This disclosure relates generally to circuit protection devices and more particularly to high-current fuses.
Fuses are commonly used as circuit protection devices. Fuses can provide electrical connections between sources of electrical power and circuit components to be protected. High-voltage, current-limiting fuses are used in a variety of applications including, for example, the development of Hybrid-Electric Vehicles (HEVs). HEV systems typically use much higher voltages and currents than non-HEV automotive systems. Bus voltages for HEV systems can be in the range of 600 volts DC or AC and currents can be in the range of 300 amps. High-voltage applications, such as HEV systems, therefore use a fuse capable of handling the increased energy and arcing associated with an opening of a fuse element within the fuse used for such applications.
Known HEV fuses and known high-voltage fuses in general may contain sand within the fuse body and may fail to provide consistent results when filling a fuse with sand. Currently, accurately measuring the exact amount of sand entering the fuse and the amount of compactness of the sand is difficult.
A need therefore exists for an improved high-voltage/current fuse for HEV systems. As described herein, various embodiments are directed to a fuse comprising a fuse element having a first terminal and a second terminal to connect the fuse to a circuit to be protected and a source of power. The fuse element can include a first endbell and a second endbell. The fuse can include a hollow fuse tube having an inner cavity and a fill hole disposed on the hollow fuse tube. The hollow fuse tube may be a hollow insulating tube. The hollow fuse tube can be configured to receive a portion of the fuse element. The fuse element having the first endbell and second endbell secured thereon form three distinct regions in the fuse body. A first outer region includes a portion of the fuse element and the first endbell, a center region having a portion of the fuse element, and a second outer region having a portion of the fuse element and the second endbell.
The first terminal and the second terminal can be disposed outside of the fuse body. The center region of the hollow fuse tube can be filled with a predetermined amount of arc quenching material. The predetermined amount of the arc quenching material can be less than a total volume size of the hollow fuse tube. The arc quenching material can be compacted by vibrating or tapping the hollow fuse tube. The first endbell and the second endbell include a barrier for sealing the first endbell and second endbell from the central region. A remaining air gap in the hollow fuse tube is then filled with a liquid silicone and can be cured to a solid state to seal the arc quenching material.
By way of example, specific embodiments of the disclosed device will now be described, with reference to the accompanying drawings, where:
The fuse body 150 may be composed of a metallic material, and may be configured to receive at least a portion of the fuse element 200, the endbells 250, 252, and the end cap 125.
The fuse element 200 having the first conductive terminal 200A and the second conductive terminal 200B can electrically connect the HEV fuse 100 to a circuit to be protected and a power source.
The endbells 250, 252 can be configured to surround a defined portion of the fuse element 200. The endbells 250, 252 can provide a reservoir for holding a liquid or semi-liquid material, such as silicone, a room temperature vulcanized (RTV) material, gel, and/or any other arc quenching material. When the liquid or semi-liquid material is installed in the endbells 250, 252, the exact placement and volume of the liquid or semi-liquid material can be controlled to conform to the shape of the fuse element 200 as the liquid or semi-liquid material cures. The endbells 250, 252 can also improve consistency when filling the arc quenching material in the HEV fuse 100 by eliminating undercuts and air pockets inside the fuse body 150.
The endbells 250, 252 can be cup-shaped and configured with one or more endbell holes, such as the endbell holes 130, 132 shown on endbell 252, through which holes the HEV fuse 100 may filled with the arc quenching material, such as, for example, sand. (Endbell 250 may also include one or more holes.) The endbells 250, 252 may include the outer grooves 120, 122 on an outer circumference. The outer grooves 120, 122 can be aligned with the fill apertures 155, 157 respectively. The fill apertures 155, 157 can be used to fill the outer grooves 120, 122 with a liquid adhesive for securing the endbells 250, 252 to the fuse body. When the endbells 250, 252 can be secured together, the chamfer 220 (e.g., a chamfered joint) can be formed within the endbells 250, 252.
In general, the fuse element 200 can be formed from or comprised of any material having desirable electrically conductive properties. In certain embodiments, the fuse element 200 can be nickel, copper, tin, or an alloy or mixture comprising nickel, copper, silver, gold, or tin, or any combination thereof. In certain embodiments, the fuse element 200 may have an approximate thickness of between 5 and 20 mils (a mil being a thousandth of an inch). A pellet 110 (e.g., a tin pellet) can be soldered to one or more positions on the fuse element 200.
In certain embodiments, the fuse body 150 is sized (e.g., by adjusting one or more of the length, width, height and thickness of the fuse body 150) so as to insulate a portion of the fuse element 200 (e.g., such as the center element 200C) while leaving portions of the fuse element 200 exposed for electrical connection (e.g., the first conductive terminal 200A and the second conductive terminal 200B) to an electrical system, such as an HEV system.
The endbells 250, 252, as more clearly illustrated in
As clearly depicted in
The two-piece assembly of endbells 250, 252 can provide for the installation of the endbells 250, 252 while the fuse element 200 is still in a progressive die strip. By leaving the fuse element 200 attached to carrier strips when the fuse element 200 exits a progressive stamping die, the fuse element 200 can be supported on two sides. This reduces the possibility of damage from handling fragile individual elements in subsequent assembly processes.
In certain embodiments, an epoxy can be applied to the first endbell section 250A, the second endbell section 250B, the first endbell section 252A, and the second endbell section 252B. The epoxy can seal and secure the first endbell section 250A to the second endbell section 250B and can also seal and secure the first endbell section 252A to the second endbell section 252B. Accordingly, the endbells 250, 252 comprising the first endbell section 250A and the second endbell section 250B and the first endbell section 252A and the second endbell section 252B, respectively, can be epoxied together to form the cup-shaped endbells, that is, endbells 250, 252 around the fuse element 200 at or near the first conductive terminal 200A and around the fuse element 200 at or near a second conductive terminal 200B. The endbells 250, 252 can be configured with one or more endbell holes 130, 132, through which holes the fuse body 150 may filled with an arc quenching material.
The endbells 250, 252 can have a variety of shapes and sizes and can comprise a variety of materials. In certain embodiments, the endbells 250, 252 can be can comprise a high-temperature material, such as, for example, thermoset polyester. When installed on the fuse element 200, the endbells 250, 252 can support the fuse element 200 and ensure the fuse element 200 is centered in the fuse body 150. The endbells 250, 252 can ensure a consistent, flat surface on the outer ends, such as the first conductive terminal 200A and the second conductive terminal 200B of the HEV fuse 100 for end cap 125 installations.
As shown in
The end caps 125A, 125B can be placed on opposite ends of the fuse body 150. The end caps 125A, 125B may also include an aperture, such as aperture 225 as more clearly illustrated on the end cap 125A, configured to allow the first conductive terminal 200A and the second conductive terminal 200B to pass there through. When the first conductive terminal 200A and the second conductive terminal 200B extend through apertures of the end caps 125A, 125B, respectively, the first conductive terminal 200A and the second conductive terminal 200B can be coupled to a circuit to be protected and also a power source. The end caps 125A, 125B may also be crimped.
As shown in
In certain embodiments, the endbell 252 can be positioned between the first conductive terminal 200A and the center element 200C of the fuse element 200. Further, the endbell 250 can be positioned between the center element 200C and the second conductive terminal 200B of the fuse element 200. The endbells 250, 252 assembled to the center element 200C can form the endbell assembly 275 (e.g., an endbell element assembly).
The center element 200C may also be configured with one or more bridges (illustrated as individual electrically conductive bridges 285A-285D) capable of being interconnected and/or coupled together by one or more electrically conductive element strips 280 (illustrated as individual conductive element strips 280A-280C). Collectively, the individual electrically conductive bridges 285A-285D and the individual electrically conductive element strips 280A-280C can form the center element 200C of the fuse element 200.
For example, the endbell 250 can be filled with silicone on sides of the fuse element 200 and can then be cured. As a result, an arc barrier can be formed according to the shape of the fuse element 200 and the internal assembly of the HEV fuse 100, thereby improving effectiveness over a pre-formed silicone arc barrier. Moreover, as illustrated in
The HEV fuse 100 can be formed to create a three-zone fuse: two zones formed with silicone on opposite ends of the fuse element 200 (e.g., the two zones formed by placing silicone inside the endbells 250, 252) and a third zone in the center of the fuse element 200 surrounded by an arc quenching material (e.g., sand).
The fuse element 200 of the HEV fuse 100 can be configured and designed to melt in the center element 200C. As an example, the fuse element 200 can melt within a diagonally oriented variant of center element 200C as shown in
The three-zone doped HEV fuse 400 includes the fuse element 200, the fuse body 150, the end caps 125A, 125B, and three distinct regions, such as a first outer region 402, a center region 404, and a second outer region 406, and barriers 410, 412. Optionally, a three-zone doped HEV fuse may be constructed that does not include the barriers 410, 412.
The fuse element 200 can electrically connect the three-zone doped HEV fuse 400 to a circuit to be protected and a power source. The fuse element 200 can be housed within the fuse body 150 and divided up into the first outer region 402, the center region 404, and the second outer region 406. The first outer region 402 and the second outer region 406 can surround the center region 404 on two opposite sides of the center region. In other words, the center region 404 can be defined between the first outer region 402 and the second outer region 406. Barrier 410 can separate and/or divide the center region 404 from the first outer region 402. Barrier 412 can separate and/or divide the center region 404 from the second outer region 406. The end caps 125A, 125B can be coupled to the fuse body 150. In other words, the end caps 125A, 125B can be positioned so as to seal off or cover the first outer region 402 and the second outer region 406.
The center region 404 can be filled with arc quenching material. The first outer region 402 and the second outer region 406 can also be filled with arc quenching material, while the first outer region 402 and the second outer region 406 can be additionally “doped” with a dielectric gel filling any interstitial gaps between the arc quenching material, such as the interstitial gaps between the grains of sand. In other words, the dielectric gel “doped” in the arc material in the first outer region 402 and the second outer region 406 can occupy space otherwise containing air, assisting to extinguish an electrical arc, such as an arc burning near end caps 125A, 125B of the three-zone doped HEV fuse 400. In one embodiment, the two outer regions (outer region 402 and outer region 406) can also include endbells 250, 252 as mentioned above in
The center region 404 can be limited to contain the arc quenching material. In other words, there is no dielectric gel inserted into the center region 404 to fill any interstitial gaps. This allows vaporized element materials to disperse throughout the center region 404 in response to the fuse element 200 opening near a center portion of three-zone doped HEV fuse 400.
The barriers 410, 412 can separate the center region 404 from the two outer regions (outer region 402 and outer region 406). The barriers 410, 412 can be installed to help contain the dielectric gel to desired regions, such as the first outer region 402 and the second outer region 406. The barriers 410, 412 can be created from a liquid adhesive, such as liquid silicone, to be later cured to a solid state.
As part of the manufacturing process to create the three-zone doped HEV fuse 400, the following example is provided merely for illustration purposes. The example is not to be limited and other processes may be defined. The fuse element 200 can be housed within the fuse body 150. One of the end caps, such as end cap 125A, can be coupled and/or assembled onto the fuse body 150. The second outer region 406 can be filled with the arc quenching material and also doped with the dielectric gel. Barrier 412 (e.g., a liquid adhesive) can be disposed over the arc quenching material and the dielectric gel in the second outer region 406 and cured to a solid state. The center region 404 can then be filled with the predetermined amount of arc quenching material. The fuse body 150 can be vibrated, shaken, and/or agitated to compact the predetermined amount of arc quenching material. Barrier 410 (e.g., a liquid adhesive) can be disposed over the arc quenching material in the center region 404 and cured to a solid state. The first outer region 402 can then be filled with the arc quenching material doped with the dielectric gel, and/or the liquid silicone. The end cap 125B can be coupled and/or assembled onto the fuse body 150.
The three-zone doped HEV fuse 500 includes the fuse element 200, the fuse body 150, the end caps 125A, 125B, and three distinct regions, such as a first outer region 502, a center region 504, and a second outer region 506, barriers 510, 512, endbells 250, 252, endbell holes 130, 132, 134, 136, outer grooves 120, 122, and fill apertures 155A-155B, 157A-157B.
The fuse element 200 can electrically connect the three-zone doped HEV fuse 500 to a circuit to be protected and to a power source. The fuse element 200 can be housed within the fuse body 150 and divided up into the first outer region 502, the center region 504, and the second outer region 506. More specifically, the first outer region 502 and the second outer region 506 can surround the center region 504 on two opposite sides. In other words, the center region 504 can be defined between the first outer region 502 and the second outer region 506.
The endbells 250, 252 may be coupled to the fuse element 200. More specifically, the first outer region 502 and the second outer region 506 can be created by the endbells 250, 252. The endbells 250, 252 can define the area of the first outer region 502 and the second outer region 506 when the fuse element 200 is assembled within the fuse body 150. Barrier 510 can separate and/or divide the center region 504 from the first outer region 502. Barrier 512 can separate and/or divide the center region 504 from the second outer region 506. The endbell 252 can include endbell holes 130, 132, and outer groove 120. The endbell 250 can include endbell holes 134, 136, and outer groove 122.
The endbell holes 130, 132, 134, and 136 can be configured for allowing and/or assisting a liquid silicone, arc quenching material, and/or adhesive substance to be injected into the first outer region 502, the center region 504, and/or the second outer region 506. In other words, endbell holes 130, 132, 134, and 136 can be configured for allowing and/or assisting a liquid silicone, arc quenching material, and/or adhesive substance to be injected prior to and/or during assembly of the fuse element 200 into the fuse body 150. For example, endbell holes 130, 132, 134, and 136 can be configured for filling the fuse body 150 with the arc quenching material.
The outer grooves 120, 122, located on the endbells 250, 252 respectively, can be aligned with the fill apertures 155A-155B, 157A-157B located at one of a variety of positions on the fuse body 150. The fill apertures 155A-155B, 157A-157B can be configured for allowing and/or assisting a liquid silicone, arc quenching material, and/or adhesive substance to be injected prior to and/or during assembly of the fuse element 200 into the fuse body 150. In other words, fill apertures 155A-155B, 157A-157B can be configured for filling the fuse body 150 with the arc quenching material or filling the outer grooves 120, 122 with a liquid adhesive to secure the endbells 250, 252 to the fuse body 150.
The end caps 125A, 125B can be coupled to the fuse body 150. In other words, the end caps 125A, 125B can be positioned so as to seal off and/or cover the endbells 250, 252 (e.g., seal off and/or cover first outer region 502 and the second outer region 506.)
As part of the manufacturing process to create the three-zone doped HEV fuse 500, the following example is provided merely for illustration purposes. The example is not to be limited and other processes may be defined.
First, the endbell 250 can be coupled on the fuse element 200 at one of variety of positions, such as near a bottom side. In other words, the endbell 250 can be coupled to the fuse element 200 by a latching system (e.g., a latching pin and receiving bore). The endbell 250 can be filled with an arc quenching material and doped with a dielectric gel and/or filled with a liquid silicone prior to the fuse element 200 and the endbell 250 being assembled into the fuse body 150. The liquid silicone can create barrier 510. In one embodiment, when the silicone is first injected into endbell 250, the silicon may be injected into endbell hole 134 and flow out of endbell hole 136 indicating any open space of endbell 250 has been filled with the liquid silicon.
The endbell 252 can be coupled on the fuse element 200 at one of variety of positions, such as near a top side. In other words, the endbell 252 can be coupled to the fuse element 200 by a latching system (e.g., a latching pin and receiving bore). Once the endbells 250, 252 are coupled to the fuse element 200, the fuse element 200 can be housed within the fuse body 150.
In some embodiments, the endbells 250, 252 can be coupled to the fuse element 200 and can be filled with an arc quenching material and doped with a dielectric gel and/or filled with a liquid silicone prior to being assembled into the fuse body 150 with the fuse element 200. Alternatively, either the endbell 250 or the endbell 252, after the two have been coupled to the fuse element 200, can be filled with an arc quenching material and doped with a dielectric gel and/or filled with a liquid silicone prior to being assembled into the fuse body 150 with the fuse element 200. As such, barriers 510, 512 may be created at a later time in the assembly of the three-zone doped HEV fuse 500. For example, the arc quenching material and doped with a dielectric gel and/or a liquid silicone may be injected into the endbell 252 after the arc quenching material is injected and fills the center region 504, as described below.
The fuse element 200 and the endbells 250,250 can be housed within the fuse body 150. The fuse element and the endbells 250, 252 housed in the fuse body 150 define the first outer region 502, the center region 504, and the second outer region 506. In other words, the endbell 250 can be defined as the second outer region 506, and the endbell 252 can be defined as the first outer region 502. The center region 504 can be defined as the area between the first outer region 502 and the second outer region 506.
At this point the outer grooves 120, 122, located on the endbells 250, 252 respectively, can be filled with a liquid adhesive. The liquid adhesive can be injected into the fill apertures 155A-155B, 157A-157B. The liquid adhesive can flow around the entirety of the outer grooves 120, 122 and cure to a solid state. The endbells 250, 252 can be sealed to the fuse body in a fixed position by the cured liquid adhesive. The end cap 125A and/or end cap 125B can be coupled to opposite ends of the fuse body, sealing off the first outer region 502 and the second outer region 506.
Next, a measured quantity of the arc quenching material can be poured through an open end of the one or more endbell holes 130, 132, 134, and/or 136 into the fuse body 150. The measured quantity of the arc quenching material may fill the entirety of center region 504 or a portion of the center region 504. For example, a measured quantity of the arc quenching material can be poured through endbell hole 130 as well as endbell hole 134 to fill the center region 504. Alternatively, if barrier 510 was previously created and sealing off endbell holes 134, and/or 136, the measured quantity of the arc quenching material can be poured through endbell holes 130, 132 to fill the center region 504.
The fuse body 150 can be vibrated, tapped, and/or agitated to increase the compaction of the arc quenching material inside the fuse body 150. The measured quantity of the arc quenching material fills the center region beginning from barrier 510 up to the endbell 252 (e.g., the second outer region 506). In other words, the measured quantity of the arc quenching material can be less than the total volume of the fuse body 150. The measured amount of arc quenching material quantity can allow for a specific amount of open space in the second outer region 506.
Once the measured amount of arc quenching material is compacted within the center region 504, the barrier 512 can be created. Barrier 512 can be created by injecting the liquid silicone into one or more endbell holes 130, 132, and subsequently curing the liquid silicone to a solid state. In other words, liquid silicone is injected through one or more endbell holes 130, 132 at the top section of the endbell 252 so as to fill the remaining, open volume of air and/or space within the endbell 252 above the arc quenching material in the center region 504. In one embodiment, when the liquid silicone is injected into endbell 252, the liquid silicone can be injected into endbell hole 130 and flow out of endbell hole 132 indicating any open space of endbell 252 has been filled with the liquid silicon. The liquid silicone can “bleed” into a portion of the arc quenching material in the center region 504 during curing and create a silicone-sand interface more precisely defining barrier 512. The bleeding helps the silicone cure consistently and prevents the formation of air bubbles at the silicone-sand interface created between the second outer region 506 and the center region 504.
The bleeding of the liquid silicone can also apply to the creation of barrier 510. In other words, the liquid silicone can bleed into a portion of the arc quenching material in the center region 504 during curing and create a silicone-sand interface more precisely defining barrier 510. The bleeding of the liquid silicone into a portion of the arc quenching material in the center region helps the silicone cure consistently and prevents the formation of air bubbles at a silicone-sand interface created between the first outer region 502 and the center region 504 and/or the second outer region 506 and the center region 504. In short, at least a portion of barriers 510, 512 shields the arc quenching material in the center region 504 from the first outer region 502 and from the second outer region 506. An arc quenching material doped with a dielectric gel can be injected into the endbells 250, 252. In other words, the arc quenching material doped with a dielectric gel can form at least a portion of the barriers 510, 512.
The amount of silicone viscosity in the first outer region 502 as well as the second outer region 506 can be predetermined, tested, and/or selected so as to control the depth of the barriers 510, 512. Thus, controlling the depth of the barriers 510, 512 by the predetermined, tested, and/or selected amount of liquid silicone, allows the liquid silicone to cure and solidify while not into the arc quenching material in the center region 504 too quickly, thus preventing any air pocket forming in either the first outer region 502 and/or the second outer region 506.
In this way, the various embodiments eliminate the process of filling the arc quenching material in an enclosed space with tightly-packed sand. The various embodiments allow a measured quantity of arc quenching material to be used to fill the inner cavity of the fuse body (e.g., the center region 504) and allow the liquid silicone in the first outer region 502 and the second outer region 506 to absorb any variations in sand quantity or compaction.
At block 613, the fuse element can be inserted into a fuse body (e.g., a melamine body) and outer endbell grooves on the two endbells can be aligned with fill apertures on the fuse body. The fuse element inserted into the fuse body can form three distinct regions, such as a first outer region defined as the region where the endbell is secured to the first side of the fuse element, a center region that can be empty and/or hollow, and a second outer region defined as the region where the endbell is secured to the second side of the fuse element. At block 614, a liquid adhesive such as epoxy is injected into holes of the fuse body, filling outer grooves of the endbells.
At block 616, an inside portion of the fuse body can be filled (e.g., partially filled) with a measured amount of arc quenching material (e.g., sand) through holes in the endbell secured to the second side of the fuse element. The amount of arc quenching material (e.g., sand) can fill starting from the endbell secured to the first side of the fuse element (e.g., the first outer region) up to a level approximately even with the bottom of the endbell on the second side (e.g., the second outer region) of the fuse element leaving an air gap inside the top of the HEV fuse (e.g., the second outer region yet to be filled). In other words, the amount of arc quenching material (e.g., sand) can be deposited within the center region between two endbells secured to the fuse element.
At block 617, the fuse body can be mechanically vibrated and/or tapped to compact the arc quenching material (e.g., sand) inside the fuse body. At block 618, liquid silicone can be injected into a first hole of the endbell on the second side of the fuse element filling the remaining air gap inside the fuse body (above the sand). In one embodiment, an arc quenching material doped with dielectric gel, along with the liquid silicone, may be injected into to the endbell on the second side of the fuse element. The liquid silicone (and/or the arc quenching material doped with dielectric gel and/or the liquid silicone) can flow from the first hole and out of a second hole in the endbell on the second side of the fuse element to indicate any remaining air gaps are now filled in the endbell on the second side. In other words, the liquid silicone and the endbell on the second side of the fuse element form a second barrier (e.g., silicon-sand interface) to protect and seal off the center region having the arc quenching material from the second outer region. Also, the liquid silicone injected (as in step 610) in the endbell of the first side also forms a first barrier (e.g., silicon-sand interface) to protect and seal off the center region having the arc quenching material from the first outer region. The silicone is cured to a solid state locking the contents of the fuse body securely in place.
At block 620, any excess silicone (e.g., epoxy) can be removed from the exterior of the fuse body when accumulated during the filling processes. This provides a clean surface for crimping. At block 622, end caps (e.g., stainless steel end caps) can be crimped on opposite sides of the fuse for additional mechanical strength and to ensure any holes on opposite sides of the fuse element are completely sealed. At block 624, the terminals of the fuse element can be configured and/or bent into a final orientation. The end caps may include apertures configured for the terminals on the fuse element to extend through the aperture of a given terminal. At block 626, a label having identification and technical information can be applied to the fuse body. The label may include other equivalent markings with manufacturer identification and technical information. In various embodiments, the label may be generated by lasermarking, pad printing or hot stamping in the place of an actual printed paper-type label. The embodiments are not limited in this context.
As such, the method of manufacturing provides the HEV fuse 100, the three zone doped HEV fuse 400, and/or the three-zone doped HEV fuse 500. One or more of the HEV fuse 100, the HEV fuse 101, the three zone doped HEV fuse 400, and/or the three-zone doped HEV fuse 500 may comprise a fuse body 150 having an inner cavity (or center region 504) and at least one fuse body aperture (e.g., fill apertures 155A-155B, 157A-157B). The fuse element 200 may comprise a terminal on opposite ends of the fuse element 200 (e.g., a first terminal and a second terminal). The fuse element 200 can be disposed within fuse body. Two ends of the fuse element defined as the terminals (e.g., the first terminal and the second terminal) can electrically connect the HEV fuse 100, the three zone doped HEV fuse 400, and/or the three-zone doped HEV fuse 500 to a circuit to be protected and a power source. A first endbell and a second endbell can be coupled to the fuse element. An arc quenching material can be disposed within the inner cavity. The arc quenching material can make contact with at least a portion of the fuse element 200. A liquid adhesive can fill the first endbell and the second endbell to seal the arc quenching material between the first endbell and the second endbell inside the fuse body.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Furthermore, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize its usefulness is not limited thereto and the present disclosure can be beneficially implemented in any number of environments for any number of purposes. Thus, the claims set forth below are to be construed in view of the full breadth and spirit of the present disclosure as described herein.
This application is a divisional of U.S. patent application Ser. No. 14/699,407, filed Apr. 29, 2015, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/079,714, filed Nov. 14, 2014, entitled “Improved High-Current HEV Fuse with Endbell Assembly,” the entirety of which applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1217289 | Eustice | Feb 1917 | A |
1463038 | Ellison | Jul 1923 | A |
1559890 | La Mar | Nov 1925 | A |
2665348 | Kozacka | Jan 1954 | A |
2837614 | Fister | Jun 1958 | A |
3250879 | Jacobs, Jr. | May 1966 | A |
3538479 | Fister | Nov 1970 | A |
3630219 | Kozacka | Dec 1971 | A |
4003129 | Koch | Jan 1977 | A |
4032879 | Monagan | Jun 1977 | A |
4044326 | Rodrigues | Aug 1977 | A |
4109228 | Wycklendt | Aug 1978 | A |
4254394 | Kozacka et al. | Mar 1981 | A |
4274073 | Luck et al. | Jun 1981 | A |
4336521 | Kozacka et al. | Jun 1982 | A |
4684915 | Knapp, Jr. | Aug 1987 | A |
4935716 | Ehlmann | Jun 1990 | A |
5077534 | Douglass | Dec 1991 | A |
5245308 | Herbias | Sep 1993 | A |
5296832 | Perreault et al. | Mar 1994 | A |
5426411 | Pimpis et al. | Jun 1995 | A |
5963123 | Douglass | Oct 1999 | A |
5994994 | Ito et al. | Nov 1999 | A |
6888440 | Ackermann | May 2005 | B2 |
7369030 | Darr | May 2008 | B2 |
7659804 | Harris et al. | Feb 2010 | B2 |
20060049911 | Darr | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
1371114 | Sep 2002 | CN |
202285226 | Jun 2012 | CN |
Entry |
---|
European Search Report for the European Patent Application No. 15859086, dated May 18, 2018. |
Number | Date | Country | |
---|---|---|---|
20170263407 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
62079714 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14699407 | Apr 2015 | US |
Child | 15606081 | US |