.
Using a vehicle door as an example, an electrical connector of the present disclosure may include a body-side harness and a door-side harness with a floating pivot about the door hinge axis, allowing for the elimination of the door grommet. The electrical connector can be attached before or after the door is hung on the vehicle body, and also allows the door to be easily attached and removed without needing to re-wire. Further, the electrical connector disclosed herein allows for smaller gauge wires and thus increased wire density or “circuit count,” because the wiring does not flex during open and close cycling of the door. Rather, the connector itself rotates, and allows the wires to remain fixed with respect to the rotating elements. As such, the wires do not experience the wear and tear typical of a connection through the door hinge, and thus smaller gauge wires and increased circuit counts can be used.
The example electrical connector may include a tapered post over which a floating tapered cup is placed. The post may include contact traces, and the cup may include inward facing terminal contacts that, when the two parts are connected or attached, allow the electrical connection to pass from the post to the cup. The tapered post may have a post axis, and the contact traces may be perpendicular to the post axis. When the cup rotates, the terminal contacts may maintain contact with the contact traces. The post and cup may be tapered in the same or similar manner, such that when the cup is place onto the post, the inward facing terminal contacts do not scratch or deform when the cup is lowered onto the post. Rather, the taper may ensure that each terminal contact touches the corresponding contact trace on the post at the same time. The cup may then be configured to rotate with respect to the post as the door is opened or closed. The post and cup may also include a housing configured to protect the post and cup.
The plurality of contact traces 212 may extend on a plurality of respective planes perpendicular to post axis 230. As shown in
In some examples, a given plane perpendicular to the post axis 230 may include only one contact trace 212, which may extend around an entire circumference (e.g., approximately 360 degrees) of the tapered post. One or more planes may include multiple contact traces end to end around the circumference of the post 210. In these cases, each contact trace may extend around a portion of the tapered post 210. Where multiple traces are positioned in same plane, the multiple traces may be evenly distributed (e.g., such that each contact trace covers the same circumferential distance, albeit offset from the other traces in the plane), or they may be unevenly distributed (e.g., such that one contact trace covers a larger circumferential distance than another in the same plane).
In some examples, all planes may include the same number of contact traces. In other examples, some plane(s) may include a single trace, while other plane(s) include two or more traces. The number of contact traces per plane may correspond to an amount of rotation expected during use of the connector, or a limit provided by the physical use of the electrical connector. For instance, if the connector is intended for use in a door hinge that is limited from opening greater than 90 degrees, each contact trace in a given plane may be configured to cover 90 degrees of the circumference of the post as well. In some examples, a buffer may be included to allow for slight differences (e.g., for an electrical connector used in a door that will open to 90 degrees, a given plane may include three traces per plane, each covering approximately 120 degrees of the outer circumference of the tapered post).
In some examples, the tapered post 210 may include a spacing between traces in same plane. Planes on which the contact traces 212 are positioned may be perpendicular to post axis 230, such that they are parallel to a rotation axis 232 of cup 220 when the electrical connector 200 is fully assembled.
In some examples, tapered post 210 may include a channel 216, positioned on an outside surface of the tapered post 210, but inside the contact traces 210, as shown in
In some examples, tapered post 210 may include a single channel 216. In other examples, tapered posted 210 may include two or more channels. Where multiple channels are included, they may be positioned symmetrically or asymmetrically around the outer surface of the tapered post 210. The number of channels included may correspond to the number of contact traces included on each plane (or in any given plane), such that there are two channels where the post includes two traces per plane, three channels where there are three traces per plane, etc.
In some examples, the contact traces 212 may be axially or angularly indexed with respect to the post axis 230, as shown in
The tapered post 210 may also include a ring, seal, gasket, or other sealing member 236 positioned at a base of the post. The sealing member 236 may be configured to contact the tapered cup 220 when the electrical connector is fully assembled, and may prevent water, dirt, or other materials from entering and interfering with the operation of the electrical connector 200.
Further, tapered post 210 may include a bore hole 214 positioned in a center of the tapered post along the post axis 230. The bore hole may allow the cup 220 to be positioned onto the post, via a boss of the cup. This is shown and described in further detail with respect to
Electrical connector 200 also includes a tapered cup 220. The tapered cup 220 may be configured such that it can be positioned over the tapered post and centered around the post axis 230. The taper of the tapered cup 220 may be matched to the taper of the post 210. In some examples, the tapered cup 220 may be larger than the tapered post 210.
In some examples, the tapered cup may include a plurality of inward facing terminal contacts 222. These terminal contacts may have an inner side and an outer side. The outer side of the plurality of terminal contacts 222 may be coupled to the wires 228. And the inner side of the plurality of terminal contacts 222 may be configured to engage the contact traces 212 of the tapered post 210. As such, the terminal contacts 222 may be positioned on the tapered cup 220 such that they correspond to the contact traces 212 on the post 210.
The terminal contacts 222 may be spring contacts, configured to press against the contact traces 212. As such, the terminal contacts 222 may be configured to engage the contact traces 212 and maintain that engagement when the cup is rotated about the rotational axis 232 when the electrical connector is fully assembled.
In some examples, the terminal contacts 222 may be axially or angularly indexed to correspond to indexing of contact traces 212. This is illustrated in
In some examples, the tapered cup 220 may include one or more outward facing rib sections 224. The rib sections 224 may be configured to align terminal contacts 222, so as to ensure that the wires 228 coupled to the terminal contacts are secure and facing the proper direction. Terminal contacts 222 may be ordinarily configured to rotate when seated in the cup 220 (i.e., rotating perpendicular to the post axis 230). The rib sections 224 may be configured to abut the outer side of the terminal contacts, to prevent them from rotating perpendicular to the post axis 230. As such, wiring 228 coupled to the terminal contacts 222 may be prevented from rotating or moving with respect to the tapered cup 230 as well.
The spring 238 may be coupled to the tapered cup 220 on one end, and a housing (shown in
The electrical connector 200 is configured such that post 210 and cup 220 can rotate with respect to each other about the post axis 230. Rotation of the cup 220 with respect to the post 210 can allow the wires 218 and 228 to remain stationary with respect to the post 210 and cup 220. As such, electrical connector 200 allows voltage, current, data, and any other electrical signals to be transmitted between wires 218 and 228 without requiring any bending or flexing of the wires. As the cup 220 rotates, the terminal contacts 222 maintain their engagement with the contact traces 212, ensuring a stable connection.
Where the electrical connector 200 is installed for use in a vehicle door, the housing 240 may be coupled to the vehicle door and/or body at one or more points. The placement of the electrical connector may be such that the post axis 230 is positioned on a hinge axis of a vehicle door (i.e., the post axis and the hinge axis are the same). In this configuration, the housing may be attached to the door such that when the door is rotated to open or close, the cup 220 rotates as well.
Electrical connector 400 includes a tapered post 410, having a plurality of contact traces 412 extending around the circumference of the post 410 (i.e., into and out of the page in
Tapered post 410 also includes a bore hole 414 in the center of the post. The tapered cup 420 includes a boss 424, which aligns with the bore hole 414. When the tapered cup 420 is positioned onto the tapered post 410, the boss 424 aligns with and is inserted into the bore hole 414, to ensure that the post and cup are centered and aligned properly.
In some examples, the plurality of contact traces may be disposed on a flexible circuit, rather than individual components. The flexible circuit may be shaped to curve around the circumference of the tapered post, and may include contact traces on a plurality of planes perpendicular to the post axis.
The electrical connectors described above have been disclosed such that the post includes the plurality of contact traces, and the cup includes the plurality of corresponding terminal contacts. However, it should be noted that in some examples the reverse may be true—the post may include the terminal contacts while the cup includes the contact traces.
An example electrical connector may include a tapered post having a plurality of outward facing terminal contacts on a plurality of respective planes perpendicular to a post axis. The electrical connector may also include a tapered cup positioned over the tapered post having a plurality of contact traces corresponding to the plurality of terminal contacts, extending along an inner circumference of the tapered cup, wherein the terminal contacts are configured to maintain contact as the tapered cup rotates about the post axis.
In this arrangement, the post may include one or more channels configured to align the wiring coupled to the plurality of terminal contacts. And the cup may include one or more outward facing rib sections configured to align wiring coupled to the plurality of contact traces.
Further, the descriptions above with respect to the number of contact traces per plane may apply to the inward facing contact traces on the cup.
In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” and “an” object is intended to denote also one of a possible plurality of such objects. Further, the conjunction “or” may be used to convey features that are simultaneously present instead of mutually exclusive alternatives. In other words, the conjunction “or” should be understood to include “and/or”. The terms “includes,” “including,” and “include” are inclusive and have the same scope as “comprises,” “comprising,” and “comprise” respectively.
The above-described embodiments, and particularly any “preferred” embodiments, are possible examples of implementations and merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) without substantially departing from the spirit and principles of the techniques described herein. All modifications are intended to be included herein within the scope of this disclosure and protected by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2749526 | Petersen | Jun 1956 | A |
2892990 | Werndl | Jun 1959 | A |
3076163 | Nodge et al. | Jan 1963 | A |
3193636 | Daniels | Jul 1965 | A |
3665509 | Elkins | May 1972 | A |
3838234 | Peterson | Sep 1974 | A |
3860312 | Ordon, Jr. | Jan 1975 | A |
4421371 | Clark | Dec 1983 | A |
4640570 | Strate | Feb 1987 | A |
5409403 | Falossi | Apr 1995 | A |
6530784 | Yim | Mar 2003 | B1 |
9203184 | Hui | Dec 2015 | B1 |
9496638 | Su | Nov 2016 | B1 |
9620896 | Dubbaka | Apr 2017 | B1 |
9685742 | Liu | Jun 2017 | B2 |
10185369 | Yu | Jan 2019 | B1 |
10224654 | Su | Mar 2019 | B1 |
20020112320 | Hayashi | Aug 2002 | A1 |
20040038719 | Lee | Feb 2004 | A1 |
20110053386 | Li | Mar 2011 | A1 |
20140220790 | Lee | Aug 2014 | A1 |
20150099391 | Hashimoto | Apr 2015 | A1 |
20170179631 | Feldchtein | Jun 2017 | A1 |
20180013227 | Arditty | Jan 2018 | A1 |
20180013228 | Arditty | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
205330335 | Jun 1916 | CN |
101214296 | Dec 2012 | KR |
Number | Date | Country | |
---|---|---|---|
20190326714 A1 | Oct 2019 | US |