High density coaxial jack and panel

Information

  • Patent Grant
  • 7591677
  • Patent Number
    7,591,677
  • Date Filed
    Friday, April 21, 2006
    18 years ago
  • Date Issued
    Tuesday, September 22, 2009
    15 years ago
Abstract
A coaxial panel comprising a frame with a plurality of openings and a mounting plate for holding a plurality of coaxial jacks that is mounted to the frame is disclosed. Each mounting plate includes an exterior surface that includes an intermating structure for slidably coupling a first mounting plate to a second identical mounting plate in a sliding direction either in a vertical orientation or a horizontal orientation. The intermating structure configured such that two coupled mounting plates cannot be pulled apart in a direction generally perpendicular to the sliding direction. The coaxial jacks mounted to the mounting plate and the mounting plate include slidably intermating alignment structures for aligning front coaxial cable connection locations of the coaxial jacks with the plurality of openings in the frame.
Description
FIELD

The present invention relates generally to devices for making connections between telecommunication equipment. More specifically, the present invention relates to coaxial switching jack assemblies for connecting coaxial cables.


BACKGROUND

In a typical coaxial switching arrangement, a connection panel might be mounted in a studio, with a number of signal generating devices and a number signal processing devices. Coaxial cables might be used to transmit signal from signal generating devices to signal processing devices or between different signal processing devices. Flexibility in configuration of the connections between this equipment is desirable so that different signal generating or processing needs may be accommodated. Many of the devices may have signal in and signal out paths, so that each such device has a pair of coaxial cables extending from it to the connection panel. These pairs of cables are connected to a pair of openings of a switching jack. Multiple devices may be connected to the rear of the switching jacks. When connection is desired between different pieces of equipment connected to the panel, coaxial patch cables inserted in the front of the switching jacks are used. As configurations of equipment change, the connections between equipment may be adapted by rearranging the patch cables without disturbing the connection between the equipment and the panel.


Coaxial switching jacks permit signals carried by coaxial cables between different pieces of broadcast and telecommunications equipment to be configured and directed as needed. Similar switching jacks may be used for digital and analog audio signals, as well as for video signals. It is desirable to have switching jacks which may be used for any of these signals, as well as switching jacks that can selectively loop pairs of signals, connect a third cable to one of the pairs of signals while terminating the other signal, and connect to both signals of the pair to other cables.


SUMMARY

According to one aspect of the invention, the present disclosure relates to a coaxial panel with a frame, a mounting frame mounted to the frame, the mounting frame including an exterior surface, the mounting frame including an intermating structure on the exterior surface for slidably coupling a first mounting frame to a second identical mounting frame in a sliding direction, the intermating structure configured such that two coupled mounting frames cannot be pulled apart in a direction generally perpendicular to the sliding direction. A coaxial jack including coaxial cable connection locations is mounted to the mounting frame.


According to another aspect of the invention, the present disclosure relates to a coaxial panel with a frame defining a plurality of openings, a mounting frame mounted to the frame, the mounting frame configured to hold a plurality of coaxial jacks, and a coaxial jack mounted to the mounting frame, the coaxial jack including front and rear coaxial cable connection locations, wherein the coaxial jack and the mounting frame include slidably intermating alignment structures configured to align the front coaxial cable connection locations of the coaxial jack with the plurality of openings in the frame.


According to yet another aspect of the invention, the present disclosure relates to a coaxial panel with a frame defining a plurality of openings, a mounting frame coupled to the frame, and a coaxial jack mounted to the mounting frame, the coaxial jack including front and rear coaxial cable connection locations, wherein the mounting frame and the frame include interlocking snap-fit structures for coupling the mounting frame to the frame and aligning the front coaxial cable connection locations of the coaxial jack with the plurality of openings in the frame.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate several aspects of the present invention and together with the description, serve to explain the principles of the invention. A brief description of the drawings is as follows:



FIG. 1 is a partial rear perspective view of a telecommunications panel including a frame with a pair of jack mounting frames being mounted on the frame according to the present invention.



FIG. 2 is a partial close-up view of the interlocking snap-fit structures of the frame and a jack mounting frame.



FIG. 3 is a front perspective view of the jack mounting frames of FIG. 1, the jack mounting frames shown being coupled in a vertical arrangement.



FIG. 4 is a rear perspective view of the jack mounting frames of FIG. 3.



FIG. 5 is a partial rear perspective view of an alternative telecommunications panel including an alternative frame shown with a pair of jack mounting frames being mounted on the frame according to the present invention.



FIG. 6 is a front perspective view of the jack mounting frames of FIG. 5, the jack mounting frames shown being coupled in a horizontal arrangement.



FIG. 7 is a top rear perspective view of a jack mounting frame shown with a coaxial switching jack being mounted thereon according to the invention.



FIG. 8 is a bottom rear perspective view of the jack mounting frame and the coaxial switching jack of FIG. 7.



FIG. 9 is a rear perspective view of a coaxial switching jack according to the present invention.



FIG. 10 is a front perspective view of the coaxial switching jack of FIG. 9.



FIG. 11 is a right side elevational view of the coaxial switching jack of FIG. 9.



FIG. 12 is a rear elevational view of the coaxial switching jack of FIG. 9.



FIG. 13 is a front elevational view of the coaxial switching jack of FIG. 9.



FIG. 14 is a bottom plan view of the coaxial switching jack of FIG. 9.



FIG. 15 is an exploded perspective view of the coaxial switching jack of FIG. 9.



FIG. 16 is a right side elevational view of the coaxial switching jack of FIG. 9 shown with the cover removed.



FIG. 17 is a cross-sectional view taken along line 17-17 of FIG. 16.



FIG. 18 is a cross-sectional view taken along line 17-17 of FIG. 16.



FIG. 19 is a cross-sectional view taken along line 19-19 of FIG. 14.



FIG. 20 is a perspective view of the coaxial assembly of the jack of FIG. 15.



FIG. 21 is an exploded perspective view of the coaxial assembly of FIG. 20.



FIG. 22 is a perspective view of the resistor assembly for use with the jack of FIG. 15.



FIG. 23 is an exploded perspective view of the resistor assembly of FIG. 22.



FIG. 24 is a bottom plan view of the coaxial switching jack of FIG. 9 shown with a coaxial cable connector coupled thereto.



FIG. 25 is a cross-sectional view taken along line 25-25 of FIG. 24.



FIG. 26 is a cross-sectional view taken along a line similar to line 25-25 of FIG. 24, illustrating two coaxial cable connectors coupled to the coaxial switching jack.



FIG. 27 is a right side elevational view of the coaxial switching jack of FIG. 9, the resistor of the coaxial switching jack shown in a terminated position.



FIG. 28 is a right side elevational view of the coaxial switching jack of FIG. 9, the resistor of the coaxial switching jack shown in a non-terminated position.



FIG. 29 is a front perspective view of an alternative coaxial jack according to the present invention.



FIG. 30 is a front elevational view of the coaxial jack of FIG. 29.



FIG. 31 is a rear elevational view of the coaxial jack of FIG. 29.



FIG. 32 is a right side elevational view of the coaxial jack of FIG. 29 shown with the cover removed.





DETAILED DESCRIPTION

Reference will now be made in detail to the exemplary aspects of the present invention that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.



FIG. 1 shows a partial perspective view of a telecommunications panel 10 with a pair of mounting frames 12 and a frame 14 to which mounting frames 12 are mounted. Frame 14 includes a front wall 16 and top and bottom walls 18, 20 extending rearwardly from front wall 16. Frame 14 includes mounting flanges 22 on each end with fastener openings 24 located on the sides of front wall 16 for mounting panel 10 to another structure, such as an equipment rack. Front wall 16 of frame 14 defines a plurality of openings 26 permitting access to coaxial switching jacks 28 mounted to mounting frames 12, as shown in FIGS. 7 and 8. Each opening 26 permits access to one of the front cable connection locations 30 of coaxial switching jacks 28. Front cable connection locations 30 are configured as front openings 32 in the embodiment depicted in FIGS. 9-19. On a rear wall 34 of each switching jack 28 is a pair of rear cable connection locations 36 which are configured to accept coaxial cable connectors 38. Rear cable connection locations 36 are also configured as openings 40 in the embodiments depicted.


Top and bottom walls 18, 20 of frame 14 include openings 42 for interlocking mounting frames 12 to frame 14, as will be discussed in further detail below. Top and bottom walls 18, 20 also include opposing side flange portions 44 for guiding in and supporting mounting frames 12 with respect to frame 14.


While FIG. 1 illustrates a panel with a frame which accommodates two rows of mounting frames 12, FIG. 5 illustrates an alternative panel 110 with a frame 114 configured to accommodates a single row of mounting frames 12. Panel 110 is similar is construction and function to panel 10.


As shown in FIGS. 3 and 4, mounting frames 12 can be assembled in a Vertical arrangement. As shown in FIG. 6, mounting frames 12 can be assembled in a horizontal arrangement. Each mounting frame 12 includes a top wall 46, a bottom wall 48, a first sidewall 50, a second sidewall 52, an open front end 54, and an open rear end 55. Mounting frame 12 includes elongate flanges 56 defined on an exterior surface 58 of top wall 46. Each mounting frame 12 also includes elongate grooves 60 defined on an exterior surface 62 of bottom wall 48, which are configured to slidably mate with top flanges 56 of mounting frame 12. Each mounting frame 12 also includes an elongate flange 64 on exterior surface 66 of first sidewall 50 and an elongate groove 68 on exterior surface 70 of second sidewall 52. Side flanges 64 and grooves 68 are configured for slidable mating. In this manner, two mounting frames 12 can be slidably coupled together in a vertical arrangement, as shown in FIGS. 1-4, or in a horizontal arrangement, as shown in FIG. 5 and 6. Elongate flanges 56, 64 and grooves 60, 68 include cooperating dovetail-shaped profiles such that when two mounting frames 12 are slidably coupled together, they cannot be pulled apart in a direction perpendicular to the sliding direction.


Each mounting frame 12 also includes structure for interlocking mounting frames 12 to frame 14, as discussed previously. As shown in FIGS. 1-8, the two outermost flanges 56 on top wall 46 of each mounting frame 12 include ramped tabs 70 adjacent a rear side 72 of flanges 56. And as shown in FIG. 8, bottom wall 48 of each mounting frame 12 defines a pair of ramped tabs 74 located on the sides of the center groove 60. Top and bottom ramped tabs 70, 74 are configured to couple mounting frames 12 to frame 14 by snap-fitting within openings 42 located at top and bottom walls 18, 20 of frame 14. A close-up view of one of the ramped tabs 70 and one of the openings 42 on frame 14 is illustrated in FIG. 2. Top and bottom ramped tabs 70, 74 of mounting frames 12 and top and bottom openings 42 of frame 14 also align the front openings 26 of frame 14 with cable connection locations 30 of coaxial jacks 28 that are mounted to mounting frames 12.


As shown in FIG. 8, the two outermost elongate grooves 60 defined at bottom wall 48 of mounting frames 12 include a deeper elongate slot 76 within groove 60 for accommodating top ramped tabs 70 of another mounting frame 12 when two mounting frames 12 are vertically coupled. Each mounting frame 12 also includes a shorter slot 78 located on each side of the center top flange 56, as shown in FIGS. 1-7, for accommodating ramped tabs 74 defined at bottom wall 48 of mounting frames 12. Side walls 50, 52 of mounting frames 12 do not include structures for accommodating ramped tabs since side walls 50, 52 of mounting frames 12 do not include snap-fit structures for interlocking with frame 14.


In the depicted embodiment, the deeper elongate slots 76 at bottom wall 48 and the shorter slots 78 at top wall 46 allow a mounting frame 12 to be slidably coupled on top of another mounting frame 12 only in a direction going from the rear end 55 of the bottom mounting frame 12 toward the front end 54 of the bottom mounting frame 12 and be removed in the opposite direction. And, in the depicted embodiment, the mounting frame 12 at the bottom can only be removed from top plate 12 in a direction going from the rear end 55 of the top mounting frame 12 toward the front end 54 of the top plate 12 and be coupled in the opposite direction. Rear ends 80 of the deeper elongate slots 76 act as stops for the bottom mounting frame 12 by abutting against vertical faces 82 of the top ramped tabs 70 when two mounting frames 12 are vertically coupled together. The same directional orientation is followed when vertically coupling together more than two mounting frames 12.


As shown in FIGS. 7 and 8, mounting frames 12 are used for mounting coaxial switching jacks 28 to frame 14. Mounting frames 12 and coaxial switching jacks 28 include intermating and interlocking structures for mounting coaxial jacks 28 to mounting frames 12. As shown in FIGS. 7-10, each coaxial switching jack 28 includes a pair of longitudinal guides 84 extending from front wall 86 of jack 28 towards rear wall 34 of jack 28, one guide 84 located at a top wall 88 of jack 28 and another being located at a bottom wall 90 of jack 28. Top guide 84 of jack 28 includes a generally rectangular profile while guide 84 at bottom wall 90 includes a dovetail profile. Top guides 84 of jacks 28 slide within slots 92 at interior surface 94 of top wall 46 of mounting frames 12. Bottom guides 84 of jacks 28 slide within dovetail shaped slots 96 at interior surface 98 of bottom wall 48 of mounting frames 12.


Each jack 28 also includes a flexible cantilever arm 100 with a ramped tab 102 on top wall 88 for snap fitting jack 28 to a mounting frame 12. Cantilever arm 100 extends from rectangular guide 84 at top wall 88 of jack 28 toward rear wall 34 of jack 28. Ramped tab 102 of flexible cantilever arm 100 snap fits into openings 104 defined at top wall 46 of mounting frame 12.


Rear wall 34 of jack 28 defines a downwardly extending flange 106. Dovetail guide 84 at bottom wall 90 extends from front wall 86 of jack 28 to downwardly extending flange 106. Flange 106 abuts against bottom wall 48 of mounting frame 12 when jack 28 is slidably inserted within a mounting frame 12. Extending farther down from flange 106 is a grip tab 108. Grip tab 108 is formed as a part of the rear wall 34 of jack 28. Grip tab 108 is preferably positioned on jack 28 opposite cantilever arm 100 so that a user may apply opposing forces on cantilever arm 100 and grip 108 tab to securely grasp jack 28 and slidably move it relative to mounting frame 12.


In mounting jacks 28 into mounting frames 12, jacks 28 can be slid forwardly with guides 84 fitting within slots 92, 96. Jacks 28 are slid forwardly until cantilever arms 100 flex down and allow ramped tabs 102 to pass under the top wall 46 of mounting frames 12 and into openings 104. When jacks 28 are desired to be removed from mounting frames 12, opposing forces can be applied to cantilever arms 100 and grip tabs 108 to press down cantilever arms 100. As cantilever arms 100 flex down, ramped tabs 102 clear the top openings 104 of mounting frames 12 and jacks 28 are slid rearwardly.


It should be noted that the depicted alignment structures and interlocking structures between jacks 28 and mounting frames 12, between two mounting frames 12, and between mounting frames 12 and frame 14 are non-limiting examples, other configurations also being possible. For example, in other embodiments, slots 92, 96 located at interior surfaces 94, 98 of top and bottom walls 46, 48 of mounting frames 12 and longitudinal guides 84 of jacks 28 may be interchanged.


Referring now to FIGS. 9-19, coaxial switching jack 28 includes a housing 116 with a cover 118. In certain embodiments, housing 116 defines a non-conductive body 120. Housing 116 defines a front wall 86, a rear wall 34, a top wall 88, a bottom wall 90, and a sidewall 122 located opposite from cover 118.


Jack 28 defines a pair of rear cable connection locations 36 and a pair of front cable connection locations 30. Rear cable connection locations 36 are configured as a pair of rear openings 40 defined in rear wall 34 of housing 116. Front cable connection locations 30 are configured as a pair of front openings 32 in front wall 86 of housing 116. As discussed above, longitudinal guides 84 are located at the top and bottom walls 88, 90 of housing 116 with flexible cantilever arm 100 being located on the top wall 88.


Housing 116 and cover 118 cooperate to define an interior 124. Interior 124 of housing 116 is configured to receive the various components of jack 28. Access into interior 124 may be through rear openings 40 or through front openings 32. The components mounted within interior 124 may be inserted through a side opening 126 in housing 116 which is closed off by cover 118. Cover 118 includes fastener holes 128 for fastening cover 118 to housing 116 with fasteners 130. Cover 118 also includes an opening 132 for accommodating a resistor assembly 134, as will be discussed in further detail below. Cover 118 includes indicia 136 on outer surface 138 for indicating the position of the resistor 140 within housing 116.


At rear wall 34 of housing 116 is included a slot 142 for receiving a designation label panel 144. Designation label panel 144 is slidably inserted within slot 142 and held therein with a friction fit. Slot 142 includes an upper notch 146 to facilitate removal of designation label panel 144 from rear wall 34 of housing 116.


Referring now to FIGS. 15, 16, and 19, mounted within interior 124 are a center conductor contact spring 148 and a pair of identical shield conductor contact springs 150. Also mounted within interior 124 is a resistor assembly 134 that is located between a pair of coaxial assemblies 152. Each coaxial assembly 152 includes a center conductor 154 and an outer shield conductor 156. Center conductor contact spring 148 is mounted such that arms 158 of center conductor contact spring 148 are normally in contact with of center conductors 154 of coaxial assemblies 152. Shield conductor contact springs 150 are mounted such that they are normally in electrical contact with each other and in electrical contact with shield conductors 156 of coaxial assemblies 152. Springs 148, 150 are preferably made of a resilient electrically conductive material. The non-conductive material of the housing body 120 electrically isolates the outer shield conductors 156 of coaxial assemblies 152.


As shown in FIGS. 16 and 19, center conductor contact spring 148 is positioned within housing 116 between a bulkhead 160 and front wall 86. Arms 158 of spring 148 extend outwardly to be in electrical contact with center conductors 154 of coaxial assemblies 152. Mounted adjacent an outboard end 162 of each arm 158 is an insulator contact pad 164. With no connector 38 inserted through front openings 32, spring 148 normally electrically connects center conductors 154. In a normal or unswitched position, with no connector 38 inserted through front openings 32, pads 164 do not make physical contact with coaxial assemblies 152, as shown in FIG. 19. When a cable connector 38 is inserted through front openings 32, however, contact pads 164 make the initial contact with cable connectors 38 and electrically isolate coaxial assemblies 152 from the rest of the circuit within jack 28, as will be discussed in further detail below.


Still referring to FIGS. 16 and 19, resistor assembly 134 is positioned between the two shield conductor contact springs 150. As will be discussed in further detail, resistor assembly 134 can be switched between an “ON” or “terminated” position 166 and an “OFF” or “non-terminated” position 168. When resistor assembly 134 is turned to an “ON” position 166, resistor 140 provides electrical contact between the shield conductor contact springs 150 to terminate one of the coaxial assemblies 152. Resistor assembly 134 may be turned to an “OFF” position 168 to electrically isolate the two shield conductor contact springs 150 from each other.



FIGS. 20 and 21 illustrate the coaxial assemblies 152 of jack 28. Each coaxial assembly 152 includes a center conductor 154 electrically isolated from an outer shield conductor 156 by an insulative spacer 170. Spacer 170 positions center conductor 154 coaxially within outer shield conductor 156 and insulates center conductor 154 from outer shield conductor 156. Outer shield conductor 156 defines a front end 172 and a rear end 174 and three different portions extending between front end 172 and rear end 174. First portion 176 is adjacent rear end 174 and includes flats 178. Shield conductor 156 defines an intermediate second portion 180 that has a smaller diameter than first portion 176. First portion 176 and second portion 180 form a generally circular flange 182 thereinbetween. Shield conductor 156 defines a third portion 184 adjacent front end 172. Third portion 184 is a cable connector receiving portion and includes longitudinally extending legs 186 with slots 188 defined thereinbetween, legs 186 configured to flex radially to accept a cable connector 38. Third portion 184 includes a smaller diameter than intermediate portion 180 and defines a generally circular flange 190 therewith intermediate portion 180. Third portion 184 of outer shield conductor 156 defines an opening 192 on its perimeter 194. Openings 192 generally face inwardly toward the center of interior 124 of housing 116 when coaxial assemblies 152 are seated into housing 116. Openings 192 allow arms 158 of center conductor contact spring 148 to extend into coaxial assemblies 152 to make electrical contact with center conductors 154, as shown in FIG. 19.


As shown in FIG. 15, inner surface 196 of cover 118 includes a shape that is complementary to the shape of shield conductors 156. Likewise, interior 124 of housing 116 includes a shape that is complementary to the shape of shield conductors 156. Housing 116 and cover 118 include flats 198 that are complementary to flats 178 defined on first portion 176 of shield conductor 156. Flats 198 of housing 116 and cover 118 and flats 178 of shield conductors 156 prevent radial turning of shield conductors 156 within housing 116 once they are seated. This provides for proper alignment of openings 192 relative to arms 158 of center conductor contact spring 148. Housing 116 and cover 118 also include shoulders 200, 202 that abut against flanges 182, 190, respectively, to prevent longitudinal movement of the coaxial assemblies 152 within housing 116. It should be understood that the depicted embodiment of the coaxial assembly is a non-limiting example and that the coaxial assemblies and the interior shapes of housing 116 and cover 118 can include various other configurations within the spirit of the invention.



FIGS. 22 and 23 illustrate the resistor assembly 134 of the present invention. Resistor assembly 134 includes a resistor 140 housed within an insulative resistor housing 204. Resistor housing 204 includes a bottom portion 206 with a pair of flexible legs 208 for receiving and holding resistor 140 thereinbetween. Resistor housing 204 includes a top portion 210 including two flanges 212 defining a slot 214 thereinbetween. Once inserted within jack housing 116, resistor housing 204 is turnable about its longitudinal axis A. Slot 214 defined between flanges 212 at top portion 210 of resistor housing 204 can be used to rotate resistor housing 204. In the depicted embodiment, resistor housing 204 is rotatable to provide either a 75 ohm resistance between the shield conductor contact springs 150 or to electrically isolate the shield conductor contact springs 150 from each other. In other embodiments, resistors having other resistance values can be used. Resistor 140 is removable from resistor housing 204 and replaceable by another one if needed. Resistor 140 can be removed from jack 28 and replaced by first removing resistor housing 204.


Bottom portion 206 of resistor housing 204 includes a first set of recesses 216 and a second set of recesses 215. The recesses 215, 216 are located at generally ninety degree intervals around the perimeter of bottom portion 206 of housing 204. Recesses 216 are defined as a part of flexible legs 208. Recesses 215 include portions that are both a part of flexible legs 208 and portions that are defined between flexible legs 208. Recesses 215 and 216 are configured to accommodate the curvature of the shield conductor contact springs 150 (see FIG. 19) when resistor housing 204 is turned to an “ON” position 166 or to an “OFF” position 168. Shield conductor contact springs 150 apply spring tension to edges 217 and 219 of recesses 215 and 216, respectively and edges 217 and 219 of recesses 215 and 216, respectively abut against shield conductor contact springs 150 to keep resistor 140 at an “ON” position 166 or an “OFF” position 168 when resistor 140 is turned to one of these positions.



FIGS. 24 and 25 illustrate jack 28 with a cable connector 38 inserted in one of the front openings 32. In this arrangement, outer conductor 218 of cable connector 38 is electrically connected to outer shield 156 and center conductor 220 of cable connector 38 is electrically connected to center conductor 154 of coaxial assembly 152. When a connector 38 is inserted within opening 32, front end 222 of connector 38 makes initial contact with insulative pad 164 of center conductor contact spring arm 158. Without making electrical contact with spring 148, front end 222 deflects arm 158 away from contact with center conductor 154. This breaks the electrical linkage between center conductors 154 of coaxial assemblies 152. Pad 164 insulates outer conductor 218 of connector 38 from electrical contact with spring 148.


As shown in FIG. 25, after arm 158 is moved away from contact with center conductor 154, arm 158 pushes on a first end 224 of shield conductor contact spring 150, flexing an opposite second end 226 away from the other shield conductor contact spring 150 breaking direct electrical contact between the two outer shield conductor contact springs 150. In this manner, the coaxial assembly 152 to which a cable connector 38 is coupled becomes completely electrically isolated from the other coaxial assembly 152 within jack 28. With the movement of springs 148, 150, center conductor 154 of the other coaxial assembly 152 becomes electrically connected to outer shield 156 of the other coaxial assembly 152 through resistor 140.


When a cable connector 38 is inserted within front opening 32, outer conductor 218 of connector 38 closes opening 192 on perimeter 194 of outer shield conductor 156 of coaxial assembly 152. In this manner, outer shield conductors 218, 156 of connector 38 and the corresponding coaxial assembly 152 cooperatively form a generally cylindrical conductive passage 228 about center conductor 220, 154 of connector 38 and the corresponding coaxial assembly 152. Cylindrical passage 228 extends from front openings 32 to rear openings 40.


Thus, when one connector 38 is inserted within one coaxial assembly 152 through one of the openings 32, as shown in FIGS. 24 and 25, the other coaxial assembly 152 remains in electrical contact with springs 148 and 150. Through resistor 140, springs 148 and 150 now electrically connect center and shield conductors 154, 156 of the other coaxial assembly 152. In some instances, it is desirable to have some level of impedance, such as 75 ohms, between center and shield conductors 154, 156. In these instances, the resistor 140 may be provided at the “ON” or “terminated” position 166 as shown in FIG. 27. Other levels of impedance may also be provided by replacing resistor 140 with other resistors within resistor housing 204.


In other instances, it may be desirable to electrically isolate center conductor 154 from outer shield conductor 156 of the unconnected coaxial assembly 152. In these instances, resistor assembly 134 can be turned or rotated to the “OFF” or “non-terminated” position 168 as shown in FIG. 28. In this position, insulative flanges 212 located at top portion 210 of resistor housing 204 electrically isolate the two shield conductor contact springs 150 from each other.


When a second cable connector 38 is inserted into the other front opening 32 as shown in FIG. 26, front end 222 of the second connector 38 deflects arm 158 away from center conductor 154. Arm 158 pushes on a first end 224 of shield conductor contact spring 150 to flex second end 226 away from direct electrical contact with the other shield conductor contact spring 150. Thus, in this manner, when two cable connectors 38 are inserted into front openings 32 of coaxial jack 28, center conductor contact spring 148 and shield conductor contact springs 150 become oriented such that the two coaxial assemblies 152 are electrically isolated from each other.



FIGS. 29-32 illustrate an alternative embodiment of a coaxial jack 300 according to the invention. Jack 300 is similar in structure to jack 28 of FIGS. 9-19. Jack 300 is configured, however, as a straight-through, non-switching jack. Accordingly, in this embodiment, jack housing 302 does not include springs 148 and 150 discussed above. As in the switching jack embodiment 28, when a connector 38 is inserted within a front opening 304, outer shield conductor 218 of connector 38 and an outer shield conductor 306 of the corresponding coaxial assembly 308 cooperatively form a generally cylindrical conductive passage 310 about center conductors 220 of connector 38 and a center conductor 312 of the corresponding coaxial assembly 308.


Coaxial jack 300 of FIGS. 29-32 does not include a resistor assembly 134. In FIG. 29, jack housing 302 is shown with cover 314 mounted thereon. As illustrated, cover 314 does not include any structure for accommodating a rotatable resistor assembly 134 as in the first embodiment of coaxial jack 28.


It should be noted that, although the housing 116 of the switching type coaxial jack 28 has been described as including a non-conductive body 120, certain portions of the housing 116 can include conductive materials. For example, in certain embodiments, parts of housing 116 may include conductive materials for tuning purposes. By providing a certain amount of conductive material within interior 124 of housing 116 or around the exterior of housing 116, the impedance level between center conductor 154 and outer shield conductor 156 can be adjusted and tuned to a desired value.


In other embodiments, certain portions of the housing, whether the jack is a switching jack 28 or a straight-through jack 300, may include conductive material for shielding purposes to prevent crosstalk between adjacent jacks. For example, in certain embodiments, the shielding conductive portions can be included on the cover and/or on opposite sidewall of a jack. In other embodiments, the shielding portions can be included on other parts of the housing.


The above specification, examples and data provide a complete description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims
  • 1. A coaxial panel comprising: a frame;a mounting frame mounted to the frame; anda coaxial jack mounted to the mounting frame, the coaxial jack including coaxial cable connection locations;wherein the mounting frame includes a top wall, a bottom wall, a first sidewall and a second sidewall, the top and bottom walls of the mounting frame including first intermating structures for slidably coupling a first mounting frame to a second identical mounting frame in a vertical configuration wherein one mounting frame is configured to be coupled on top of another mounting frame and wherein the first and second sidewalls of the mounting frame also include second intermating structures for slidably coupling a first mounting frame to a second identical mounting frame in a horizontal configuration wherein one mounting frame is configured to be coupled to another mounting frame in a side-by-side configuration, the first and second intermating structures being for slidably coupling a first mounting frame to a second identical mounting frame in a sliding direction, wherein the first and second intermating structures are configured such that two coupled mounting frames cannot be pulled apart in a direction generally perpendicular to the sliding direction, the top and bottom walls of the mounting frame including snap fit structures for interlocking with the frame for snap fitting the mounting frame to the frame, at least some of the snap fit structures formed integrally with the first intermating structures on at least one of the top wall and the bottom wall of the mounting frame.
  • 2. A coaxial panel according to claim 1, wherein the intermating structures on the top and bottom walls of the mounting frame include a intermating elongate flanges and elongate slots extending from a front end of the mounting frame to a rear end of the mounting frame.
  • 3. A coaxial panel according to claim 2, wherein the frame is configured to receive a plurality of mounting frames coupled on top of one another.
  • 4. A coaxial panel according to claim 1, wherein the intermating structures on the first and second sidewalls of the mounting frame include a intermating elongate flanges and elongate slots extending from a front end of the mounting frame to a rear end of the mounting frame.
  • 5. A coaxial panel according to claim 4, wherein the frame is configured to receive a plurality of mounting frames in a side-by-side configuration.
  • 6. A coaxial panel according to claim 1, wherein the mounting frame is configured to hold a plurality of coaxial jacks.
  • 7. A coaxial panel according to claim 1, wherein the first and second intermating structures of the mounting frame include a dovetail profile.
  • 8. A coaxial panel according to claim 1, wherein the frame is configured to receive a plurality of mounting frames.
  • 9. A coaxial panel comprising: a frame defining a plurality of openings;a mounting frame mounted to the frame, the mounting frame configured to hold a plurality of coaxial jacks; anda coaxial jack mounted to the mounting frame, the coaxial jack including front and rear coaxial cable connection locations;wherein the coaxial jack and the mounting frame include slidably intermating alignment structures that include longitudinal guides and longitudinal slots, the longitudinal guides being located on top and bottom walls of a housing of the coaxial jack and extending along a direction from the front coaxial cable connection locations to the rear coaxial cable connection locations and the longitudinal slots being located on the mounting frame, the intermating alignment structures configured to align the front coaxial cable connection locations of the coaxial jack with the plurality of openings in the frame and wherein the mounting frame and the frame also include interlocking snap fit structures for coupling the mounting frame to the frame such that the front coaxial cable connection locations of the coaxial jack are aligned with the plurality of openings in the frame.
  • 10. A coaxial panel according to claim 9, wherein the longitudinal guides and longitudinal slots include dovetail profiles.
  • 11. A coaxial panel according to claim 9, wherein the coaxial jack and the mounting frame include interlocking snap fit structures.
  • 12. A coaxial panel according to claim 11, wherein the interlocking snap fit structure of the coaxial jack includes a flexible cantilever arm with a tab.
  • 13. A coaxial panel according to claim 9, wherein the mounting frame includes a top wall, a bottom wall, a first sidewall and a second sidewall.
  • 14. A coaxial panel comprising: a frame defining a plurality of openings;a mounting frame coupled to the frame; anda plurality of coaxial jacks mounted to the mounting frame, each coaxial jack including front and rear coaxial cable connection locations;wherein the mounting frame and each coaxial jack include slidably intermating alignment structures that include longitudinal guides and longitudinal slots, the longitudinal guides being located on top and bottom walls of a housing of each coaxial jack and extending along a direction from the front coaxial cable connection locations to the rear coaxial cable connection locations and the longitudinal slots being located on the mounting frame, the intermating alignment structures configured to align the front coaxial cable connection locations of the coaxial jacks with the plurality of openings in the frame, wherein the mounting frame and each coaxial jack include interlocking snap fit structures;wherein the mounting frame and the frame include interlocking snap-fit structures for coupling the mounting frame to the frame and aligning the front coaxial cable connection locations of the coaxial jacks with the plurality of openings in the frame.
  • 15. A coaxial panel according to claim 14, wherein the interlocking snap-fit structures include ramped tabs located on an exterior surface of the mounting frame and openings located on top and bottom walls of the frame.
  • 16. A coaxial panel according to claim 14, wherein the mounting frame includes a top wall, a bottom wall, a first sidewall and a second sidewall.
US Referenced Citations (114)
Number Name Date Kind
2925577 Cetran et al. Feb 1960 A
3020365 Neeman Feb 1962 A
3109997 Giger et al. Nov 1963 A
3566334 Ziegler, Jr. Feb 1971 A
3663901 Forney, Jr. May 1972 A
3701083 Ziegler, Jr. Oct 1972 A
3873785 Lieberman Mar 1975 A
3946390 Alexander et al. Mar 1976 A
3980385 Hirokawa et al. Sep 1976 A
4099825 Jackson Jul 1978 A
4231003 Ishimaru Oct 1980 A
4264115 Chow Apr 1981 A
4749968 Burroughs Jun 1988 A
4789351 Fisher, Jr. et al. Dec 1988 A
4815104 Williams et al. Mar 1989 A
4820200 Lau Apr 1989 A
4824399 Bogar et al. Apr 1989 A
4925403 Zorzy May 1990 A
4938707 Guimond et al. Jul 1990 A
4941846 Guimond et al. Jul 1990 A
4950840 Zetena Aug 1990 A
4971569 Gooch et al. Nov 1990 A
4971578 Wilson Nov 1990 A
5090915 Moulton Feb 1992 A
5096444 Lu et al. Mar 1992 A
5194020 Voltz Mar 1993 A
5233501 Allen et al. Aug 1993 A
5246378 Seiceanu Sep 1993 A
5280254 Hunter et al. Jan 1994 A
5329262 Fisher, Jr. Jul 1994 A
5348491 Louwagie et al. Sep 1994 A
5382173 Brown et al. Jan 1995 A
5417588 Olson et al. May 1995 A
5450011 Boeijen et al. Sep 1995 A
5467062 Burroughs Nov 1995 A
5475394 Kohls et al. Dec 1995 A
5482469 Seiceanu et al. Jan 1996 A
5489222 Moyer et al. Feb 1996 A
5498175 Yeh et al. Mar 1996 A
5503566 Wang Apr 1996 A
5518414 Antonini et al. May 1996 A
5567179 Voltz Oct 1996 A
5577924 Louwagie Nov 1996 A
5585768 Wei Dec 1996 A
5599198 Wang Feb 1997 A
5654679 Mavretic et al. Aug 1997 A
5700160 Lee Dec 1997 A
5702262 Brown et al. Dec 1997 A
5865654 Shimirak et al. Feb 1999 A
5876253 Martucci et al. Mar 1999 A
5885096 Ogren Mar 1999 A
5913701 Olson et al. Jun 1999 A
5964607 Finke et al. Oct 1999 A
6045378 Follingstad Apr 2000 A
6062910 Braquet et al. May 2000 A
6065997 Wang May 2000 A
6113431 Wong Sep 2000 A
6213801 Tayloe et al. Apr 2001 B1
6224421 Maturo, Jr. May 2001 B1
6227868 Wlodarski May 2001 B1
6241562 Benda et al. Jun 2001 B1
6250960 Youtsey Jun 2001 B1
6276970 Wong Aug 2001 B1
6395976 Koradia et al. May 2002 B1
6409550 Splichal et al. Jun 2002 B1
6431920 Endres et al. Aug 2002 B1
6504726 Grabinger et al. Jan 2003 B1
6511330 Norris Jan 2003 B1
6533616 Johnsen et al. Mar 2003 B2
6572413 Olson et al. Jun 2003 B2
6575792 Henneberger et al. Jun 2003 B2
6589062 Ogren et al. Jul 2003 B1
6597256 Khemakhem et al. Jul 2003 B2
6608764 Clark et al. Aug 2003 B2
6743032 Ogren et al. Jun 2004 B2
6752665 Kha et al. Jun 2004 B2
6761588 Heebe et al. Jul 2004 B2
6761594 Johnsen et al. Jul 2004 B2
6790080 Cannon Sep 2004 B2
6808426 Liu Oct 2004 B2
6811432 Cabalka et al. Nov 2004 B2
6817876 Cooper et al. Nov 2004 B2
6830486 Norris et al. Dec 2004 B2
6835093 Griffin et al. Dec 2004 B1
6846195 Annequin Jan 2005 B2
6848948 Khemakhem et al. Feb 2005 B1
6872097 Johnsen et al. Mar 2005 B2
6881076 Baker Apr 2005 B2
6881099 Henneberger et al. Apr 2005 B2
6905363 Musolf et al. Jun 2005 B2
6932634 Cooper et al. Aug 2005 B2
6945817 Miyazaki et al. Sep 2005 B2
6948977 Behrent Sep 2005 B1
6953368 Khemakhem et al. Oct 2005 B2
6992257 Follingstad et al. Jan 2006 B2
7044803 Baker et al. May 2006 B2
7070457 Kluempke Jul 2006 B2
7074080 Khemakhem et al. Jul 2006 B1
7083469 Khemakhem et al. Aug 2006 B1
7108561 Khemakhem et al. Sep 2006 B2
7128604 Hall Oct 2006 B2
7175455 Khemakhem et al. Feb 2007 B2
7244131 Khemakhem et al. Jul 2007 B1
7329148 Khemakhem et al. Feb 2008 B2
7371124 Khemakhem et al. May 2008 B2
7410378 Khemakhem et al. Aug 2008 B2
7470133 Khemakhem et al. Dec 2008 B2
20020129959 Petersen Sep 2002 A1
20040229501 Caveney et al. Nov 2004 A1
20050037655 Henry et al. Feb 2005 A1
20060030222 Fan Feb 2006 A1
20070232105 Khemakhem et al. Oct 2007 A1
20080293296 Khemakhem et al. Nov 2008 A1
20090011654 Khemakhem et al. Jan 2009 A1
Foreign Referenced Citations (9)
Number Date Country
298 12 500 Sep 1998 DE
0 561 238 Sep 1993 EP
0 706 723 May 1998 EP
1 091 380 Apr 2001 EP
1 107 368 Jun 2001 EP
1 555 727 Jul 2005 EP
1 352 970 May 1974 GB
WO 9222943 Dec 1992 WO
WO 9637929 Nov 1996 WO
Related Publications (1)
Number Date Country
20070249221 A1 Oct 2007 US