High conductivity polyaniline compositions and uses therefor

Abstract
The present invention describes compositions formed from polyanaline and carbon nanotubes, which exhibit enhanced conductivity and which provide uses in electronic circuit applications.
Description
FIELD OF THE INVENTION

The present invention describes compositions formed from polyanaline and carbon nanotubes, which exhibit enhanced conductivity and provide high utility in novel applications in electronic circuits.


TECHNICAL BACKGROUND OF THE INVENTION

Conductive polymers have long been known in the art, including polyacetylene, polypyrrole, poly(para-phenylene), and derivatives thereof. While in some cases exhibiting metallic-like conductivity, highly conductive polymers have been limited in their practical applications because they are typically chemically unstable in use, and virtually intractable, being unsuited for either solution or melt processing. All conductive polymers require acid or oxide functionality, usually referred to as doping, to achieve their high conductivities.


Polyaniline (PANI) stands out among conductive polymers in that it is known in the art to be chemically stable and readily soluble in conventional, environmentally friendly solvents, and thus offers the possibility for employing ordinary means known in the art forming coatings, films and sheets, fibers, printed patterns, and so forth.


Conductive PANI is described in great detail in Chiang et al, Synthetic Metals, 13 (1986), pp. 193–205. Chiang et al disclose numerous PANI compositions, identifying the protonic acid doped emeraldine nitrogen base salt, as the most highly conductive form, with a conductivity of 5 S/cm. This conductivity remains well below the 102 S/cm range characteristic of certain other conductive polymers, and which represents practical threshold conductivity for widespread utility in electronics.


Levon et al, Polymer 36, pp 2733ff (1995) and Ahiskog et al, Synthetic Metals, 69, pp 135ff (1995) disclose formation of the PANI nitrogen base salt at elevated temperature by combining with liquid organic acids such as dodecylbenzenesulfonic acid (DBSA).


There is considerable incentive to find a way to enhance the conductivity of PANI while preserving the desirable chemical stability and processibility thereof. Specifically, a PANI composition exhibiting a conductivity of ca. 102 S/cm may be a highly preferred material for important applications in electronics.


It is known in the art to combine PANI with inorganic fillers, including conductive fillers such as graphite, metal fibers, and superconducting ceramics, see for example Jen et al, U.S. Pat. No. 5,069,820.


Carbon nanotubes are a relatively new form of matter related to C60 the spherical material known popularly as “Buckminster Fullerene” While new, carbon nanotubes have elicited much interest because of their unusual structure and are available commercially. They are described in considerable detail in Carbon Nanotubes and Related Structures, by Peter J. F. Harris, Cambridge University Press, Cambridge, UK (1999).


Composites of conductive polymers and carbon nanotubes in the form of films are disclosed in Coleman et al, Phys. Rev. B 58 (12) R7492ff (1998), Chen et al, Advanced Materials 12 (7) 522 ff (2000), and Yoshino et al, Fullerene Sci. Tech. 7 (4) 695ff (1999).


Coleman et al, op. cit. discloses composites of poly(p-phenylenevinylene-co-2,5dioctoxy-m-phenylenevinylene) (PMPV) with carbon nanotubes produced by an electric arc procedure. Mass fractions of nanotubes plus residual soot ranged from ca. 0.5–35%. Films were spin-coated onto a platinum surface from a toluene solution. Conductivity is shown to exhibit a six order of magnitude increase between ca. 4% and ca 9% nanotubes.


Also disclosed in Coleman et al, op. cit., is a failed attempt to make a similar composite with PMMA. The failure is said to result from molecular conformational causes.


Chen et al, op. cit., disclose composite films of nanotubes and polypyrrole. Both films and coated nanotubes are disclosed. The nanotubes are shown to enhance the conductivity of the polypyrrole. The films are deposited by exposing various substrates to a solution of pyrrole and nanotubes followed by electropolymerization of the pyrrole in situ on the substrate, thus entrapping the nanotubes within the polymer matrix. Chen also employs arc-grown nanotubes.


Yoshino et al, op. cit., disclose composites of poly(3-hexylthiophene) (PAT6) and nanotubes produced by chemical vapor deposition and purified. The nanotubes were dispersed in hexene and mixed with the chloroform solution of the polymer. Films were formed by casting on a quartz plate. A ca. 4 order of magnitude change in conductivity was observed between a volume fraction of ca. 1% to ca. 10%, with the percolation threshold estimated to be at ca. 5.9%.


Laser thermal ablation image transfer technology for color proofing and printing is described in Ellis et al, U.S. Pat. No. 5,171,650 and elsewhere. Similar methods are in current commercial use in the printing and publishing businesses.


SUMMARY OF THE INVENTION

The present invention provides for a composition comprising a nitrogen base salt derivative of emeraldine polyaniline and carbon nanotubes.


The present invention further provides for electronic circuits comprising conductive pathways of a nitrogen base salt derivative of emeraldine polyaniline and carbon nanotubes.


The present invention further provides for a process for depositing conductive pathways from a donor element onto a receiver substrate contiguous with the donor element, wherein the donor element is a layered structure comprising a support layer capable of partially absorbing laser radiation, one or more heating layers, and an imaging topcoat transfer layer, and, optionally, an ejection layer, the process comprising:

    • (a) exposing said support layer to incident laser energy;
    • (b) converting said laser energy to heat in said one or more heating layer(s) that is (are) contiguous with the topcoat that absorbs said laser energy;
    • (c) said heat applied to said topcoat being sufficient to effect a transfer of at least a portion of said topcoat to a receiving surface;
    • wherein the topcoat is a conductive PANI/nanotube composite.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 shows a schematic of the laser deposition apparatus used to form electronically conductive pathways on a substrate.



FIG. 2 is a pixelated image generated using computer aided software. The image was translated into a pattern of pixels as further described herein.



FIG. 3 represents an image showing a close-up of source and drains and an intervening channel.





DETAILED DESCRIPTION

The present invention describes compositions comprising polyaniline and carbon nanotubes that exhibit electronic conductivities of ca. 102 S/cm while retaining the desirable chemical stability and solution processibility of polyaniline. The compositions of the present invention are highly suitable for preparation as coatings deposited in solution/dispersion form on substrates. In a preferred embodiment, the so-deposited coating is employed as a thermal image transfer medium, enabling the formation thereby of conductive pathways in electronic circuits.


In the practice of the present invention the emeraldine form of PANI, wherein the PANI is made up of alternating units of the oxidized and reduced form of the monomer, as described in detail in Chiang et al, op. cit., is treated according to the method of Chiang et al with a protonic acid to form a nitrogen base salt. According to one method, the water-insoluble emeraldine base is dispersed in an aqueous protonic acid such as HCl, followed by drying to form a conductive powder. However, it is preferred to combine the emeraldine base with a liquid organic acid, such as dodecylbenzenesulfonic acid (DBSA), to form an organic salt which is soluble in common solvents such as toluene, xylene, and other aromatic solvents. In order to achieve a high level of conductivity, the emeraldine base should be combined with liquid acid at a temperature of 80–150° C. In the case in which the acid is in molar deficit all acid becomes consumed in the protonation of the PANI base units and the system is thus composed of protonated and unprotonated PANI constitutional units. In contrast with acid in molar excess, all PANI base becomes protonated and the mixture is composed of the protonated PANI and excess acid. An excess of acid promotes solubility but may have deleterious effects on electronic properties.


One of skill in the art will appreciate that the unexpected effects and benefits of the present invention may not be realized with every protonated PANI, however formed. It is found in the practice of the present invention that certain protonated PANI compositions are highly effective while others are ineffective, as shown hereinbelow in the specific embodiments hereof.


Both single-walled and multi-walled nanotubes are known in the art, and either is suitable for the practice of the present invention. Furthermore, the caps present at the ends of the tubes may be reduced by treatment with oxidizing acids (Tsang et al. Nature, 372, (1994) 1355) such as nitric acid, which inevitably creates surface acid sites which are used to protonate the PANI. There are several methods employed in the art for producing nanotubes. Regardless of the method employed, it is preferred that the carbon nanotubes be relatively free of contaminating matter. Purities of over 90% by weight are preferred. Single-walled nanotubes are preferred.


One of skill in the art will understand that the exact concentration of nanotubes needed to achieve the requisite increase in conductivity will depend, among other things, on the degree to which the PANI has been converted to the nitrogen base salt, the particular nanotubes employed, and the target conductivity. In the composition of the invention, a concentration of nanotubes between 0.5% and 30% by weight is suitable with a concentration between 1% and 10% preferred, with 1% to 5% most preferred. At concentrations below 0.5% little practical increase in conductivity is anticipated. Concentrations above 30% are expected to adversely affect the physical properties of the composite. Nanotubes are expensive, at present; it is not desirable to employ more than the minimum number of nanotubes needed to achieve the desired enhancement of conductivity.


It has been found satisfactory in the practice of the invention to form the composite of the invention by dissolving the nitrogen base salt of an organic acid such as DBSA or DNNA in an aromatic solvent such as toluene or xylene at a concentration of ca. 5–15% by weight and then mixing the solution with a dispersion of carbon nanotubes in the same or a miscible second solvent. The concentration of nanotubes in the dispersion is ca. 0.5–10% by weight. The weight ratio of nanotubes to polymer in the composite may be controlled by simply controlling the relative amounts of the solution and dispersion employed. The dispersion of nanotubes has been found to achieve satisfactory homogeneity after being subject to ultrasonic agitation for 10 to 30 minutes, preferably 20 minutes at room temperature. After the nanotube dispersion and polymer solution are combined, they are subject to ultrasonic agitation for 2.5 to 10 minutes, preferably 5 minutes. After mixing, the dispersion so formed can then be cast onto a substrate using any conventional method known in the art. A preferred method is to spread the mixture onto a substrate such as a polyester film and to use a doctor blade to produce a coating of uniform thickness. The coating is then subject to vacuum extraction to remove the solvent, leaving behind a solid coating of the composite of the invention.


One particularly preferred use of the composite of the present invention is as a conductive pathway in electronic circuits, said conductive pathway being produced by laser thermal transfer imaging. In laser thermal transfer imaging a donor element is used to transfer an image onto a receiver element upon exposure of the donor element to a sequence of laser pulses describing a pattern which imparts to the transferred image the desired form and resolution.


The donor element is a layered structure comprising a support layer, preferably a flexible support layer, a heating layer, and a transfer layer. In one embodiment, the support layer is sputter-coated with a thin layer of metal, which in turn is solution coated with a layer of the PANI/NT composite of the present invention.


In use, the thin metal heating layer absorbs incident laser radiation converting it into heat thereby causing the partial decomposition of any organic matter proximate to the point of laser incidence which, in turn, propels the PANI/NT layer onto a receiver substrate. The organic matter may include the polymeric substrate, an optional separate organic “ejection layer” specifically selected for its rapid decomposition into gaseous by-products and the PANI/NT transfer layer itself. It is the decomposition of portions of the organic matter proximate to the heating layer that produces rapidly expanding gaseous low molecular weight components which provide the propulsive force to propel the adjacent portion of the PANI/NT layer to the receiving element. The laser can be scanned across the coated surface of the donor element, turned on and off according to a preprogrammed pattern, thereby forming a high precision image on the receiving surface.


Laser thermal ablation transfer imaging is well-known in the art of color proofing and printing, as described, for example, in Ellis et al, U.S. Pat. No. 5,171,650, which is herein incorporated by reference to the entirety. It is a completely surprising result that the method of Ellis et al can be adapted in its entirety to the production of conductive polymer pathways by substituting the PANI/nanotube composite of the present invention for the pigmented layer in Ellis et al. In the present invention, a donor element comprises a support substrate (i), a layer capable of partially absorbing a high power pulse of laser radiation and rapidly converting said absorbed laser radiation to heat within the confines of a sufficiently small area so as to effect the transfer of an image of acceptable resolution onto the receiving surface (ii), an imaging topcoat (iii) essentially coextensive with said radiation absorbing layer, said imaging topcoat (iii) comprising the highly conductive PANI/nanotube composite of the present invention. In a second embodiment, a specially tailored optional organic ejection layer is also included in order to enhance the speed and precision of the response to the laser pulse.


In the practice of the invention said radiatively absorbing layer (ii) absorbs incident laser energy which is applied at a rate sufficient to transfer the carrier topcoat (iii) to a receiving surface, and is applied within sufficiently narrow confines that the image formed on the receiving surface is of sufficient resolution for the intended purpose. Resolution of 1 micrometer is readily achievable by this method.


For the laser beam to heat, the incoming radiation must be adsorbed. The optical absorption of the metal layer is critical. If the metal layer is too thick it reflects the incident radiation; if it is too thin it transmits the radiation. There is an optimum thickness for maximum absorption of the incoming radiation. This is determined by the dielectric constant of the specific metal layer at the laser wavelength. In the practice of the invention, a thickness of ca. 10 nanometers of Ni has been found to be satisfactory.


The receiving surface is in direct and intimate contact with the imaging topcoat of the transfer medium.


In the practice of the invention, Mylar® polyester film has been found to be a satisfactory substrate for the laser thermal transfer medium of the invention. Other suitable substrates will include polyvinylchloride, polypropylene and polyethylene. There are no particular limitations on the substrate except that they must be polymeric and transparent to the incident laser radiation.


Satisfactory results can be achieved without a separate organic ejection layer, utilizing only a support layer, a heating layer, and a PANI/NT transfer layer, wherein the interface at the heating layer is partially decomposed to form the gaseous decomposition products necessary to propel the PANI/NT. However, a separate organic ejection layer is preferred.


Polymers, especially polymers having a decomposition temperature below that of the PANI/NT composite, are preferred for use in the organic ejection layer which is preferred in the practice of the invention. Suitable polymers include polycarbonates such as polypropylene carbonate; substituted styrene polymers such as poly(alpha-methylstyrene); polyacrylate and polymethacrylate esters, such as polymethylmethacrylate and polybutylmethacrylate; cellulosic materials such as cellulose acetate butyrate and nitrocellulose; polyvinyl chloride; poly(chlorovinyl chloride); polyacetals; polyvinylidene chloride; polyurethanes with decomposition temperatures of about 200° C.; polyesters; polyorthoesters; acrylonitrile and substituted acrylonitrile polymers; maleic acid resins; and copolymers of the above. Mixtures of suitable polymers can also be used. Preferred polymers for the ejection layer are polyacrylate and polymethacrylate esters, nitrocellulose, poly(vinyl chloride) (PVC), and chlorinated poly(vinyl chloride) (CPVC). Most preferred are poly(vinyl chloride) and chlorinated poly(vinyl chloridelt is in some instances satisfactory to employ the polymeric ejection layer as the support layer as well, thereby eliminating an entire layer in the structure of the donor element; however it is preferred to use two different layers. While the best arrangement will vary depending upon the exigencies of the specific application, in general the total thickness of the ejection layer and support layer should be in the range of 1–3 micrometers. When a separate support layer is employed, an ejection layer of less than 25 micrometers is satisfactory, but there needs to be enough to provide adequate ablation of the PANI/NT layer (the ablated region is 0.2–0.3 microns).


Other materials can be present as additives in the ejection layer as long as they do not interfere with the essential function of the layer. Examples of such additives include plasticizers, coating aids, flow additives, slip agents, antihalation agents, antistatic agents, surfactants, and others which are known to be used in the formulation of coatings. In the embodiments of the invention wherein such additives are desirable, it is particularly preferred that there be an ejection layer which is distinct from the PANI/NT composite itself.


The heating layer preferably absorbs 20–40% of the incident laser radiation, and is capable of sustaining an extremely rapid rise in temperature at the point of incidence of the laser pulse. In a preferred embodiment the heating layer is deposited on the flexible ejection layer. Materials suitable for the heating layer can be inorganic or organic and can inherently absorb the laser radiation or include additional laser-radiation absorbing compounds. Inorganic materials are preferred.


Suitable inorganic materials include transition metals, metals, and non-metals, including elements of Groups IIIa, IVa, Va, Via, VIII, IIIb, and Vb of the periodic table of elements, their alloys with each other, and their alloys with the elements of Groups Ia and IIa. Carbon is a suitable non-metal. Metals are preferred. Preferred metals include Al, Cr, Sb, Ti, Bi, Zr, Ni, In, Zn, and their oxides, suboxides and suitable alloys. More preferred are Al, Ni, Cr, Zr and C. Most preferred are Al, Ni, Cr, and Zr.


The thickness of the heating layer is generally about 20 Angstroms to 0.1 micrometer, preferably about 50 Angstroms for Al and 80 Angstroms for Cr. The specific thickness of the metal layer is chosen based on that providing the maximum absorption at the laser wavelength. Therefore, the metal thickness is dependent on the specific dielectric constant of each metal.


Although it is preferred to have a single heating layer, it is also possible to have more than one heating layer, and the different layers can have the same or different compositions, as long as they all function as described above. The total thickness of all the heating layers should be in the range given above, i.e., 20 Angstroms to 0.1 micrometer.


The heating layer(s) can be applied using any of the well-known techniques for providing thin metal layers, such as sputtering, chemical vapor deposition, and electron beam deposition.


The PANI/NT composition of the present invention is deposited upon the metallic coating preferably by solution casting from toluene or xylene, applied via a Meyer rod, to a dried film thickness ranging from 0.3 to 3 microns, preferably 1 micrometer.


The donor element thus formed is positioned on the receiving surface, the PANI/NT coating being directly in contact to the receiving surface. The opposite surface of the donor element is then subject to laser irradiation in a pattern of pulses which causes the ejection of PANI/NT from the transfer medium and onto the receiving substrate in the desired pattern. Suitable laser irradiation includes infrared diode laser irradiation in the wavelength range of 780 nm to 850 nm at incident fluences of 100 mJ/cm2 to 400 mJ/cm2 delivered in a pulse of about 1 microsecond duration. Incident laser fluence must be sufficiently high to effect ejection of a PANI/NT “pulse” but not so high that degradation of the PANI/NT material is initiated


Suitable receiving surfaces include polymethacrylate and polymethacrylate co-polymer. Typical coatings of the receiver are copolymers of methyl methacrylate, butyl methacrylate and glycidyl metacrylate, styrene and polycaprolactone coated onto a polyester substrate or can be free standing.


In a preferred embodiment, the patterned layer of PANI/NT is used as source and drain of a plastic transistor wherein the semiconducting, dielectric and gate will be sequentially deposit to complete the circuit.


The present invention is further described according to the following specific embodiments.


EXAMPLE 1

The PANI-DBSA material was supplied by UNIAX Corporation (Santa Barbara, Calif.) in a 9% solids solution in toluene. Single wall carbon nanotubes, manufactured by pulsed laser vaporization of a metal/carbon target in a furnace at 1100° C., were purchased from Rice University. The nanotubes were purified to greater than 90% purity by rinsing in nitric acid, water and toluene. The main impurity was leftover Ni/Co catalyst particles. The carbon nanotubes ranged between 0.2 and 2 microns in length.


The nanotubes were dispersed in toluene at 1.43% by weight. The carbon nanotubes slurry was prepared by adding 0.286 g of carbon nanotubes and 19.714 g of Toluene into a 2 oz container. The mix was then subject to ultrasonic agitation for 20 minutes while maintaining a vortex in the slurry. Appropriate amounts of the slurry were added to the specific amount of 9% Pani/DBSA solution needed to achieve the desired nanotubes concentration in the dry film, and the mixture subject to ultrasonic agitation for 5 minutes. The amounts of slurry and DSBA/PANI solutions were adjusted as follows to give the desired nanotube









TABLE 1







Example 1 Specimens












Weight of 1.43%
%



Weight of 9%
Nanotube slurry
Nanotubes


Specimen
DSBA/PANI
in Toluene
in dry film













Control
10
0
0


Specimen 1A
11.0834
0.1748
0.25


Specimen 1B
11.055
0.3496
0.5


Specimen 1C
11.0277
0.5244
0.75


Specimen 1D
11.000
0.6993
1.00


Specimen 1E
10.972
0.8741
1.25


Specimen 1F
10.944
1.0489
1.50


Specimen 1G
10.916
1.2237
1.75


Specimen 1H
10.888
1.3986
2.00









These dispersions were coated onto 2″×3″ glass microscope slides using a #4 Meyer rod which are well known in the art for hand coating films from solution and dried in air in an oven at 60° C. for 45 seconds. The coated area was 1″×2″ and the film thickness around 4 microns. Thickness was determined by optical interferometry.


A line of four 1/16″ by 3″ 4000 Å thick silver contacts 0.25″ apart were sputtered through an aluminum mask on to the thus prepared film using a Denton vacuum unit (Denton Inc. Cherry Hill, N.J.). The film resistivity was measured using the standard 4-probe measurement technique in which a current is applied to the two outer contacts and the voltage across the two inner contacts is determined. The current was supplied by a Hewlett Packard 6234A dual output power supply and was measured using an electrometer (Keithley 617). The voltage was measured at the two inner contacts using a Keithley miltimeter. The resistivity, ρ, was calculated as:






σ
=


1
ρ

=


i
×
d


V
×
A







Where ρ is the resistivity in (ohm-cm), V is the voltage measured at the inner contacts, i is the current at the 2 outer contacts, d is the separation between the inner contacts, and A is the cross-sectional area of the film determined from the product of the distance between the outer contacts and the film thickness. The conductivity for each film is shown in Table 2 and depicted graphically in FIG. 1.











TABLE 2





Specimen
NT conc
σ (S/cm)

















Control
0
0.00018


Specimen 1A
0.25
0.00025


Specimen 1B
0.5
0.00017


Specimen 1C
0.75
52


Specimen 1D
1
62


Specimen 1E
1.25
62.539


Specimen 1F
1.5
39


Specimen 1G
1.75
36.7


Specimen 1H
2
44









COMPARATIVE EXAMPLE 1

A 2.60 wt. % solution of the conducting polyaniline use in this example was prepared by mixing 14.36 g mixed xylenes (EM Science, purity: 98.5%) to 0.9624 g XICP-OSO1, a developmental conductive polyaniline solution obtained from Monsanto Company. XICP-OSO1 contains approximately 48.16 wt. % xylenes, 12.62 wt. % butyl cellosolve, and 41.4 wt. % conductive polyaniline wherein the nitrogen base salt was prepared by treating the PANI with dinonylnaphthalenic acid (DNNA).


Nanotubes were dispersed in turpinol at 1.43% by weight. The nanotube/turpinol mixture was subject to ultrasonic agitation for 24 hours at ambient temperature prior to mixing with the 41.4% solution of XICP-OSO1. PANI-XICP-OSO1/NT dispersions were made at ratios to give nanotube/total solids concentration ratios 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 4, 6, 10, 20 and 40% were coated onto 2″×3″ glass microscope slides and dried in air at 60° C. for 30 seconds.


The coated area was 1″×2″. Film thickness was determined by optical interferometry. Silver contacts for resistivity measurements were sputtered to 4000 Å in thickness through an aluminum mask using a Denton vacuum unit (Denton Inc. Cherry Hill, N.J.). The film resistivity was determined according to the method of Example 1. The resistivity versus nanotube concentration is shown in Table 3.













TABLE 3








NT conc.




Specimen
(%)
σ (S/cm)




















Control
0
0.000306



Specimen CE1A
0.25
0.00048



Specimen CE1B
0.5
0.0068



Specimen CE1C
0.75
0.015



Specimen CE1D
1
0.114



Specimen CE1E
1.5
0.3698



Specimen CE1F
2
1.31



Specimen CE1G
2.5
1.27



Specimen CE1H
4
1.53



Specimen CE1I
6
1.08



Specimen CE1J
8
1.9



Specimen CE1K
10
1.87



Specimen CE1L
20
3.37



Specimen CE1M
40
27.53










EXAMPLE 2

Laser thermal ablation transfer was employed to create an electronic circuit component with a PANI/nanotube composition.


A donor layer was formed by coating a 10 nanometer thick layer of metallic nickel onto 400D Mylar® by electron-beam deposition. The thus formed Ni layer exhibited 35% optical transmission at a wavelength of 830 nm. A transfer layer was formed by coating the thus formed Ni layer with a 1 micrometer thick layer of the composition of Comparative Example 1 designated CE1J using a #4 Meyer rod.


The receiving layer consisted of a 1 micrometer thick layer of polythiophene coated onto 400D Mylar® from a 2% solids solution in toluene with a #4 Meyer rod. The coating was air dried for 30 minutes.


The image shown in FIG. 2 was generated using computer aided design software. The image was translated into a pattern of pixels which were designated either “on” or “off” to correspond respectively to activation and deactivation of the laser to be employed for image transfer.


The images were obtained using a Spectrum CREO Trendsetter with 5080 DPI resolution (CREO-Scitex, Vancouver, Canada) equipped with a Spectrum Trendsetter Exposure Unit comprising a 20 watt infrared diode laser emitting 1 microsecond pulses at a wavelength of 830 nanometers. The Spectrum CREO Trendsetter comprised an 81.2-cm long drum having a perimeter of 91 cm. The receiver and donor elements were loaded into separate cassettes which is placed into the unit. Prior to exposure the receiver was automatically loaded from the cassette onto the drum and held by vacuum. The donor, slightly larger than the receiver, was then automatically loaded from the cassette and positioned directly on top of the receiver and held by vacuum at all four edges.


The pixelated image of FIG. 2 was loaded into the control computer of the CREO unit, and the donor was then exposed according to the programmed pattern with the desired pattern. To form the image, the laser beam was split by a light valve to form an array of 240 5×2 micrometer overlapping pixels. The laser head was translated along the drum and each pixel was turned on or off to form the image. The laser fluence was adjustable 7 Watts and the drum speed was 150 RPM. The scale of FIG. 2 is 5 cm in width and 9 cm in height. Five mm gates are shown at (2), 2 mm gates are shown at (4) and 1 mm gates are shown at (6). Twenty μ channels are shown at (8). A 1 mm wide source is shown at (10); a 2 mm wide source is shown at (12) and a 5 mm wide source is shown at (14).


After exposure the image of FIG. 2 had been transferred to the receiver in the form of a PANI/nanotube “ink”. FIG. 3 is an image showing a close-up of a source (16), drain (18), and intervening channel (20). The channel (20) was 20 micrometers wide, as shown.

Claims
  • 1. An electronic circuit comprising one or more conductive pathways of a nitrogen base salt derivative of emeraldine polyaniline and carbon nanotubes dispersed within the polyaniline.
  • 2. The composition of claim 1 wherein the nanotubes are single-walled.
  • 3. The composition of claim 1 wherein the nanotubes are multi-walled.
Parent Case Info

This application claims the benefit of Provisional Application No. 60/269,536, filed Feb. 16, 2001.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US02/05486 2/12/2002 WO 00 7/9/2003
Publishing Document Publishing Date Country Kind
WO02/080195 10/10/2002 WO A
US Referenced Citations (376)
Number Name Date Kind
0127747 Donnelly Jun 1872 A
0174590 Tesseyman Mar 1876 A
0227319 Tegnander May 1880 A
0344593 Peabody Jun 1886 A
0349775 Wood Jul 1886 A
0367029 Esty Jul 1887 A
0571129 Schumacher Nov 1896 A
0574762 Rowbotham Jan 1897 A
0593248 Smith Nov 1897 A
0600971 Singer Mar 1898 A
0657409 Gould Sep 1900 A
0669234 Fuhrmann et al. Mar 1901 A
0697649 McLean Apr 1902 A
0706320 Jenney Aug 1902 A
0706494 Minogue Aug 1902 A
0749864 James Jan 1904 A
0766410 Alger Aug 1904 A
0771037 Beck Sep 1904 A
0782597 Cheshire Feb 1905 A
0815911 Eddy Mar 1906 A
0818609 Butikofer Apr 1906 A
0839300 Krohn Dec 1906 A
0848665 Lombard Apr 1907 A
0850295 Chappell Apr 1907 A
0851293 Lehberger Apr 1907 A
0868497 Smith Oct 1907 A
0893038 Vadam Jul 1908 A
0893181 Macomber Jul 1908 A
0897963 Clayton et al. Sep 1908 A
0928715 Thurber Jul 1909 A
0933316 Macomber Sep 1909 A
0945232 Harding Jan 1910 A
0947008 Williams et al. Jan 1910 A
0968969 Ord Aug 1910 A
0972966 Williams Oct 1910 A
0980491 Coleman Jan 1911 A
0998363 De Lukacsevics Jul 1911 A
0999047 Lehberger Jul 1911 A
1033701 Lochum Jul 1912 A
1038537 Dexter Sep 1912 A
1042018 Macomber Oct 1912 A
1050456 Helin Jan 1913 A
1053799 Eslick Feb 1913 A
1063456 Looney Jun 1913 A
1065604 Gray Jun 1913 A
1076179 Whitehead Oct 1913 A
1076807 Anderson Oct 1913 A
1080123 Pratt Dec 1913 A
1087861 Alexander et al. Feb 1914 A
1097150 Vallez May 1914 A
1104539 Ord Jul 1914 A
1132161 Cassady et al. Mar 1915 A
1132581 Hein Mar 1915 A
1136363 Pepper Apr 1915 A
1142367 Reiche Jun 1915 A
1147313 Desort Jul 1915 A
1170918 Lundy Feb 1916 A
1177126 Miller Mar 1916 A
1177609 Edwards Apr 1916 A
1181463 La Fontaine May 1916 A
1183470 Lee May 1916 A
1183777 Soules May 1916 A
1189477 Peytoureau Jul 1916 A
1202598 Simpson Oct 1916 A
1204892 Macomber Nov 1916 A
1206800 Batt Dec 1916 A
1207846 Bradford Dec 1916 A
1209995 Ord Dec 1916 A
1215434 Trebert Feb 1917 A
1219377 Davidson Mar 1917 A
1222475 Sears Apr 1917 A
1226789 Macomber May 1917 A
1228101 Dutton May 1917 A
1229009 Allison Jun 1917 A
1250709 Tanner Dec 1917 A
1252436 Hickey Jan 1918 A
1255664 Syger Feb 1918 A
1256382 Scott Feb 1918 A
1261111 Fasey et al. Apr 1918 A
1275494 Storle Aug 1918 A
1276346 Gould Aug 1918 A
1277964 Lovelace Sep 1918 A
1282179 Brackett Oct 1918 A
1282180 Brackett Oct 1918 A
1283575 Shepard Nov 1918 A
1289424 Faupel Dec 1918 A
1291531 James et al. Jan 1919 A
1293733 Duby Feb 1919 A
1298191 Fasey Mar 1919 A
1307045 Galbreath Jun 1919 A
1312234 Carlson Aug 1919 A
1313569 Wilks et al. Aug 1919 A
1316679 Brackett Sep 1919 A
1321045 Hutchinson Nov 1919 A
1321046 Hutchinson Nov 1919 A
1324520 Robbins Dec 1919 A
1324534 Ambrose Dec 1919 A
1328261 Blankenburg Jan 1920 A
1332756 Root Mar 1920 A
1332948 Murphy Mar 1920 A
1338039 Porter Apr 1920 A
1338185 Looney Apr 1920 A
1339276 Murphy May 1920 A
1345808 Reynolds Jul 1920 A
1345940 Looney Jul 1920 A
1347762 Shepard Jul 1920 A
1348371 Murphy Aug 1920 A
1364256 Des Engants et al. Jan 1921 A
1366636 Conway Jan 1921 A
1370856 Thomson Mar 1921 A
1374315 Murphy Apr 1921 A
1374915 Fasey Apr 1921 A
1375140 Fasey Apr 1921 A
1377383 Bair May 1921 A
1377899 De Lukacsevics et al. May 1921 A
1379774 Murphy May 1921 A
1379775 Murphy May 1921 A
1382485 Lukacsevics Jun 1921 A
1384344 Powell Jul 1921 A
1389873 Hult Sep 1921 A
1389967 Murphy Sep 1921 A
1390034 Howard Sep 1921 A
1393174 Shepard Oct 1921 A
1405224 Kenmonth Jan 1922 A
1407293 Mott Feb 1922 A
1408385 Newton Feb 1922 A
1413363 Smith et al. Apr 1922 A
1427632 Pryor Aug 1922 A
1445686 Hult Feb 1923 A
1466144 Murphy Aug 1923 A
1466276 Egersdorfer Aug 1923 A
1476307 Toth Dec 1923 A
1487338 Kelley Mar 1924 A
1492215 Nedoma Apr 1924 A
1503741 Almen Aug 1924 A
1508623 Somervell Sep 1924 A
1529687 Bowen Mar 1925 A
1544382 Entler Jun 1925 A
1545925 Powell Jul 1925 A
1549556 Kennedy Aug 1925 A
1556300 Olsen Oct 1925 A
1565184 Miller Dec 1925 A
1568378 Gribojedoff Jan 1926 A
1569525 Owens Jan 1926 A
1604474 Nisbet Oct 1926 A
1610060 Lind Dec 1926 A
1614476 Hutchinson Jan 1927 A
1622986 Weingartner Mar 1927 A
1625841 Wright Apr 1927 A
1628100 Bacon May 1927 A
1629686 Dreisbach May 1927 A
1655738 Rasck Jan 1928 A
1661582 Szydlowski Mar 1928 A
1664086 Olsen Mar 1928 A
1673632 Mattson Jun 1928 A
1675629 Andrews Jul 1928 A
1693024 Drummond Nov 1928 A
1696676 Fuhr Dec 1928 A
RE17273 Michell Apr 1929 E
1707779 Atkeson Apr 1929 A
1716621 Cizek Jun 1929 A
1717999 Olsen Jun 1929 A
1736507 Peterson Nov 1929 A
1738512 Andrews Dec 1929 A
1745821 Gribojedoff Feb 1930 A
1757778 Mehlum May 1930 A
1762650 Boughton Jun 1930 A
1770311 Keith Jul 1930 A
1772531 Williams Aug 1930 A
1772977 Arrighi Aug 1930 A
1774713 Jahn et al. Sep 1930 A
1779032 Cathcart Oct 1930 A
1788140 Woolson Jan 1931 A
1788259 Ward et al. Jan 1931 A
1793107 Livingston Feb 1931 A
1796453 Goehler Mar 1931 A
1798866 Bleser Mar 1931 A
1799772 Wormley Apr 1931 A
1804598 Earl May 1931 A
1807087 Finke May 1931 A
1808083 Tibbetts Jun 1931 A
1810017 Houston Jun 1931 A
1813259 Schick Jul 1931 A
1828353 Bleser Oct 1931 A
1838974 Williams Dec 1931 A
1839592 Reynolds Jan 1932 A
1846961 Greening et al. Feb 1932 A
1851416 Bauer Mar 1932 A
1857000 Kleschka May 1932 A
1864248 Holmes Jun 1932 A
1866398 Craig Jul 1932 A
1867504 Franklin Jul 1932 A
1871973 Finke Aug 1932 A
1876506 Lee Sep 1932 A
1878767 Freund Sep 1932 A
1880224 Wilsey Oct 1932 A
1885492 Trew Nov 1932 A
2243817 Herrmann May 1941 A
2368444 Blanding Jan 1945 A
2369002 Allison Feb 1945 A
2382280 Allison Aug 1945 A
2384292 Feroy Sep 1945 A
2399743 Kahl May 1946 A
2401466 Davis et al. Jun 1946 A
2406292 Hall Aug 1946 A
2409868 Kahl Oct 1946 A
2417487 Hall Mar 1947 A
2439265 Schroeder Apr 1948 A
2444764 Baker Jul 1948 A
2447314 Carroll Aug 1948 A
2456164 Youhouse Dec 1948 A
2477542 Lane Jul 1949 A
2512265 Brigaudet Jun 1950 A
2556585 Jarvinen Jun 1951 A
2567576 Palumbo Sep 1951 A
2622567 Myard Dec 1952 A
2647363 Scott Aug 1953 A
2650676 Jamotte Sep 1953 A
2664866 Fulke Jan 1954 A
2767589 Redrup et al. Oct 1956 A
2770140 Palumbo Nov 1956 A
2770224 Ericson Nov 1956 A
2770225 Palumbo Nov 1956 A
2776649 Fenske Jan 1957 A
2781749 Stucke Feb 1957 A
2783751 Karlan Mar 1957 A
2856781 Forbes Oct 1958 A
2875701 Ebert Mar 1959 A
2949100 Peterson Aug 1960 A
2962008 Hopkins Nov 1960 A
2966899 Herrmann Jan 1961 A
2983265 Herrmann May 1961 A
2994188 Howard Aug 1961 A
3039676 Mikina Jun 1962 A
3040721 Schotthoefer Jun 1962 A
3068709 Peterson Dec 1962 A
3078832 Braine Feb 1963 A
3107541 Parsus Oct 1963 A
3126835 Kline Mar 1964 A
3169514 Girodin Feb 1965 A
3170444 Haddon Feb 1965 A
3182644 Drtina May 1965 A
3202141 Lovell Aug 1965 A
3306269 Dimmock, Jr. Feb 1967 A
3326193 Wahlmark Jun 1967 A
3333577 Mongitore Aug 1967 A
3359864 Hamlin Dec 1967 A
3385051 Kelly May 1968 A
3396709 Robicheaux Aug 1968 A
3403668 Schottler Oct 1968 A
3407593 Kelly Oct 1968 A
3408898 Hamlin Nov 1968 A
3456630 Karlan Jul 1969 A
3570463 Nelson Mar 1971 A
3587638 Poole Jun 1971 A
3598095 Odawara Aug 1971 A
3626911 Shaw Dec 1971 A
3654906 Alras Apr 1972 A
3673991 Winn Jul 1972 A
3687117 Panariti Aug 1972 A
3695237 Londo Oct 1972 A
3745887 Striegl Jul 1973 A
3745981 Warner Jul 1973 A
3786790 Plevyak Jan 1974 A
3805749 Karlan Apr 1974 A
3807370 Baugh Apr 1974 A
3828741 Bixier Aug 1974 A
3830208 Turner Aug 1974 A
3844258 Howell Oct 1974 A
3854284 Denker Dec 1974 A
3895614 Bailey Jul 1975 A
3899880 Rohs Aug 1975 A
3902466 Gulko Sep 1975 A
3902468 Turner Sep 1975 A
3905338 Turner Sep 1975 A
3913534 Bratten Oct 1975 A
3923018 Markowitz Dec 1975 A
3929107 Renger Dec 1975 A
3939809 Rohs Feb 1976 A
3943895 Howell Mar 1976 A
3945359 Asaga Mar 1976 A
3968776 Rund Jul 1976 A
3970055 Long Jul 1976 A
3973531 Turner Aug 1976 A
4022167 Kristiansen May 1977 A
4022168 Sprague May 1977 A
4023542 Ango May 1977 A
4060060 Turner Nov 1977 A
4084555 Outlaw Apr 1978 A
4127096 Townsend Nov 1978 A
4129101 Townsend Dec 1978 A
4138930 Searle Feb 1979 A
4149498 Ferrell Apr 1979 A
4157079 Kristiansen Jun 1979 A
4185508 Hardt Jan 1980 A
4195600 Shingai Apr 1980 A
4213427 Di Stefano Jul 1980 A
4219001 Kumagai et al. Aug 1980 A
4250843 Chang Feb 1981 A
RE30565 Kristiansen Apr 1981 E
4287858 Anzalone Sep 1981 A
4363294 Searle Dec 1982 A
4366784 Paul Jan 1983 A
4418656 Stanton Dec 1983 A
4453508 Groeger Jun 1984 A
4492188 Palmer et al. Jan 1985 A
4502427 Brille Mar 1985 A
4510894 Williams Apr 1985 A
4520765 Gerace Jun 1985 A
4553508 Stinebaugh Nov 1985 A
4565165 Papanicolaou Jan 1986 A
4571946 Demopoulos Feb 1986 A
4592309 Williams Jun 1986 A
4610223 Karian Sep 1986 A
4632081 Giuliani et al. Dec 1986 A
4635590 Gerace Jan 1987 A
4648358 Sullivan et al. Mar 1987 A
4768481 Wood Sep 1988 A
4834033 Larsen May 1989 A
4867107 Sullivan et al. Sep 1989 A
4867121 Bivona et al. Sep 1989 A
4915064 Mannerstedt et al. Apr 1990 A
4960082 Sullivan et al. Oct 1990 A
4974555 Hoogenboom Dec 1990 A
4974556 Royse Dec 1990 A
4996953 Buck Mar 1991 A
5009198 Sullivan et al. Apr 1991 A
5014653 Sullivan et al. May 1991 A
5016580 Gassman May 1991 A
5029558 Sullivan Jul 1991 A
5069820 Jen et al. Dec 1991 A
5070825 Morgan Dec 1991 A
5083532 Wiesen Jan 1992 A
5103778 Usich, Jr. Apr 1992 A
5140953 Fogelberg Aug 1992 A
5159902 Grimm Nov 1992 A
5209190 Paul May 1993 A
5218933 Ehrlich Jun 1993 A
5228415 Williams Jul 1993 A
5322042 di Priolo et al. Jun 1994 A
5323738 Morse Jun 1994 A
5329893 Drangel et al. Jul 1994 A
5351657 Buck Oct 1994 A
5375567 Lowi, Jr. Dec 1994 A
5437251 Anglim et al. Aug 1995 A
5443043 Nilsson et al. Aug 1995 A
5452689 Karlan Sep 1995 A
5456220 Candler Oct 1995 A
5467757 Yanagihara et al. Nov 1995 A
5476072 Guy Dec 1995 A
5507253 Lowi, Jr. Apr 1996 A
5517953 Wiesen May 1996 A
5535716 Sato et al. Jul 1996 A
5551383 Novotny Sep 1996 A
5566578 Rose Oct 1996 A
5636561 Pecorari Jun 1997 A
5647308 Biagini Jul 1997 A
5704332 Motakef Jan 1998 A
5743220 Guarner-Lans Apr 1998 A
5749337 Palatov May 1998 A
5762039 Gonzalez Jun 1998 A
5765512 Fraser Jun 1998 A
5799629 Lowi, Jr. Sep 1998 A
5813372 Manthey Sep 1998 A
5832880 Dickey Nov 1998 A
5875743 Dickey Mar 1999 A
5890462 Bassett Apr 1999 A
5894820 Baeta Apr 1999 A
5904044 White May 1999 A
5950580 Birckbichler Sep 1999 A
5992357 Tasi Nov 1999 A
6003480 Quayle et al. Dec 1999 A
6089195 Lowi, Jr. Jul 2000 A
6092512 Ma Jul 2000 A
6260520 Van Reatherford Jul 2001 B1
6703163 Ogura et al. Mar 2004 B1
Foreign Referenced Citations (1)
Number Date Country
WO 0073203 Dec 2000 WO
Related Publications (1)
Number Date Country
20040065970 A1 Apr 2004 US
Provisional Applications (1)
Number Date Country
60269536 Feb 2001 US