High Coercivity Magnetic Film for Use as a Hot Seed in a Magnetic Write Head and Method to Grow It

Abstract
A sub-structure, suitable for use as a hot seed on which to form a perpendicular magnetic main write pole, is described. It is made up of a buffer layer of atomic layer deposited alumina on which there are one or more seed layers having a body-centered cubic (bcc) crystal structure. Finally, the high coercivity magnetic film lies on the seed layer(s). It is critical that the high coercivity magnetic film be deposited at a very low deposition rate (around 1 Angstrom per second).
Description
TECHNICAL FIELD

The disclosed material relates to the general field of perpendicular magnetic write poles with particular reference to the design and formation of hot seed layers on which such poles are grown (main pole is under hot seed layers)


BACKGROUND

To further increase the storage areal density of the hard disk drive (HDD) system, there has been a growing demand for improving the performance of magnetic recording heads. In a current perpendicular magnetic recording (PMR) head, a single pole writer with a tunneling magnetoresistive (TMR) reader provides a high writing field and a large read-back signal to achieve a higher areal density.


The single pole writer consists of a main pole (MP) surrounded by magnetic shield materials from which the MP is separated by a nonmagnetic spacer layer. The MP has a tapered shape whose tip faces the magnetic media as well as serving as an air bearing surface (ABS). In addition to the MP and the magnetic shield materials, a single pole writer also includes a pair of pancake-like conductive coils. These two coils are connected through a center tab, with one placed above the MP and the other under the MP perpendicular to the ABS direction. During writing, an electric current is applied through the coils, causing a large magnetic field to be generated from the MP tip. This field is used to change the polarity of the magnetic media.


An MP ABS view of a prior art design is shown in FIG. 1. In ABS view the MP body 13 has a triangular or trapezoidal shape. As seen, the MP width (PW) defines the track width in the media. Soft magnetic shield materials 15 are used around the MP with a nonmagnetic spacer in between. The nonmagnetic space 14 on the two sides of the MP is called the Side Gap (SG) and the nonmagnetic space 12 above the MP is called the Write Gap (WG). Above the WG, a high magnetic magnetization material 11, such as Fe(1-x)Co(x) (x=20-55 at %), Fe(1-y)Ni(y) (y=5-55 at %) etc, is deposited above the MP write gap 12. This high magnetic magnetization layer 11 is the so-called “hot seed”.


SUMMARY

It has been an object of at least one embodiment of the present disclosure to provide a hot seed layer that is well suited to serve as a substrate on which to build a perpendicular main write pole. (hot seed is above main pole)


Another object of at least one embodiment of the present disclosure has been that said hot seed have high coercivity and low anisotropy.


Still another object of at least one embodiment of the present disclosure has been that said high coercivity be stable to temperatures of up to 120° C.


A further object of at least one embodiment of the present disclosure has been to provide a process for manufacturing said hot seed


These objects have been achieved by first depositing one or more seed layers having a body-centered cubic (bcc) crystal structure on the write gap. This is followed by the deposition of a buffer layer of alumina on the seed layer(s). It is important for this buffer layer to be laid down through atomic layer deposition (ALD) so as to achieve maximum conformal coverage.


Finally, a high coercivity magnetic film is deposited onto the layer of ALD alumina. It is a key feature of the disclosed method and structure that this high coercivity magnetic film be deposited at a very low deposition rate (around 1 Angstrom per second).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an ABS view of a MP of the prior art.



FIG. 2 is an ABS view of an MP with FeCo hot seed using high deposition power.



FIG. 3 is an ABS view of an MP with FeCo hot seed using low deposition power.



FIG. 4 is an ABS view of an MP with a buffer layer ALD Al2O3 and FeCo hot seed using low deposition power. (Please verify the words in Figure file for FIG. 4)



FIG. 5 Hysteresis loops of as-deposited and post-annealed FeCo films using 2 KW deposition power.



FIG. 6 Hysteresis loops of as-deposited and post-annealed FeCo films using 0.5 KW deposition power.



FIG. 7 Coercivity vs. deposition power for as-deposited and post-anneal FeCo films.



FIG. 8 ABS view of an MP with bcc seed layers located between the hot seed and the ALD Al2O3 buffer layer.



FIG. 9 Hysteresis loops of 1,000 Å FeCo film grown on Ta 50 Å seed layer in as-deposited and post-annealed states.





DETAILED DESCRIPTION

The disclosed material includes a method to grow a high coercivity Fe1-xCox (x range 20-55) film or a high coercivity Fe1-xNix (x range 5-55) film as the hot seed for a magnetic recording writer. This method involves using a low deposition power scheme in a Physical Vapor Deposition (PVD) system. When this deposition scheme is used, the coercivity of the Fe1-xCox) (x ranging from 20 to 55) hot seed—hereinafter to be referred to as the “special hot seed”—is greatly improved for both its as-deposited state as well as for its post magnetic anneal state.


A buffer layer may be inserted beneath the special hot seed. This buffer layer is an Al2O3 film, which should be formed by Atomic Layer Deposition (ALD). Additionally, one or more seed layers that have bcc crystalline structures may be inserted between the special hot seed and the ALD Al2O3 buffer layer.


The special hot seed was processed in a Nexus PVDi system manufactured by Veeco. The film is deposited at an Ar flow rate of 50 sccm, the process pressure was 3 mtorr, and the target-substrate distance of about 65 mm. The typical special hot seed thickness ranged from about 200 Å to 1,000 Å.


The special hot seed film was deposited directly onto the WG. The WG materials are nonmagnetic and act as an isolating spacer between the MP and the hot seed. The typical thickness for the WG is 50-350 Å. Typical WG materials are Al2O3, SiO2, Ru, etc. The magnetic properties were determined by measuring hysteresis loops using a BH looper (SHB instrument, Inc.) for the as-deposited films and annealed films.


The annealing conditions were 220° C. for 2 hours in a 250 Oe applied magnetic field. The deposition power, which in turn determined the deposition rate, was adjustable. FIG. 2 illustrates an MP ABS view for the case in which the special hot seed 21 was deposited at a relatively high deposition rate such as >3.6 Å per second.


In the first embodiment, as shown in FIG. 3, special hot seed 31, about 500 Å thick, was deposited at a relatively low deposition rate such as =3.6 Å per second Typically, the coercivity of the special hot seed formed a the lower deposition rate was found to be greater than that formed at the higher deposition rate i.e. the lower the deposition rate, the higher the coercivity of the deposited film.


In the second embodiment, as shown in FIG. 4, buffer layer 41 was added below the special hot seed 31. This buffer layer was 50-350 Å of Al2O3 formed in an Atomic Layer Deposition (ALD) system. The ALD-formed buffer layer can serve as all or part of the WG thickness. The ALD-formed Al2O3 buffer layer is amorphous, thus it has less crystalline effect on the hot seed above.


The hysteresis loops of special hot seeds grown at 4.8 Å per second deposition rate (2 KW deposition power) are shown in FIG. 5. An approximately 300 Å Al2O3 layer, formed through ALD, was used as the buffer layer. It was found that the as-deposited films are magnetically isotropic with coercivity about 20-30 Oe. The overall coercivity did not vary significantly post magnetic anneal but did become slightly lower in the annealing field direction.


The hysteresis loops for a special hot seed film formed with 0.5 KW deposition power (1.2 Å/sec.) are shown in FIG. 6. A˜300 Å Al2O3 buffer layer formed through ALD was used as the buffer layer. These films were also magnetically isotropic but their coercivity was greatly enhanced to about 100 Oe for as-deposited films. This coercivity dropped to about 60 Oe post magnetic annealing but was still 2.5 times larger than that of an annealed film formed at 2 KW deposition power (4.8 Å/sec.).



FIG. 7 summarizes the coercivity vs. the deposition power relationship for special hot seed films. The deposition power ranged from 0.2 KW to 2 KW, corresponding to a deposition rate range of from ˜0.48 to ˜4.8 Å/sec. All films had thicknesses of about 1,000 Å and were deposited on an ALD Al2O3 buffer layer about 300 Å thick. BH loop measurements showed the films to be isotropic. The coercivity increased nearly monotonically with decreasing deposition rate. The maximum coercivity (about 115 Oe for an as-deposited film and about 77 Oe for a post anneal film) was found to occur at a deposition power of 0.3 KW (0.72 Å/sec.).



FIG. 8 illustrates an embodiment wherein one or more seed layers 81 of Body-Centered Cubic (bcc) material were inserted between the special hot seed 31 and WG 12 (including the ALD Al2O3 buffer layer). The bcc seed layers serve to improve the bcc crystalline growth of the special hot seed layer, resulting in a higher coercivity because of the higher intrinsic crystalline anisotropy.


Additionally, since these bcc seed layer(s) are nonmagnetic they can be counted as part of the WG thickness surrounding the magnetic recording writer's main pole. Materials for the bcc seed layer(s) can be Ta, W, TaW, Ti, V, Cr, Mn, Ni1-xCrx (x range 28-100), Cr1-xTix (x range 0-37), including any combinations that crystallize as superlattices.



FIG. 9 shows an example of this bcc seed layer effect. A 50 Å Ta layer was inserted between a special hot seed deposited at low-power and the ALD Al2O3 buffer layer. The as-deposited film was magnetically isotropic with a coercivity of about 95 Oe. The post annealed film shows a coercivity of about 85 Oe. This reduced drop in coercivity confirmed the advantages of the bcc seed layer insertion.

Claims
  • 1. A process to form an isotropic high coercivity magnetic film for use as a hot seed in a magnetic recording writer having a write gap (WG), comprising: through use of physical vapor deposition, depositing said high coercivity magnetic film on a substrate at a deposition rate in a range of from 0.48 to 3.6 Angstroms per second; andthen, at a temperature ranging from 180 to 300° C. (preferably 220° C.), annealing said high coercivity magnetic film in an externally applied magnetic field ranging from 200 to 1000 Oe for at least 1.5 hours.
  • 2. The process recited in claim 1 wherein said high coercivity magnetic film is selected from the group consisting of Fe1-xCox (x range 20-55) and Fe1-xNix (x range 5-55)
  • 3. The process recited in claim 2 further comprising: through use of atomic layer deposition, inserting, between said substrate and said high coercivity magnetic film, a buffer layer of Al2O3, between 50 and 350 Å thick.
  • 4. The process recited in claim 3 further comprising: inserting, between said buffer layer of Al2O3 and said high coercivity magnetic film, one or more seed layers of nonmagnetic materials having a body-centered cubic (bcc) crystal structure.
  • 5. The process recited in claim 4 wherein one or more of said seed layers is selected from the group consisting of Ta, W, TaW, Ti, V, Cr, Mn, (x range 28-100), Cr1-xTix (x range 0-37), and any combinations that crystallize as a superlattice.
  • 6. The process recited in claim 4 wherein said substrate is said WG.
  • 7. The process recited in claim 6 wherein said buffer layer is also part of said WG.
  • 8. The process recited in claim 6 wherein said bcc seed layer(s) constitute part or all of said WG.
  • 9. The process recited in claim 2 wherein said high coercivity magnetic film has a coercivity greater than 60 Oe, as deposited, and a coercivity greater than 30 Oe, after being magnetically annealed.
  • 10. The process recited in claim 4 wherein said high coercivity magnetic film has a coercivity greater than 70 Oe, as deposited, and a coercivity greater than 60 Oe, after being magnetically annealed.
  • 11. An isotropic high coercivity magnetic film for use as a hot seed in a magnetic recording writer having a write gap (WG), comprising: on said WG, one or more seed layers having a body-centered cubic (bcc) crystal structure;on said seed layer(s), a buffer layer of atomic layer deposited (ALD) alumina; andon said layer of ALD alumina, a high coercivity magnetic film selected from the group consisting of Fe1-xCox (x range 20-55) and Fe1-xNix (x range 5-55).
  • 12. The high coercivity magnetic film described in claim 11 wherein one or more of said seed layers is selected from the group consisting of Ta, W, TaW, Ti, V, Cr, Mn, Ni1-xCrx (x range 28-100), Cr1-xTix (x range 0-37), and any combinations that crystallizes as a superlattice.
  • 13. The hot seed described in claim 11 wherein said high coercivity magnetic film has a coercivity greater than 70 Oe, as deposited, and a coercivity greater than 60 Oe, after being magnetically annealed.
  • 14. The hot seed described in claim 11 wherein said buffer layer is also part of said WG.
  • 15. The hot seed described in claim 11 wherein said bcc seed layer(s) constitute part or all of said WG.
  • 16. The hot seed described in claim 11 wherein said WG has a thickness in a range of 50-350 Å.
  • 17. The hot seed described in claim 11 wherein said high coercivity magnetic film has a thickness in a range of 200-1,000 Å.
  • 18. The hot seed described in claim 11 wherein said buffer layer of ALD alumina has a thickness in a range of 50-350 Å.
  • 19. The hot seed described in claim 11 wherein said bcc seed layer is Ta having a thickness of about 50 Å.