Certain sustained release technology suitable for administration by inhalation employs lipid based formulations such as liposomes to provide prolonged therapeutic effect of drug in the lung and systemically by sustained release and the ability to target and enhance the uptake of drug into sites of disease.
For a lipid based drug delivery system, it is often desirable to lower the lipid-to-drug (L/D) ratio as much as possible to minimize the lipid load to avoid saturation effects in the body. For lung delivery by inhalation, this may be particularly true because for chronic use, dosing of lipid could outpace clearance thus limiting the administration and thus effectiveness of the drug product. A lower L/D ratio would allow more drug to be given before the dosing/clearance threshold is met.
It is an object of the present invention to provide lipid based drug formulations with low lipid to drug ratios.
It is also an object of the present invention to provide a method of preparing lipid based drug formulations with low lipid to drug ratios.
It is also an object of the present invention to provide a method of delivering lipid based drug formulations at high delivery rates as measured by mg/min of the drug.
It is also an object of the present invention to provide a method of treating a patient for a pulmonary infection comprising administering to the patient in need thereof a therapeutically effective amount of a lipid based drug formulation comprising a low L/D ratio wherein the drug is an antiinfective.
The subject invention results from the realization that lipid based drug formulations with low L/D ratios are achieved by preparing them using coacervation techniques.
Via methods disclosed herein, liposomes of modest size (<1 μm) comprising entrapped drug at L/D weight ratios of typically about 0.40-0.49:1 are created. The captured volumes of liposomes have been measured, and from these numbers one is able to calculate what the theoretical entrapment should be if the drug behaved as an ideal solute (i.e., does not interact with the liposome membrane but entraps ideally along with water). From this comparison, entrapment numbers that are 3-5× higher than expected are observed, indicating that a special interaction is occurring that allows greater than expected entrapment, and lower than expected L/D ratios. The solutions in which the liposomes form have a given drug concentration. The concentration of drug inside the liposomes should be about the same concentration as in the solution. However, internal drug concentrations are calculated at least about 3× greater. It has now been discovered that this phenomenon can be explained by the formation of a drug coacervate which initiates lipid bilayer formation around the drug coacervate.
In part the present invention relates to a method of preparing a lipid based active agent formulation comprising mixing a lipid and an active agent with a coacervate. In a further embodiment, the coacervate is formed prior to mixing with the lipid. In a further embodiment, the coacervate is formed during mixing with a lipid. In a further embodiment, the coacervate is formed after mixing with a lipid. In a further embodiment, the coacervate is a coacervate of the active agent. In a further embodiment, the coacervate is a coacervate of a third component other that the lipid and active agent. In a further embodiment, the third component comprises a counter ion capable of exchanging with the active agent.
In a further embodiment, the third component is a charged polymer. In a further embodiment, the charged polymer is an acrylate and the counter ion is an ammonium counter ion. In a further embodiment, the active agent is added after mixing the lipid with the coacervate and the active agent exchanges with the counter ion.
In a further embodiment, the third component is an ion capable of complexing with the active agent. In a further embodiment, the ion is a metal ion. In a further embodiment, the metal ion is Mg2+. In a further embodiment, the active agent is added after mixing the lipid with the coacervate and the active agent coordinates to the ion.
In a further embodiment, the lipid is added as a solution with an organic solvent. In a further embodiment, the lipid is added as an aqueous micellar suspension with a surfactant. In a further embodiment, the lipid is induced to precipitate by diluting the micellar suspension with an aqueous solution to below the critical micellar concentration (CMC) of the surfactant.
In a further embodiment, the lipid is induced to precipitate by changing the pH.
In part the present invention relates to a method of preparing a lipid based drug formulation comprising mixing a lipid with a drug coacervate. In a further embodiment the lipid is dissolved in an organic solvent forming a lipid solution, and the drug coacervate forms from mixing an aqueous solution of the drug with the lipid solution. In a further embodiment the lipid solution and aqueous drug solution are mixed from two separate streams in an inline fashion. In a further embodiment the two streams enter a Y or T-connector prior to mixing in line. In a further embodiment a third stream of water or salt water is added to dilute the resulting lipid and drug mixture. In a further embodiment the organic solvent is ethanol.
In a further embodiment, the present invention relates to the aforementioned method wherein the lipid solution is added at a rate of 1 L/min and the aqueous drug solution is added at a rate of 1.5 L/min. In a further embodiment the lipid solution is added at a rate of 1 L/min, the aqueous drug solution is added at a rate of 1.5 L/min, and the water or salt wafer is added at a rate of 1 L/min.
In a further embodiment, the present invention relates to the aforementioned method wherein the lipid is a mixture of a phospholipid and a sterol. In a further embodiment the phospholipid is dipalmitoylphosphatidylcholine (DPPC) and the sterol is cholesterol. In a further embodiment the DPPC:cholesterol ratio is 2:1 by weight. In a further embodiment the lipid solution is at 20 mg/ml and the aqueous drug solution is at 75 mg/ml.
In a further embodiment, the present invention relates to the aforementioned method wherein the drug is an antiinfective. In a further embodiment the antiinfective is selected from the following: an aminoglycoside, a tetracycline, a sulfonamide, p-aminobenzoic acid, a diaminopyrimidine, a quinolone, a β-lactam, a β-lactam and a β-lactamase inhibitor, chloraphenicol, a macrolide, penicillins, cephalosporins, corticosteroid, prostaglandin, linomycin, clindamycin, spectinomycin, polymyxin B, colistin, vancomycin, bacitracin, isoniazid, rifampin, ethambutol, ethionamide, aminosalicylic acid, cycloserine, capreomycin, a sulfone, clofazimine, thalidomide, a polyene antifungal, flucytosine, imidazole, triazole, griseofulvin, terconazole, butoconazole ciclopirax, ciclopirox olamine, haloprogin, tolnaftate, naftifine, terbinafine, or combination thereof. In a further embodiment the antiinfective is an aminoglycoside. In a further embodiment the aminoglycoside is amikacin. In a further embodiment the aminoglycoside is tobramicin. In a further embodiment the aminoglycoside is gentamicin.
In another embodiment the present invention relates to a lipid based drug formulation wherein the lipid to drug ratio is 0.40-0.49:1 by weight. In a further embodiment the lipid based formulation is a liposome. In a further embodiment, the drug is an antiinfective. In a further embodiment the antiinfective is selected from the following: an aminoglycoside, a tetracycline, a sulfonamide, p-aminobenzoic acid, a diaminopyrimidine, a quinolone, a β-lactam, a β-lactam and a β-lactamase inhibitor, chloraphenicol, a macrolide, penicillins, cephalosporins, corticosteroid, prostaglandin, linomycin, clindamycin, spectinomycin, polymyxin B, colistin, vancomycin, bacitracin, isoniazid, rifampin, ethambutol, ethionamide, aminosalicylic acid, cycloserine, capreomycin, a sulfone, clofazimine, thalidomide, a polyene antifungal, flucytosine, imidazole, triazole, griseofulvin, terconazole, butoconazole ciclopirax, ciclopirox olamine, haloprogin, tolnaftate, naftifine, terbinafine, or combination thereof. In a further embodiment the antiinfective is an aminoglycoside. In a further embodiment the aminoglycoside is amikacin. In a further embodiment the aminoglycoside is tobramycin. In a further embodiment the aminoglycoside is gentamicin.
In a further embodiment the lipid comprises a mixture of a phospholipid and a sterol. In a further embodiment the phospholipid is DPPC and the sterol is cholesterol. In a further embodiment the DPPC and the cholesterol is in a 2:1 ratio by weight.
In another embodiment, the present invention relates to a method of delivering a lipid based drug formulation at a rate of 10 to 25 mg/min of drug comprising nebulizing the aforementioned lipid based drug formulations of the present invention using a compressor pressure of 20 to 40 psi. In a further embodiment, the entrapped drug retention of greater than 45%. In a further embodiment the lipid based drug formulation has an L/D ratio of less than 0.49.
In another embodiment, the present invention relates to a method of treating a patient for a pulmonary infection comprising administering to the patient a therapeutically effective amount of the aforementioned lipid based drug formulations. In a further embodiment the lipid based drug formulation has an L/D ratio of less than 0.49. In a further embodiment the pulmonary infection is a pseudomonas, P. aeruginosa, P. paucimobilis, P. putida, P. fluorescens, and P. acidavorans, staphylococcal, Methicillinresistant Staphylococcus aureus (MRSA), streptococcal. Streptococcus pneumoniae, Escherichia coli, Klebsiella, Enterobacter, Serratia, Haemophilus, Yersinia pesos, Burkholderia pseudomallei, B. cepacia, B. gladioli, B. multivorans, B. vietnamiensis, Mycobacterium tuberculosis, M. avium complex (MAC), M. avium, M. intracellulare, M. kansasii, M. xenopi, M. marinum, M. ulcerans, M. fortuitum complex, M. fortuitum, or M. chelonei infection.
In another embodiment, the present invention relates to a method of treating a patient for a pulmonary infection caused by cystic fibrosis (CF) comprising administering to the patient a therapeutically effective amount of the aforementioned lipid based drug formulations.
These embodiments of the present invention, other embodiments, and their features and characteristics, will be apparent from the description, drawings and claims that follow.
The present invention discloses a lipid drug formulation prepared by forming a drug coacervate which induces lipid bilayer formation around the drug. The method results in low lipid to drug ratios for the resulting lipid drug formulation and inner drug concentrations that are 3 to 5× higher than the external drug concentration used. The present invention also discloses a method of preparing these lipid formulations using coacervation techniques, high delivery rates for administering these lipid drug formulations via nebulization, and methods of treating pulmonary infections comprising administering these lipid drug formulations to a patient in need thereof.
For convenience, before further description of the present invention, certain terms employed in the specification, examples and appended claims are collected here. These definitions should be read in light of the remainder of the disclosure and understood as by a person of skill in the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person of ordinary skill in the art.
The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
The term “bioavailable” is an-recognized and refers to a form of the subject invention that allows for it, or a portion of the amount administered, to be absorbed by, incorporated to, or otherwise physiologically available to a subject or patient to whom it is administered.
The terms “comprise” and “comprising” are used in the inclusive, open sense, meaning that additional elements may be included.
The term “drug” is an-recognized and refers to any chemical moiety that is a biologically, physiologically, or pharmacologically active substance that acts locally or systemically in a subject. Examples of drugs, also referred to as “therapeutic agents”, are described in well-known literature references such as the Merck Index, the Physicians Desk Reference, and The Pharmacological Basis of Therapeutics, and they include, without limitation, antiinfectives, medicaments; vitamins; mineral supplements; substances used for the treatment, prevention, diagnosis, cure or mitigation of a disease or illness; substances which affect the structure or function of the body; or pro-drugs, which become biologically active or more active after they have been placed in a physiological environment.
The terms “encapsulated” and “encapsulating” are refers to adsorption of drugs on the surface of lipid based formulation, association of drugs in the interstitial region of bilayers or between two monolayers, capture of drugs in the space between two bilayers, or capture of drugs in the space surrounded by the inner most bilayer or monolayer.
The term “including” is used herein to mean “including but not limited to”. “Including” and “including but not limited to” are used interchangeably.
The term “lipid antiinfective formulation,” or “Lip-antiinfective,” or “Lip-An” discussed herein is any form of antiinfective composition where at least about 1% by weight of the antiinfective is associated with the lipid either as part of a complex with the lipid, or as a liposome where the antibiotic may be in the aqueous phase or the hydrophobic bilayer phase or at the interfacial headgroup region of the liposomal bilayer. Preferably, at least about 5%, or at least about 10%, or at least about 20%, or at least about 25%, can be so associated. Association can be measured by separation through a filter where lipid and lipid-associated antiinfective is retained and free antiinfective is in the filtrate. A “liposomal antiinfective formulation” is a lipid antiinfective formulation wherein the lipid formulation is the form of a liposome.
The term “mammal” is known in the art, and exemplary mammals include humans, primates, bovines, porcines, canines, felines, and rodents (e.g., mice and rats).
A “patient,” “subject” or “host” to be treated by the subject method may mean either a human or non-human animal.
The term “pharmaceutically-acceptable salts” is art-recognized and refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds, including, for example, those contained in compositions of the present invention.
The term “solvent infusion” is a process that includes dissolving one or more lipids in a small, preferably minimal, amount of a process compatible solvent to form a lipid suspension or solution (preferably a solution) and then adding the solution to an aqueous medium containing bioactive agents. Typically a process compatible solvent is one that can be washed away in a aqueous process such as dialysis. The composition that is cool/warm cycled is preferably formed by solvent infusion, with ethanol infusion being preferred Alcohols are preferred as solvents. “Ethanol infusion,” a type of solvent infusion, is a process that includes dissolving one or more lipids in a small, preferably minimal, amount of ethanol to form a lipid solution and then adding the solution to an aqueous medium containing bioactive agents. A “small” amount of solvent is an amount compatible with forming liposomes or lipid complexes in the infusion process. The term “solvent infusion” may also include an in-line infusion process where two streams of formulation components are mixed in-line.
The term “substantially free” is art recognized and refers to a trivial amount or less.
The term “surfactant” as used herein refers to a compound which lowers the surface tension of water by adsorbing at the air-water interface. Many surfactants can assemble in the bulk solution into aggregates that are known as micelles. The concentration at which surfactants begin to form micelles is known as the “critical micelle concentration” or CMC. Lipids useful for the current application may also be surfactants with extremely low CMC. Micelle-forming surfactants useful for the current application should have a CMC higher than the CMC of the lipid. At concentrations above CMC the micelle-forming surfactants can form mixed micelles composed of surfactants and lipid molecules. Upon dilution below CMC, micelle-forming surfactants will dissociate into a true solution thus leaving lipid molecules exposed to the aqueous medium. This leads to spontaneous precipitation of lipids, preferably in a form of bilayers.
The phrase “therapeutically effective amount” as used herein means that amount of a compound, material, or composition comprising a lipid drug formulation according to the present invention which is effective for producing some desired therapeutic effect by inhibiting pulmonary infections.
The term “treating” is art-recognized and refers to curing as well as ameliorating at least one symptom of any condition or disease. The term “treating” also refers to prophylactic treating which acts to defend against or prevent a condition or disease.
Coacervation in its simplest form can be thought of as a heaping together. In more technical terms, coacervation is the separation into two liquid phases in colloidal systems. The phase more concentrated in the colloid component (drug) is called the coacervate, and the other phase is the equilibrium solution.
The term colloidal refers to a state of subdivision, implying that the molecules or polymolecular particles dispersed in a medium have at least in one direction a dimension roughly between 1 nm and 1 μm, or that in a system discontinuities are found at distances of that order. IUPAC Compendium of Chemical Terminology 1972, 31, 605.
A solution of macromolecules is a simple and the most common Colloid system. Small molecules also can form association colloids as reversible aggregates. An association colloid is a reversible chemical combination due to weak chemical bonding forces wherein up to hundreds of molecules or ions aggregate to form colloidal structures with sizes of from about 1 to about 2000 nanometers or larger.
Current classification of coacervation phenomenon is based on the mechanism driving the separation of two phases. Gander B, Blanco-Prieto M. J., Thomasin C, Wandrey Ch. and Hunkeler D., Coacervation/Phase Separation. In: Encyclopedia of Pharmaceutical Technology, Vol. 1, Swarbrick J, Boylan J. C., Eds., Marcel Dekker. 2002, p. 481-497). They include:
Obviously, a combination of the listed above types can be used to control coacervation. Particularly, nonsolvent addition in combination with cross-linking agents, or nonsolvent and desalting agents.
It is key that the methods and lipid formulations of the present invention are not prepared passively, i.e encapsulation is not earned out by equilibrium alone. Coacervate formation leads to higher internal drug concentrations relative to external drug concentrations and lower L/A ratios.
The drug coacervate can conceivably occur with any type of drug. Preferably, the drug is a water soluble antiinfective. Antiinfectives are agents that act against infections, such as bacterial, mycobacterial, fungal, viral or protozoal infections. Antiinfectives covered by the invention include but are not limited to aminoglycosides (e.g., streptomycin, gentamicin, tobramycin, amikacin, netilmicin, kanamycin, and the like), tetracyclines (such as chlortetracycline, oxytetracycline, methacycline, doxycycline, minocycline and the like), sulfonamides (e.g., sulfanilamide, sulfadiazine, sulfamethaoxazole, sulfisoxazole, sulfacetamide, and the like), paraaminobenzoic acid, diaminopyrimidines (such as trimethoprim, often used in conjunction with sulfamethoxazole, pyrazinamide, and the like), quinolones (such as nalidixic acid, cinoxacin, ciprofloxacin and norfloxacin and the like), penicillins (such as penicillin G, penicillin V, ampicillin, amoxicillin, bacampicillin, carbenicillin, carbenicillin indanyl, ticarcillin, azlocillin, mezlocillin, piperacillin, and the like), penicillinase resistant penicillin (such as methicillin, oxacillin, cloxacillin, dicloxacillin, nafcillin and the like), first generation cephalosporins (such as cefadroxil, cephalexin, cephradine, cephalothin, cephapirin, cefazolin, and the like), second generation cephalosporins (such as cefaclor, cefamandole, cefonicid, cefoxitin, cefotetan, cefuroxime, cefuroxime axetil; cefmetazole, cefprozil, loracarbef, ceforanide, and the like), third generation cephalosporins (such as cefepime, cefoperazone, cefotaxime, ceftizoxime, ceftriaxone, ceftazidime, cefixime, cefpodoxime, ceftibuten, and the like), other beta-lactams (such as imipenem, meropenem, aztreonam, clavulanic acid, sulbactam, tazobactam, and the like), betalactamase inhibitors (such as clavulanic acid), chloramphenicol, macrolides (such as erythromycin, azithromycin, clarithromycin, and the like), lincomycin, clindamycin, spectinomycin, polymyxin B, polymixins (such as polymyxin A, B, C, D, E1 (colistin A), or E2, colistin B or C, and the like) colistin, vancomycin, bacitracin, isoniazid, rifampin, ethambutol, ethionamide, aminosalicylic acid, cycloserine, capreomycin, sulfones (such as dapsone, sulfoxone sodium, and the like), clofazimine, thalidomide, or any other antibacterial agent that can be lipid encapsulated. Antiinfectives can include antifungal agents, including polyene antifungals (such as amphotericin B, nystatin, natamycin, and the like), flucytosine, imidazoles (such as n-ticonazole, clotrimazole, econazole, ketoconazole, and the like), triazoles (such as itraconazole, fluconazole, and the like), griseofulvin, terconazole, butoconazole ciclopirax, ciclopirox olamine, haloprogin, tolnaftate, naftifine, terbinafine, or any other antifungal that can be lipid encapsulated or complexed. Discussion and the examples are directed primarily toward amikacin but the scope of the application is not intended to be limited to this antiinfective. Combinations of drugs can be used.
Particularly preferred antiinfectives include the aminoglycosides, the quinolones, the polyene antifungals and the polymyxins. Particularly preferred aminoglycosides include amikacin, gentamicin, and tobramycin.
Also included as suitable antiinfectives used in the lipid drug formulations of the present invention are pharmaceutically acceptable addition salts and complexes of drugs. In cases wherein the compounds may have one or more chiral centers, unless specified, the present invention comprises each unique racemic compound, as well as each unique nonracemic compound.
In cases in which the drugs have unsaturated carbon-carbon double bonds, both the cis (Z) and trans (E) isomers are within the scope of this invention. In cases wherein the drugs may exist in tautomeric forms, such as keto-enol tautomers, such as
each tautomeric form is contemplated as being included within this invention, whether existing in equilibrium or locked in one form by appropriate substitution with R′. The meaning of any substituent at any one occurrence is independent of its meaning, or any other substituent's meaning, at any other occurrence.
Also included as suitable drugs used in the lipid antiinfective formulations of the present invention are prodrugs of the drug compounds. Prodrugs are considered to be any covalently bonded carriers which release the active parent compound in vivo.
The lipid drug formulations of the present invention with their low L/D ratios are particularly useful for treating pulmonary infections when the drug is an antiinfective. Among the pulmonary infections (such as in cystic fibrosis patients) that can be treated with the methods of the invention are Pseudomonas (e.g., P. aeruginosa, P. paucimobilis, P. putida, P. fluorescens, and P. acidovorans), staphylococcal, Methicillinresistant Staphylococcus aureus (MRSA), streptococcal (including by Streptococcus pneumoniae), Escherichia coli, Klebsiella, Enterobacter, Serratia, Haemophilus, Yersinia pesos, Burkholderia pseudomallei, B. cepacia, B. gladioli, B. multivorans, B. vietnamiensis, Mycobacterium tuberculosis, M. avium complex (MAC) (M. avium and M. intracellulare), M. kansasii, M. xenopi, M. marinum, M. ulcerans, or M. fortuitum complex (M. fortuitum and M. chelonei) infections.
In one embodiment the present invention comprises a method of treating a patient for a pulmonary infection comprising administering to the patient in need thereof a therapeutically effective amount of a lipid drug formulation with a low L/D ratio wherein the drug is an antiinfective.
Where no specific dosage is provided below, the preferred dosage of the invention is 50% or less, 35% or less, 20% or less, or 10% or less, of the minimum free drug (which of course can be a salt) amount that is effective, if delivered to the lungs via a nebulizer, to reduce the CFU count in the lungs by one order of magnitude over the course of a 14-day treatment. The comparative free drug amount is the cumulative amount that would be used in the dosing period applied with the drug administration of the invention. The comparative minimum free drug defined in this paragraph is a “comparative free drug amount.”
The non-CF treating embodiments of the invention can be used with any animal, though preferably with humans. Relative amounts in a given animal are measured with respect to such animal.
The dosing schedule is preferably once a day or less. In preferred embodiments, the dosing schedule is once every other day, every third day, every week, or less. For example, the dosing schedule can be every other day or less, using 50% or less of the comparative free drug amount. Or, for example, the dosing can be daily using 35% or less of the comparative free drug amount. See
To treat infections, the effective amount of the antiinfective will be recognized by clinicians but includes an amount effective to treat, reduce, ameliorate, eliminate or prevent one or more symptoms of the disease sought to be treated or the condition sought to be avoided or treated, or to otherwise produce a clinically recognizable change in the pathology of the disease or condition. Amelioration includes reducing the incidence or severity of infections in animals treated prophylactically. In certain embodiments, the effective amount is one effective to treat or ameliorate after symptoms of lung infection have arisen. In certain other embodiments, the effective amount is one effective to treat or ameliorate the average incidence or severity of infections in animals treated prophylactically (as measured by statistical studies).
Liposome or other lipid delivery systems can be administered for inhalation either as a nebulized spray, powder, or aerosol, or by intrathecal administration. Inhalation administrations are preferred. The overall result is a less frequent administration and an enhanced therapeutic index compared to free drug or parenteral form of the drug. Liposomes or other lipid formulations are particularly advantageous due to their ability to protect the drug while being compatible with the lung lining or lung surfactant.
The present invention includes methods for treatment of pulmonary gram-negative infections. One usefully treated infection is chronic pseudomonal infection in CF patients. Known treatments of lung infections (such as in CF patients) with aminoglycoside generally comprise administering approximately 200-600 mg of amikacin or tobramycin per day via inhalation. The present invention allows for treatment by administering, in one preferred embodiment, 100 mg or less of amikacin per day (or normalized to 100 mg per day or less if dosing less frequent). In yet another embodiment, administration of 60 mg or less of amikacin every day is performed. And in still another embodiment administration of approximately 30 to 50 mg not more than once every 2 days is performed. The most preferred embodiment comprises administration of approximately 30 to 50 mg every other day or every third day.
The lipids used in the compositions of the present invention can be synthetic, semi-synthetic or naturally-occurring lipids, including phospholipids, tocopherols, steroids, fatty acids, glycoproteins such as albumin, anionic lipids and cationic lipids. The lipids may be anionic, cationic, or neutral. In one embodiment, the lipid formulation is substantially free of anionic lipids. In one embodiment, the lipid formulation comprises only neutral lipids. In another embodiment, the lipid formulation is free of anionic lipids. In another embodiment, the lipid is a phospholipid. Phosholipids include egg phosphatidylcholine (EPC), egg phosphatidylglycerol (EPG), egg phosphatidyl inositol (EPI), egg phosphatidylserine (EPS), phosphatidylethanolamine (EPE), and egg phosphatidic acid (EPA); the soya counterparts, soy phosphatidylcholine (SPC); SPG, SPS, SPI, SPE, and SPA; the hydrogenated egg and soya counterparts (e.g., HEPC, HSPC), other phospholipids made up of ester linkages of fatty acids in the 2 and 3 of glycerol positions containing chains of 12 to 26 carbon atoms and different head groups in the 1 position of glycerol that include choline, glycerol, inositol, serine, ethanolamine, as well as the corresponding phosphatidic acids. The chains on these fatty acids can be saturated or unsaturated, and the phospholipid can be made up of fatty acids of different chain lengths and different degrees of unsaturation. In particular, the compositions of the formulations can include dipalmitoylphosphatidylcholine (DPPC), a major constituent of naturally-occurring lung surfactant as well as dioleoylphosphatidylcholine (DOPC). Other examples include dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) dipalmitoylphosphatidcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) distearoylphosphatidylcholine (DSPC) and distearoylphosphatidylglycerol (DSPG), dioleylphosphatidylethanolamine (DOPE) and mixed phospholipids like palmitoylstearoylphosphatidylcholine (PSPC) and palmitoylstearoylphosphatidylglycerol (PSPG), driacylglycerol, diacylglycerol, seranide, sphingosine, sphingomyelin and single acylated phospholipids like mono-oleoyl-phosphatidylethanol amine (MOPE).
The lipids used can include ammonium salts of fatty acids, phospholipids and glycerides, steroids, phosphatidylglycerols (PGs), phosphatidic acids (PAs), phosphotidylcholines (PCs), phosphatidylinositols (PIs) and the phosphatidylserines (PSs). The fatty acids include fatty acids of carbon chain lengths of 12 to 26 carbon atoms that are either saturated or unsaturated. Some specific examples include: myristylamine, palmitylamine, laurylamine and stearylamine, dilauroyl ethylphosphocholine (DLEP), dimyristoyl ethylphosphocholine (DMEP), dipalmitoyl ethylphosphocholine (DPEP) and distearoyl ethylphosphocholine (DSEP), N-(2,3-di-(9 (Z)-octadecenyloxy)-prop-1-yl-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-bis(oleoyloxy)-3-(trimethylammonio)propane (DOTAP). Examples of steroids include cholesterol and ergosterol. Examples of PGs, PAs, PIs, PCs and PSs include DMPG, DPPG, DSPG, DMPA, DPPA, DSPA, DMPI, DPPI, DSPI, DMPS, DPPS and DSPS, DSPC, DPPG, DMPC, DOPC, egg PC.
Liposomal antiinfective formulations composed of phosphatidylcholines, such as DPPC, aid in the uptake by the cells in the lung such as the alveolar macrophages and helps to sustain release of the antiinfective agent in the lung (Gonzales-Rothi et al. (1991)). The negatively charged lipids such as the PGs, PAs, PSs and PIs, in addition to reducing particle aggregation, can play a role in the sustained release characteristics of the inhalation formulation as well as in the transport of the formulation across the lung (transcytosis) for systemic uptake. The sterol compounds are believed to affect the release and leakage characteristics of the formulation.
Liposomes are completely closed lipid bilayer membranes containing an entrapped aqueous volume. Liposomes can be unilamellar vesicles (possessing a single membrane bilayer) or multilamellar vesicles (onion-like structures characterized by multiple membrane bilayers, each separated from the next by an aqueous layer). The bilayer is composed of two lipid monolayers having a hydrophobic “tail” region and a hydrophilic “head” region. The structure of the membrane bilayer is such that the hydrophobic (nonpolar) “tails” of the lipid monolayers orient toward the center of the bilayer while the hydrophilic “heads” orient towards the aqueous phase. Lipid antiinfective formulations are associations lipid and the antiinfective agent. This association can be covalent, ionic, electrostatic, noncovalent, or steric. These complexes are non-liposomal and are incapable of entrapping additional water soluble solutes. Examples of such complexes include lipid complexes of amphotericin B (Janoff et al., Proc. Nat Acad. Sci., 85:6122 6126, 1988) and cardiolipin complexed with doxorubicin.
A lipid clathrate is a three-dimensional, cage-like structure employing one or more lipids wherein the structure entraps a bioactive agent. Such clathrates are included in the scope of the present invention.
Proliposomes are formulations that can become liposomes or lipid complexes upon coming in contact with an aqueous liquid. Agitation or other mixing can be necessary. Such proliposomes are included in the scope of the present invention.
The process for forming lipid drug formulations involves a “solvent infusion” process. This is a process that includes dissolving one or more lipids in a small, preferably minimal, amount of a process compatible solvent to form a lipid suspension or solution (preferably a solution) and then infusing the solution with an aqueous medium containing the drug. Typically a process compatible solvent is one that can be washed away in a aqueous process such as dialysis or diafiltration. “Ethanol infusion,” a type of solvent infusion, is a process that includes dissolving one or more lipids in a small, preferably minimal, amount of ethanol to form a lipid solution and then infusing the solution with an aqueous medium containing the drug. A “small” amount of solvent is an amount compatible with forming liposomes or lipid complexes in the infusion process. It is key that the conditions for the infusion process have to lead to coacervate formation. Ultimate conditions for infusing a given lipid solution with a given aqueous solution of the active agent have to be determined based on the Examples presented herein and the effect of various parameters taught below. Also useful to someone of ordinary skill in the art, are the techniques for forming coacervates as described in such references as Bunderberg de Jong, H. G., Kruyt, H. R. Koazevation (Entmischung in Kolloidalen Systemen), Koll. Zeitsch. 1930, 50(10), 39-48; Gander B, Blanco-Prieto M. J., Thomasin C, Wandrey Ch. and Hunkeler D., Coacervation/Phase Separation. In: Encyclopedia of Pharmaceutical Technology, Vol. 1, Swarbrick J, Boylan J. C., Eds., Marcel Dekker, 2002, p. 481-497; Newton D. W. Coacervation: Principles and Applications. In: Polymers for Controlled drug delivery. Tarcha P. J., Ed., CRC Press. Boca Raton, 1991, 67-81; Scott P. W., Williams A. C., Barry B. W., Characterization of complex coacervates of Some Tricyclic Antidepressants and evaluation of their potential for Enhancing Transdermal Flux. J. Controlled Release 1996, 41 (3), 215-227; Thomasin C., Merkle H. P., Gander B. Drug microencapsulation by PLA/PLGA Coacervation in the Light of Thermodynamics. 2. Parameters determining Microsphere Formation. J. Pharm Sci. 1998, 87 (30), 269-275; Ball V., Winterhalter M., Schwinte P., Lavalle Ph., Voegel J.-C., Schaal P. Complexation mechanism of Bovine Serum Albumin and Poly(allylamine hydrochloride). J. Phys. Chem. B. 2002, 106, 2357-2364; Mohanty B., Bohidar H. B. Systematic of Alcohol-induced Simple Coacervation in Aqueous Gelatin Solutions. Biomacromolecules 2003, 4, 1080-1086, all of which are incorporated herein by reference in their entirety. Preferably, the step is performed by an in-line infusion process.
Liposome or lipid formulation sizing can be accomplished by a number of methods, such as extrusion, sonication and homogenization techniques which are well known, and readily practiced, by ordinarily skilled artisans. Extrusion involves passing liposomes, under pressure, one or more times through filters having defined pore sizes. The filters are generally made of polycarbonate, but the filters may be made of any durable material which does not interact with the liposomes and which is sufficiently strong to allow extrusion under sufficient pressure. Preferred filters include “straight through” filters because they generally can withstand the higher pressure of the preferred extrusion processes of the present invention. “Tortuous path” filters may also be used. Extrusion can also use asymmetric filters, such as Anopore™ filters, which involves extruding liposomes through a branched-pore type aluminum oxide porous filter.
Liposomes or lipid formulations can also be size reduced by sonication, which employs sonic energy to disrupt or shear liposomes, which will spontaneously reform into smaller liposomes. Sonication is conducted by immersing a glass tube containing the liposome suspension into the sonic epicenter produced in a bath-type sonicator. Alternatively, a probe type sonicator may be used in which the sonic energy is generated by vibration of a titanium probe in direct contact with the liposome suspension. Homogenization and milling apparatii, such as the Gifford Wood homogenizer, Polytron™ or Microfluidizer, can also be used to break down larger liposomes or lipid formulations into smaller liposomes or lipid formulations.
The resulting liposomal formulations can be separated into homogeneous populations using methods well known in the art; such as tangential flow filtration. In this procedure, a heterogeneously sized population of liposomes or lipid formulations is passed through tangential flow filters, thereby resulting in a liposome population with an upper and/or lower size limit. When two filters of differing sizes, that is, having different pore diameters, are employed, liposomes smaller than the first pore diameter pass through the filter. This filtrate can the be subject to tangential flow filtration through a second filter, having a smaller pore size than the first filter. The retentate of this filter is a liposomal/complexed population having upper and lower size limits defined by the pore sizes of the first and second filters, respectively.
Mayer et al. found that the problems associated with efficient entrapment of lipophilic ionizable bioactive agents such as antineoplastic agents, for example, anthracyclines or vinca alkaloids, can be alleviated by employing transmembrane ion gradients. Aside from inducing greater uptake, such transmembrane gradients can also act to increase drug retention in the liposomal formulation.
Lipid drug formulations have a sustained effect and lower toxicity allowing less frequent administration and an enhanced therapeutic index. In preclinical animal studies and in comparison to inhaled tobramycin (not-liposomal or lipid-based) at the equivalent dose level, liposomal amikacin was shown to have, during the time period shortly after administration to over 24 hours later, drug levels in the lung that ranged from two to several hundred times that of tobramycin. Additionally, liposomal amikacin maintained these levels for well over 24 hours. In an animal model designed to mimic the pseudomonas infection seen in CF patients, liposomal amikacin was shown to significantly eliminate the infection in the animals' lungs when compared to free aminoglycosides.
Lung surfactant allows for the expansion and compression of the lungs during breathing. This is accomplished by coating the lung with a combination of lipid and protein. The lipid is presented as a monolayer with the hydrophobic chains directed outward. The lipid represents 80% of the lung surfactant, the majority of the lipid being phosphatidylcholine, 50% of which is dipalmitoyl phosphatidylcholine (DPPC) (Veldhuizen et al, 1998). The surfactant proteins (SP) that are present function to maintain structure and facilitate both expansion and compression of the lung surfactant as occurs during breathing. Of these, SP-B and SP-C specifically have lytic behavior and can lyse liposomes (Hagwood et al., 1998; Johansson, 1998). This lytic behavior could facilitate the gradual break-up of liposomes. Liposomes can also be directly ingested by macrophages through phagocytosis (Couveur et al., 1991; Gonzales-Roth et al., 1991; Swenson et al, 1991). Uptake of liposomes by alveolar macrophages is another means by which drugs can be delivered to the diseased site.
The lipids preferably used to form either liposomal or lipid formulations for inhalation are common to the endogenous lipids found in the lung surfactant. Liposomes are composed of bilayers that entrap the desired drug. These can be configured as multilamellar vesicles of concentric bilayers with the drug trapped within either the lipid of the different layers or the aqueous space between the layers. The present invention utilizes unique processes to create unique liposomal or lipid drug formulations. Both the processes and the product of these processes are part of the present invention.
In one particularly preferred embodiment, the lipid drug formulations of the present invention are prepared by an in-line infusion method where a stream of lipid solution is mixed with a stream of drug solution in-line. For example, the two solutions may be mixed in-line inside a mixing tube preceded by a Y or T-connector. In this way, the in-line infusion method creates the best conditions for forming a drug coacervate. This infusion method results in lower lipid to drug ratios and higher encapsulation efficiencies.
In another particularly preferred embodiment, the lipid drug formulations of the present invention are prepared by vortexing a lipid-organic solvent solution with an aqueous drug solution at a suitable vortexing level.
Another novel method of preparing the lipid drug formulations of the present invention involves initially encapsulating a charged polymer by way of farming a coacervate with the charged polymer in the presence of a lipid. It is believed that this technique will lead to low lipid to charged polymer ratios in the same way that low lipid to drug ratios are obtained. Drug is introduced into the interior of the lipid formulation via ion exchange across the lipid membrane between the charged drug and counter ions of the charged polymer. This technique, not including coacervation formation, is known as “remote loading.” Examples of remote loading are disclosed in U.S. Pat. Nos. 5,316,771 and 5,192,549, both of which are incorporated herein by reference in their entirety.
The processes described above may be further improved by optimizing parameters such as flow rate, temperature, activation agent concentration, and salt addition after infusion step. The following experiments do not necessarily represent the methods of the present invention as indicated by the higher lipid to drug ratios. Rather they represent a set of experiments for testing the effect of the aforementioned parameters. The multiple variables give one an idea of the novelty behind using coacervation techniques to form lipid based drug formulations with low L/D ratios.
Individual flow rates were varied while keeping the total flow rate at 800 mL/min. To do so, two separate pumps were used set at different pumping rates. The mixed solutions were infused for 10 s into a beaker containing NaCl solution such that the final NaCl concentration was 1.5% and the final ethanol concentration did not exceed 30%. After mixing, a 1 mL aliquot was run though a Sephadex G-75 gel filtration column to separate free amikacin from encapsulated. A 1 mL fraction with highest density (determined by visual turbidity) was collected for further analysis. The results are presented in Table 1. Increasing the lipid/amikacin flow rate ratio resulted in an almost constant L/D until 300/500 mL/min. With further increase of lipid rate, L/D started to increase and particle size also started getting larger. At the same time, higher lipid flow rates gave better amikacin recovery (encapsulation efficiency) as more lipid mass was added.
Batch 3 with the lipid/amikacin flow rates of 300/500 mL/min showed the host L/D and particle size, combined with reasonably high amikacin recovery. Thus it was decided to use these flow rates for all further experiments.
In order to reproduce the results at chosen conditions a fully washed batch (batch 6) using diafiltration was prepared as presented in Table 2. NaCl 10% solution was added into the beaker prior to infusion to make the final concentration 2% (as compared to 1.5% in the batches in Table 1). The resulting L/D (1.71) was not as good as in batch 3 in Table 1 and the particle size was higher. This may be due to an adverse effect of high NaCl concentration contacting liposomes in the early stages of liposome formation. Samples separated (washed) using gel-filtration columns tend to have better L/D than ones washed by diafiltration. This may have to do with the different degree of stress liposomes experience, or simply samples separated on the gel filtration column contained a fraction of liposomes with better L/D which does not represent the whole population.
The settings were kept the same as in batch 3 except that the amount of NaCl solution added was less, making the final concentration 1.0%. Solution was added again before infusion was initiated because with the short infusion time it was difficult to make the addition during infusion. Also, during infusion the in-line mixer shifted to the end of the mixing tube under the pressure of the flow. The position of the mixer was 5 cm from the front end of the tube instead of 0 cm for batch 3. This may be important, as the L/D ratio obtained at the same temperature 40/40° C. condition in batch 20 was 0.55, almost half of that in batch 3. On comparing amikacin encapsulation at different infusion temperatures, one can see that, surprisingly, lower temperatures gave better L/D. Of the temperatures tested, lipid/amikacin temperatures 30/30° C. and 50/RT gave similar L/D ratios of 0.32 and 0.37. Again, as in batches 1-5, the numbers from these washed samples by gel-filtration were low, perhaps less than that if the batches had been washed by diafiltration.
In separate experiments it was found that mixing of 90% ethanol and water at either 30° C. and 30° C. or 50° C. and 22° C., respectively, resulted in a similar final temperature of nearly 36° C. This suggests that the temperature of the final mixture rather than that of the individual components is important for amikacin encapsulation. The temperatures 50° C./RT were used in examples 6-15. In examples 16-18 temperatures of 30° C. and 30° C. for the two streams were used with comparable results, although a little less amikacin encapsulation was observed.
Attention was next focused on the steps of NaCl solution addition and the washing process. Process parameters were varied in various directions. Right after the infusion step at flow rates 300/500, ethanol concentration in the mixture reaches 34%. Amikacin has limited solubility at this concentration (see
If one starts with 50 mg/mL amikacin stock, then after mixing with the lipid solution there will be more than 30 mg/mL total amikacin where at least half (15 mg/mL) is free amikacin, assuming 50% encapsulation efficiency. This is higher than the solubility limit at 34% ethanol. One possible solution to this problem is to add more water to the vessel with the lipid/amikacin mixture, thus reducing both ethanol and amikacin concentration. For example, adding 200 parts of water (or NaCl solution) to 800 parts of lipid/amikacin would reduce ethanol to 27% (
In addition, adding NaCl may stabilize osmotic conditions. When liposomes are formed and amikacin is encapsulated at an internal concentration of 200-300 mg/mL, there is only ˜15 mg/mL or so of amikacin not encapsulated. In the absence of saline this would create an osmotic imbalance, which in turn might lead to leakage of amikacin. Adding 150 parts of 10% NaCl to 800 parts of lipid/amikacin will result in about 1.5% NaCl final concentration (outside liposomes).
A number of batches were generated where different amounts of NaCl solution (or water in some batches) were added at different times relative to the infusion event (see Table 5, compiled from Tables 2 and 3). From the table a general trend can be seen, leading to the following conclusions:
Previously it was found that using 50 mg/mL amikacin stock solution produced the best entrapment Reducing the amikacin stock concentration to 40 mg/mL increased L/D when used in conventional processes. With the two-stream in-line infusion process, ethanol concentration reaches higher levels, so the current 50 mg/mL amikacin may not be the optimal concentration.
Table 6 summarizes the effect of using various amikacin stock concentrations. 40 mg/mL delivered comparable or better L/D values, and even improved amikacin recovery. Using less amikacin relative to a constant amount of lipid, and providing a similar L/D, resulted in a higher percent encapsulation (batch 12). Further decrease of amikacin stock concentration to 30 mg/mL resulted in a slightly increased L/D, although recovery was still impressive (batch 13).
Reducing amikacin stock concentration has another implication. It reduces the concentration of free amikacin in a post-infusion lipid/amikacin mixture, allowing it to remain soluble at higher ethanol concentration. Assuming that lipid and amikacin are mixed at 300/500 ratio, amikacin stock is 50 mg/mL, and encapsulation efficiency is 37%, then initial free amikacin would be ˜20 mg/mL. Similarly, 40 mg/mL amikacin stock with 52% encapsulation would result in ˜12 mg/mL free amikacin. 30 mg/mL amikacin stock with 46% encapsulation would result in ˜10 mg/mL free amikacin.
There are several ways to increase the entrapment of drug (e.g. aminoglycosides such as amikacin, tobramycin, gentamicin) in liposomes. One way is to make very large liposomes (>1 μm) where the entrapped volume per amount of lipid is large. This approach is not practical for inhalation (nebulization) of liposomes because 1) shear stress during nebulization tends to rupture liposomes in a size dependent manner where larger liposomes (>0.5 μm) suffer greater release and 2) the smaller droplet sizes necessary for good lung deposition are themselves less than about ˜3 μm. So for inhalation, it is desirable to keep the liposome size as small as possible to avoid too much release. Currently, the mean diameter for the liposomes disclosed herein is less than about 0.4 μm (see Table 4).
Another approach to decrease L/D is to use negatively charged lipids. The aminoglycosides listed above are highly positively charged with 4 to 5 amines per compound. Usually sulfate salts of these aminoglycosides are used in therapeutic formulations. Along with the multi-cationic character comes strong binding to negatively charged liposomes. This results in greater entrapment during liposome formation. The purpose of antiinfective formulations is to provide sustained release to the lung environment. Rapid clearance of the liposomes by macrophage uptake would run counter to this. It has been well documented that negatively charged liposomes experience a much higher degree of uptake by macrophages than neutral liposomes. Therefore, it is desirable to use neutral liposomes.
One group of technologies that allow very high drug entrapment into small liposomes is based on gradient loading where a pH gradient, ammonium sulfate gradient, or Mg-sulfate gradient are used to load amine-drugs into liposomes: see U.S. Pat. Nos. 5,578,320 5,736,155 5,837,279 5,922,350 (pH gradient); U.S. Pat. Nos. 5,837,282 5,785,987 (Mg-sulfate gradient); and U.S. Pat. No. 5,316,771 (ammonium sulfate gradient). These techniques only work for membrane permeable amines (mono-amines where neutral form is permeable like doxorubicin and daunorubicin). Gradient loading will not work for the certain antiinfectives such as aminoglycosides as they are impermeable (too large and too highly charged).
All processes described herein can be easily adapted for large scale, aseptic manufacture. The final liposome size can be adjusted by modifying the lipid composition, concentration, excipients, and processing parameters.
The lipid to drug ratio obtained by the processes of the present invention is about 0.40 to 0.49:1. Further, the percentage of free drug, present after the product is dialyzed for a particular duration, is decreased. When the drug is a macromolecule such as a protein, the L/D ratio can be as high as about 1.2 which is low in comparison to the literature (for example, see U.S. Pat. No. 6,843,942, where encapsulation of recombinant human superoxide dismutase (rh-SOD) in a DPPC-cholesterol-stearylamine formulation was prepared with a L/D ratio of ˜5).
For a pharmaceutical inhalation therapy, it is essentially desirable to establish a high delivery rate to achieve a desired dose in a minimum dosing time. For a liposomal formulation, it is also desirable to maximize the retention of the entrapped drug during nebulization. Nebulization flow rate is the volume (or weight) of the aqueous solution that aerosolizes and flies out of the nebulizer in a unit of time (e.g. g/min, ml/min). Drug delivery rate is defined as the amount of drug that gets delivered by the nebulizer in a unit of time (e.g. mg/min).
Drug delivery efficacy can be increased by making improvements in two areas: 1) improvements in the drug delivery device, an 2) increasing the drug concentration in the drug formulation. When the drug delivery device is a jet nebulizer, key factors that affect the drug delivery rate include: model of nebulizer, i.e. structure of nebulizer, which determines the air flow rate exit from the device and aerosol droplet size; and air pressure used to propel the drug formulation. For drug formulations, drug concentration can be increased by decreasing the amount of water. By doing this, though, viscosity and surface tension increase, which has the effect of decreasing the nebulization rate.
In order to improve drug delivery rate for a given jet nebulizer, drug concentration should be increased while keeping viscosity and sulfate tension relatively constant. By doing this, the drug delivery rate increases even though the nebulization rate stays the same according to the formula drug delivery rate (mg/min)=drug concentration (mg/ml)×nebulization rate (ml/min).
The present invention, in part, is drawn to concentrated high dose lipid based drug formulations that provide maximal aerosol output with particle size ranges within the optimal range of 1-5 μm mass median aerodynamic diameter (MMAD).
Table 7 presents delivery rate and % drug retention data for several nebulization trials. Nebulization was carried out by a jet nebulizer for 20 min at 30 psi compressor pressure.
One can see that as the L/D ratio decreases from lots A and B to the L/D ratios of the present invention obtained in lots I, J, and K, the concentration of drug also increases. At a nearly constant flow rate, an increase in drug concentration gives the highest drug delivery rate of ˜19 to 22 mg/min. These results are graphed in
An obstacle to treating infectious diseases such as Pseudomonas aeruginosa, the leading cause of chronic illness in CF patients is drug penetration within the sputum/biofilm barrier on epithelial cells (
Amikacin has been shown to have a high degree of resistance to bacterial enzymes, thus providing a greater percent of susceptible clinical isolates than found for other aminoglycosides including tobramycin and gentamicin (Price et al., 1976). In particular, P. aeruginosa isolates are far more sensitive to amikacin than other aminoglycosides while exhibiting no cross-resistance (Damaso et al., 1976).
The sustained release and depot effect of liposomal formulations of amikacin is clearly seen in
Moreover, the presence of a sputum/biofilm prevents the penetration of the free aminoglycosides due to binding of the antiinfectives to its surface (
The pharmacokinetics of amikacin was determined in rats following intratracheal (IT) administration of either free tobramycin or liposomal formulations of amikacin. These data were compared to the distribution obtained in the lungs following a tail vein injection of free tobramycin. In all cases a dose of 4 mg/rat was administered. As can be seen in
The binding of aminoglycosides to sputum of CF patients is a concern, particularly if this binding reduces the bioactivity of the antiinfective (Hunt et al., 1995). To determine whether liposomal formulations of amikacin can retain biological activity over a prolonged period of time, normal rats were administered liposomal formulations of amikacin by intratracheal instillation. This was followed by its removal at 2 or 24 hours via a bronchial alveolar lavage (BAL) to determine biological activity. Samples were concentrated by ultrafiltration followed by duration (0.2 micron) to remove contaminating lung microbes. Amikacin concentration was determined employing a TDX instrument and biological activity determined using a Mueller Hinton broth dilution assay (Pseudomonas aeruginosa). The results are shown in Table 7.
As shown by the above table, the recovered filtered liposomal formulation of amikacin was capable of killing P. aeruginosa in a Mueller Hinton broth assay even after 24 hours with an MIC of 4. At 2 hours an MIC of 2 was obtained, which is similar to that obtained for the filtered liposomal/complexed amikacin stock. Thus, the liposomal formulation of amikacin was still active following 24 hours in the lung. At 24 hours free tobramycin at the same dose was undetectable in a BAL. This indicates that not only is the liposomal antiinfective formulation retained in the lung, but it is also freely available to penetrate a sputum/biofilm over time. These data combined with the facts as evident in
As an in vitro demonstration of slow release of liposomal formulation of amikacin and its sustained antiinfective effect, the formulation was incubated in sputum from patients with Chronic Obstructive Pulmonary Disease (COPD) containing PAOI mucoid Pseudomonas. The liposomal formulation of amikacin was also incubated in alginate containing PAOI mucoid Pseudomonas. In both cases sustained and enhanced killing of the Pseudomonas over time was observed, as shown in Table 8.
Classical kill curves are not applicable for liposomal antiinfective formulation technology because the liposomal formulations exhibit a slow release of antiinfective with an enhanced antiinfective effect. The liposomal formulation protects the amikacin from the sputum and/or alginate until its release. In time, complete kilting is observed, consistent with slow release sustained antiinfective effect model with no interference or inactivation of antiinfective.
The efficacy of liposomal amikacin formulations was studied using a model for chronic pulmonary infection (Cash et al., 1979) where P. aeruginosa, embedded in an agarose bead matrix, was instilled in the trachea of rats. This mucoid Pseudomonas animal model was developed to resemble the Pseudomonas infections seen in CF patients. Some of the clinical correlates to CF include: a similar lung pathology; the development of immune complex disorders; and a conversion to the mucoid phenotype by P. aeruginosa strains (Cantin and Woods, 1999). Rat lungs were infected with over 107 CPUs of a mucoid Pseudomonas (strain PAO1) taken from a CF patient isolate, and subsequently treated with (a) free aminoglycoside, (b) the lipid vehicle alone as non-drug control, and (c) liposomal amikacin formulation. In addition, formulations were first screened on the ability to kill in vitro P. aeruginosa on modified Kirby-Bauer plates.
Various liposomal amikacin formulations were tested based on either different lipid compositions or manufacturing parameters resulting in different killing zones in in vitro experiments. This experiment was designed to determine the increase in efficacy obtained with liposomal aminoglycoside formulations over free aminoglycoside. Blank control lipid compositions, two different liposomal amikacin formulations and free amikacin and free Tobramycin at the same aminoglycoside concentrations as the liposomal antiinfective formulations were compared. In addition, a 10 fold higher dose of free amikacin and a 10 fold higher dose of free tobramycin were also given. Dosing was IT daily over seven days. Results (
The next experiment (
The efficacy of liposomal amikacin formulation was studied in a model for chronic pulmonary infection where P. aeruginosa was embedded in an agarose bead matrix that was instilled via the trachea of Sprague/Dawley rats. Three days later free amikacin or liposomal amikacin was dosed every day (
The homogenized rat lungs (frozen) following the 14 day experiment were analyzed for aminoglycoside content and activity. The clinical chemical assay was performed using a TDX instrument while the bioassay was performed by measuring inhibition zones on agar plates embedded with Bacillus subtilis. The results are shown in Table 9:
Drug weights are for the drug normalized to the absence of any salt form.
The Table 10 results indicate that aminoglycoside is present and active for both liposomal antiinfective formulations, while little can be detected for the free aminoglycoside even at the 10-fold higher dose. These further results establish the sustained release characteristics of liposomal antiinfective formulations, and also confirm that that antiinfective which remains is still active. Of the above formulations only the free tobramycin (0.1 microgram/mL) exhibited any detectable levels of aminoglycoside in the kidneys.
The sustained release and depot effect of liposomal amikacin formulation is further demonstrated in
The pharmacokinetics of amikacin was determined in rats following intratracheal (IT) administration of either free tobramycin or liposomal amikacin. A dose of 2 mg/rat was administered. The depot effect of liposomal antiinfective technology is demonstrated in that in comparison to free tobramycin given IT, a greater than a hundred-fold increase in drug for liposomal amikacin still remains in the infected lungs twenty-four hours following administration. Thus, the therapeutic level of drug is maintained for a longer period of time in the liposomal formulations compared to free tobramycin.
Similar anti-infectives can be utilized for the treatment of intracellular infections like pulmonary anthrax and tularemia. In pulmonary anthrax the anthrax spores reach the alveoli in an aerosol. The inhaled spores are ingested by pulmonary macrophages in the alveoli and carried to the regional tracheobronchial lymph nodes or mediastinal lymph nodes via the lymphatics (Pile et al., 1998; Gleiser et al., 1968). The macrophage is central in the both the infective pathway and is the major contributor of host self destruction in systemic (inhalation) anthrax. In addition to its attributes of sustained release and targeting, liposomal antiinfective formulation technology can enhance cellular uptake and can use alveolar macrophages and lung epithelial cells in drug targeting and delivery. The possession of these characteristics is believed to facilitate the treatment of these intracellular infections, which infections occur in the lungs and are transported by macrophages. More importantly, these characteristics should make the antiinfective more effective in that the liposomal antiinfective should be phagocytized by the very cells containing the disease. The antiinfective would be released intracellularly in a targeted manner, thereby attacking the infection before it is disseminated. The encapsulated drug can be an already approved pharmaceutical like ciprofloxacin, tetracycline, erthyromycin or amikacin. Liposomal ciprofloxacin formulations have been developed.
In a study, this compound was administered to mice and compared to both free ciprofloxacin administered intratracheally and free ciprofloxacin administered orally, with all three compounds given at the same dose (
Release of drug in an active form in the vicinity of the infections is an important aspect of the action of liposomal drug formulation of the present invention. The potential for such targeted release was tested by monitoring the release of drug upon incubation with sputum from a CF patient, release in the lungs of rats pre-inoculated with P. aeruginosa, as well as the activity of against cultures of P. aeruginosa.
The release of amikacin by direct incubation of a culture of P. aeruginosa with a liposomal amikacin formulation of the present invention was previously discussed. To further investigate this phenomenon, a liposomal amikacin formulation was incubated with a preparation of sputum from a cystic fibrosis patient with P. aeruginosa infection. Expectorated sputum was liquefied with bovine DNase I and alginate lyase for 2 hr. at 37° C. A liposomal amikacin formulation or soluble amikacin (1 mg/mL amikacin) was mixed 1:1: with liquefied sputum or control and incubated at 37° C. with gentle shaking. Aliquots were analyzed for amikacin concentration by Abbott TDx Analyzer. Intact liposomes were lysed in a separate aliquot of each sample using a detergent, 1% Triton X-100. Supernatants from each sample were used for analysis. Over the period of 48 hours, (80-90%) of the amikacin was released in a time-dependent manner from the lipid composition under these conditions, indicating that drug release may occur at the sites of infection in the CF lung.
Release of free drug from liposomes in vivo was compared for rats that had been instilled with agar beads containing P. aeruginosa (3.5×104 CFU/rat) versus those that had not. Three days after bead instillation, rats were allowed to inhale liposomal amikacin formulations of the present invention (approx. 6 mg/kg daily dose) every day (no bacteria group) or every other day for 14 days (group instilled with heads). 24 hours after the last treatment, the total amikacin and free amikacin were measured as described above. In rats that had received bacteria, an average of approximately 50-70% of the detected amikacin was in the free form, i.e. released from the liposome. In the rats that had not received bacteria approximately 20-25% of the drug was in free form. These data strongly suggest that release of free amikacin from the liposome may be mediated by the presence of P. aeruginosa in vivo.
An in vitro test of release and activity was performed under conditions similar to the pharmacokinetics in the lung, where it has been previously shown that free antibiotic is cleared on the time scale of a few hours. Free amikacin or a liposomal amikacin formulation was incubated with P. aeruginosa PA01 (˜108/mL) in sterile 0.5 mL Slide-A-Lyzer cartridges at varying drug concentrations. Free drug dialyzes out of the cartridges on the time scale of hours under these conditions. After 24 hrs., the samples were withdrawn from the cartridges and plated to measure CFU. In the preliminary experiments free amikacin only slightly reduced the CFU of these samples, while a two log reduction of CFUs was observed for amikacin comprising lipid compositions at the same amikacin concentration (50 μg/mL). These data suggest that amikacin is indeed released in an active form in the presence of bacteria and that the slow release afforded by the formulation makes more effective use of the drug.
The interaction of the liposomal amikacin formulations of the present invention with P. aeruginosa or its virulence factors leads to release of amikacin possibly directing release to the site of infection. When amikacin is released it is active against P. aeruginosa, and the slow release in the vicinity of the bacteria may have an advantage over the non-specific distribution and rapid clearance of inhaled free drug.
The liposomal amikacin formulations of the present invention are in one embodiment a nanoscale (200-300 nm) liposome-encapsulated form of amikacin that is formulated to treat chronic P. aeruginosa infections in cystic fibrosis patients. It is designed for inhalation with sustained release of amikacin in the lung. Because alveolar macrophages are known to avidly take up particles in this size range, the effect of the liposomal formulations on these cells is of particular interest. The basal and stimulated functions of rat alveolar macrophages obtained by lavage were studied with and without administration of liposomal amikacin formulations and compared to various controls.
Aerosols of the liposomal amikacin formulations, amikacin, placebo liposomes and saline were generated with a PARI LC Star nebulizer and inhaled by CD®IGS female rats in a nose-only inhalation chamber. Inhalation therapy was conducted for 4 hr for 14 consecutive days, such that the estimated daily lung dose of total lipid was approximately 12 mg/kg for the liposomal amikacin group and 11 mg/kg for the placebo liposome group. Half the rats were euthanized on day 15. The remaining rats were euthanized on day 43. Bronchial alveolar lavage fluid (BALF) was collected from each rat and stored at −80° C. for subsequent assay of nitric oxide (as represented by total nitrates) and tumor necrosis factor alpha (TNF-α). The cells from the BALF were collected by centrifugation, counted and cultured in medium with and without lipopolysaccharide (LPS) for 24 hr. The supernatants from these cultures were collected by centrifugation and assayed for nitric oxide and TNF-α. The phagocytic function of BAL macrophages ((106)/mL) was tested by measuring the overnight uptake of opsonized fluorescent microspheres (0.2 μm, 2 (109)/mL).
Inhalation of the liposomal amikacin formulation, empty liposomes, soluble amikacin, or saline for 14 consecutive days did not produce a significant acute or delayed inflammatory response in the lungs of rats as evident by levels of nitric oxide (nitrates) and TNF-α in BALF which were insignificantly different from controls, although there was an early trend toward higher NO levels in all groups receiving inhalants, including controls. The total recovery of cells was insignificantly different in all groups with an early trend toward more polymorphonuclear leukocytes in all groups receiving inhalants. Rat alveolar macrophages had normal functions after exposure to the aerosols of the above test articles despite the fact that they appeared enlarged or day 15 in groups inhaling liposomes. The concentrations of nitrates and TNF-α detected upon culturing of alveolar macrophages in medium on day 15 or 43 of the study were insignificantly different from controls. The macrophages responded normally when stimulated by LPS, producing substantial concentrations of nitric oxide (20-40 nmol/106 cells) and TNF-α (5-20 ng/106 cells). These macrophages also had normal phagocytic functions, as shown by identical uptake of fluorescent beads compared to untreated controls.
Inhalation of the liposomal amikacin formulations for 14 consecutive days did not substantially affect the function of alveolar macrophages in terms of phagocytosis of opsonized beads, production of inflammatory mediators TNF and NO.
The dosage of any compositions of the present invention will vary depending on the symptoms, age and body weight of the patient, the nature and severity of the disorder to be treated or prevented, the route of administration, and the form of the subject composition. Any of the subject formulations may be administered in a single dose or in divided doses. Dosages for the compositions of the present invention may be readily determined by techniques known to those of skill in the art or as taught herein.
In certain embodiments, the dosage of the subject compounds will generally be in the range of about 0.01 ng to about 10 g per kg body weight, specifically in the range of about 1 ng to about 0.1 g per kg, and more specifically in the range of about 100 ng to about 50 mg per kg.
An effective dose or amount, and any possible affects on the timing of administration of the formulation, may need to be identified for any particular composition of the present invention. This may be accomplished by routine experiment as described herein, using one or more groups of animals (preferably at least 5 animals per group), or in human trials if appropriate. The effectiveness of any subject composition and method of treatment or prevention may be assessed by administering the composition and assessing the effect of the administration by measuring one or more applicable indices, and comparing the post-treatment values of these indices to the values of the same indices prior to treatment.
The precise time of administration and amount of any particular subject composition that will yield the most effective treatment in a given patient will depend upon the activity, pharmacokinetics, and bioavailability of a subject composition, physiological condition of the patient (including age, sex, disease type and stage, general physical condition, responsiveness to a given dosage and type of medication), route of administration, and the like. The guidelines presented herein may be used to optimize the treatment, e.g., determining the optimum time and/or amount of administration, which will require no more than routine experimentation consisting of monitoring the subject and adjusting the dosage and/or timing.
While the subject is being treated, the health of the patient may be monitored by measuring one or more of the relevant indices at predetermined times during the treatment period. Treatment, including composition, amounts, times of administration and formulation, may be optimized according to the results of such monitoring. The patient may be periodically reevaluated to determine the extent of improvement by measuring the same parameters. Adjustments to the amount(s) of subject composition administered and possibly to the time of administration may be made based on these reevaluations.
Treatment may be initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage may be increased by small increments until the optimum therapeutic effect is attained.
The use of the subject compositions may reduce the required dosage for any individual agent contained in the compositions (e.g., the antiinfective) because the onset and duration of effect of the different agents may be complimentary.
Toxicity and therapeutic efficacy of subject compositions may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 and the ED50.
The data obtained from the cell culture assays and animal studies may be used in formulating a range of dosage for use in humans. The dosage of any subject composition lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For compositions of the present invention, the therapeutically effective dose may be estimated initially from cell culture assays.
The lipid antiinfective formulations of the present invention may comprise an aqueous dispersion of liposomes. The formulation may contain lipid excipients to form the liposomes, and salts/buffers to provide the appropriate osmolarity and pH. The formulation may comprise a pharmaceutical excipient. The pharmaceutical excipient may be a liquid, diluent solvent or encapsulating material, involved in carrying or transporting any subject composition or component thereof from one organ, or portion of the body, to another organ, or portion of the body. Each excipient must be “acceptable” in the sense of being compatible with the subject composition and its components and not injurious to the patient. Suitable excipients include trehalose, raffinose, mannitol, sucrose, leucine, trileucine, and calcium chloride. Examples of other suitable excipients include (1) sugars, such as lactose, and glucose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar, (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
About 20 mg/ml total lipid (DPPC:cholesterol=2:1 by wt) in ethanol and about 75 mg/ml amikacin sulfate (about 50 mg/ml amikacin) in water were mixed together into the reactor vessel by the two-stream in line infusion method. Two solutions were fed into Y-shaped connector at a rate of about 1.0 L/min and about 1.5 L/min, respectively. During the two-stream infusion, water was separately added into the reactor vessel at a similar flow rate (about 1.0 L/min) as the flow rate of lipid solution. The amikacin-lipid suspension infused into the reactor vessel is instantaneously diluted by the continuous feed of water. This additional water helps to seal the membrane by diluting ethanol and it also reduces viscosity of the suspension, consequently reducing the inlet pressure of the diafiltration cartridge. After infusion, the suspension is concentrated by reducing the volume half using diafiltration. The concentrated suspension is washed by diafiltration during a fresh supply of 3.0% NaCl solution. The washed suspension is further concentrated by diafiltration until the desired total amikacin concentration is achieved. The results are given in Table 10.
BSA is a protein having isoelectric point pI=4.9. At pH above that point, it can be considered as a colloid with a net negative charge. It has been shown to form complex coacervates with various polyelectrolytes, such as Poly(allylamine hydrochloride), which in turn is affected by the medium ionic strength, pH and temperature. It was found that addition of nonsolvent to albumin (ethanol) can also induce coacervation. When BSA is dissolved in water at pH 7.0, and ethanol concentration added exceeds ˜45 wt %, BSA molecules aggregate to form droplets of coacervate phase thus leading to strong increase in light scattering. Adding NaCl (increasing ionic strength) results in less ethanol needed to induce coacervation. Lowering the pH has a similar effect (
To encapsulate BSA into liposomes, a BSA aqueous solution at 10 mg/ml in 20 mM NaCl, pH 5.5 was used. A lipid solution was prepared separately at a concentration of 10 mg/mL and a molar ratio DPPC/DPPG/Cholesterol of 60:5:40 in 95% ethanol. All solutions were preheated to 30″ C. The lipid solution (0.4 mL) was added by pipette into a 1 mL BSA solution in a test tube and immediately vortexed to ensure complete mixing. 20 seconds later 0.6 mL of 5% sucrose solution was added and vortex tug repeated. To determine BSA encapsulation, 0.8 mL of the resulting liposome suspension was placed on 5-20% sucrose gradient and centrifuged 30 min at 30,000 RPM. The loaded liposomes formed a pellet heavier than 20% sucrose. The pellet was collected and quantified for lipids and BSA. Lipids were measured by reverse-phase HPLC and BSA was measured by fluorescence (excitation 280 nm, emission 320 nm). It was found that the pellet contained 1.6 mg lipid and 1.3 mg BSA thus giving L/D ratio of 1.2 which is lower than what is normally seen for proteins (for example, see U.S. Pat. No. 6,843,942, where encapsulation of recombinant human superoxide dismutase (rh-SOD) in a DPPC-cholesterol-stearylamine formulation was prepared with a L/D ratio of ˜5).
Publications and references, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference in their entirety in the entire portion cited as if each individual publication or reference were specifically and individually indicated to be incorporated by reference herein as being fully set forth. Any patent application to which this application claims priority is also incorporated by reference herein in the manner described above for publications and references.
While this invention has been described with an emphasis upon preferred embodiments, it will be obvious to those of ordinary skill in the art that variations in the preferred devices and methods may be used and that it is intended that the invention may be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the invention as defined by the claims that follow.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/185,448, filed Jul. 19, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 11/023,971, filed Dec. 28, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 10/696,389, filed Oct. 29, 2003, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/421,923, filed Oct. 29, 2002.
Number | Date | Country | |
---|---|---|---|
60421923 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12983659 | Jan 2011 | US |
Child | 15277667 | US | |
Parent | 11398859 | Apr 2006 | US |
Child | 12983659 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11185448 | Jul 2005 | US |
Child | 11398859 | US | |
Parent | 11023971 | Dec 2004 | US |
Child | 11185448 | US | |
Parent | 10696389 | Oct 2003 | US |
Child | 11023971 | US |