The present invention relates to an N+/P+ zener diode where the implanted regions are designed to steer the current flow away from the sidewalls of the diode and more toward the bottom walls in order to induce uniform reverse breakdown leading to improved speed of operation and increase in current handling capability.
MOS devices are susceptible to damage from electrostatic discharge, or ESD. While numerous techniques have been developed to protect MOS devices, there has been a need for an ESD-protection device and method which could be fabricated through simple semiconductor manufacturing techniques.
One such known ESD-protection device is illustrated in
While the device of
In U.S. Pat. No. 4,758,537, there exists a P− region 11 that will prevent lateral breakdown over an upper sidewall portion of the N++ region 11 as shown in
The present invention attempts to provide a zener diode where the breakdown current is steered uniformly through the bottom wall of the diode in order to provider higher current handling and improved speed of operation.
The present invention relates to an N+/P+ zener diode where the implanted regions are designed to steer the current flow away from the sidewalls of the diode and towards the bottom walls in order to induce uniform reverse breakdown, thereby leading to improved speed of operation and increase in current handling capability.
In one aspect, the present invention provides a method of operating a zener diode by initiating vertical breakdown of the zener diode between an implant region of one conductivity type and an implant region of an opposite conductivity type; and during the step of initiating vertical breakdown, inhibiting lateral breakdown of the zener diode between a sidewall of the implant region and an adjacent region.
In another aspect, the present invention provides a zener diode that has a substrate of one conductivity type; a sinker dopant region of the same conductivity type as the substrate, disposed above and electrically connected to the substrate; a dopant region disposed above the sinker dopant region, the dopant region having an opposite conductivity type as the substrate and the sinker dopant region, the dopant region further having sidewalls and a bottom, with the bottom contacting the sinker dopant region; and an epitaxial region, the epitaxial region surrounding the dopant region, thereby being adjacent to all sidewalls of the dopant region.
These and other aspects and features of the present invention will become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:
a)-(e) illustrate a flow diagram of the fabrication steps for forming the structure of
Referring first to
Contacts are made to the N+ and the P+ regions using standard semiconductor processing methods consisting of deposition and patterning of a dielectric film followed by etch, metal deposition and patterning. The metal 340 contact to the N+ layer serves as the anode of the device. The metal 350 contact to the P+ layer serves as the cathode of the device.
Due to the existence of the P+ sinker 310A and the P− epitaxy 330 that surrounds the N+ implant 320, the reverse breakdown will occur vertically, and only from the bottom surface of the N+ implant 320 that interfaces with a top surface of the central region 310A of the P+ sinker 310. This is schematically illustrated by the vertical arrows.
a)-4e) illustrate fabrication steps for the device illustrated in
a) illustrates a starting point, in which a P− epitaxial layer 330 has already been grown over a P+ substrate 300. Next, in
d) illustrates formation of a mask layer 540, which is then used to allow for the selective implantation of N+ region 320, which through annealing is then driven to the appropriate depth, so that the bottom of the N+ region 320 contacts the P+ sinker region 310A.
e) illustrates the formation of the electrical connections, with the N+ and P+ regions forming the anode and the cathode
Thicknesses and doping of various layers described above can vary, as well as temperature and times for the annealing processes. In a specific embodiment that has been found advantageous, the P+ substrate is 8 to 15 mohm-cm in resistivity, the P-epi layer is 4 to 14 um thick with a typical resistivity of 10 ohm-cm. The concentration of the boron in the P+ layer is approximately between 1E18/cm3 to 7E18/cm3. The corresponding peak doping of the dopants in the N+ region is in between 1E19/cm3 to 1E20/cm3.
It will be appreciated from the foregoing that the structure of
The breakdown voltage of the Zener diode, can be modified by adjusting the concentration of the N+ region 320 and the P+ type sinker 310A. By providing low series resistance, the device can sink high currents during an ESD event, thus protecting the circuit connected to this device.
Having fully described a preferred embodiment of the invention and various alternatives, those skilled in the art will recognize, given the teachings herein, that numerous alternatives and equivalents exist which do not depart from the invention. It is therefore intended that the invention not be limited by the foregoing description, but only by the appended claims.