The present invention relates to electrical connector technology. More specifically, the present invention relates to the connectors with a high density of contacts, for example of electrical contacts.
The products named Tyco Nanonics, Omnetics Nano metal shell, Glenair, Souriau Micro relate to circular connectors comprising up to 44 contacts and are known in the prior art.
Another example of high-density connector is known from the Tyco Electronics Corporation patent U.S. Pat. No. 7,632,126. This connector notably comprises a support plate which bears a plurality of electrical contacts which are aligned. The male part of the connector can contain a number of such plates, for example four, which are aligned in parallel and, correspondingly, the female part comprises receptacles which are also aligned in parallel, said receptacles containing contacts.
The aim of the invention is to improve the known systems.
More specifically, one aim of the invention is to propose a connector formed, for example, by an assembly of parts (for example made of plastic) that are partially metalized to allow for an extreme contact densification. The expression “contact density” should be understood to mean the number of contacts in relation to the overall bulk of the connector.
These days, the traditional contact manufacturing and assembly methods are reaching the physical limits for guaranteeing a quality that is perceived as average. Our own competition and experimental studies have shown that, to maintain a high quality level according to our standards, an alternative to the conventional methods was needed.
Thus, there is a first barrier to be overcome: how to maintain an industrially high quality level.
The connector system market offers a multitude of high-density connectors, such as the rectangular connector which supports the “HDMI” protocol for example. However, all these connectors, mainly rectangular, are constructed for “indoor” applications. They therefore offer little robustness to exposure to the outdoor environment, with an IP68 ingress protection function for example. It is possible to encapsulate them in order to make them more robust. A packaging notably increases the bulk, and the ingress protection is a function that is more difficult to guarantee on a rectangular design than a circular design, thus losing the advantage of a high contact density and simple functional design.
Therefore, there is a second barrier to be overcome: How to preserve a small footprint and a high contact density.
One option would be to manufacture with methods requiring significant investments, such as stamping, for example, which is widely used in the connector systems applied to consumer products. These methods therefore require applications that allow for a flow of large volumes which are more difficult to objectify in the industrial market.
There is therefore a third barrier to be overcome: How to rationalize the manufacturing to remain competitive.
To sum up, there are three challenges to be met:
To meet these challenges, the idea is to apply, in the first step of the connector manufacturing process according to the invention, a novel method for metalizing the surface by laser activation of the plastic, in the context of the MID (Molded Interconnect Device) technology.
This method consists in activating a plastic by laser, a technology known by the term LPKF-LDS (a technology of the company LPKF). This technology is described for example in the publication EP 1 191 127, the content of which is incorporated for reference in the present application. The next step is the metallization of the parts activated by the LPKF-LDS method by conventional galvanic bath methods. The final step is the assembly of the components.
The LPKF-LDS method provides the following advantages
One of the ideas of the present invention is to design parts that allow for a shrewd assembly and a particular design of the interpenetrated parts to form a high-density connector system that is simple to manufacture, that allows for a rationalization of the costs and makes it possible to obtain high quality functions which are these days difficult to obtain by conventional methods.
The duly formed connector is intended to be wired and to ensure a transfer of electricity.
The invention will be better understood from the description of embodiments and the figures in which
In the following description, the elements that are identical or similar will be identified by means of the same numeric references in the interests of simplification.
According to the present invention, in one embodiment, a support allowing for a high-density electrical connector is formed, preferably using two identical basic parts (for example made of plastic).
As will be understood from
Furthermore, since the metalized tracks are present on the non-contiguous faces of the parts 1, there is no electrical contact between them and the isolation is guaranteed. Finally, through the nesting of the studs 4, 4′ and the cavities 5, 5′, a stable and aligned mounting of the two parts 1 is obtained.
At the limit, it is also possible to use only a single part 1 as illustrated in
As indicated above,
The electrical connection to a cable or another plug (straight or bent) can then be made on the rear side of the parts 1, that is to say, on the side away from the contacts 6.
This assembled part can be mounted in a support (rectangular or cylindrical) to form a connector and, as will be understood, it forms a hermaphroditic element which can be placed both in the male part and the female part of the connector.
In another embodiment, the density of the electrical contacts can be increased (for example doubled) by mounting two parts in a cruciform nesting 11 which is illustrated in
Alternatively, such a geometrical configuration could be produced directly, without assembly, by an appropriate method, for example molding.
The advantage of this configuration is particularly evident for a cylindrical connector because the volume available easily allows for such a configuration.
Obviously, the invention is not limited to the embodiments of
It is also possible to vary the number of fingers 6 used for the contacts.
As will be understood, numerous variants can be envisaged in the context of the present invention.
Alternatively, it is possible to start from a more complex structure than that of
One of the advantages of the present invention, in addition to its simplicity, is also the fact that the assembled parts 1 are hermaphroditic, that is to say that it can be used both in the male part and in the female part of the connector, hence the significant gain.
As indicated above, the configurations are not limited to those illustrated in the figures by way of examples: the number of fingers for the contacts can be increased or reduced. Any material, preferably non conductive, can be chosen for the parts 1 provided that it can be used in the LPKF-LDS method.
Nor is the LPKF-LDS method the only method that can be used to produce the conductive tracks 7: other equivalent methods can perfectly well be envisaged. This method does, however, present the advantage of simplicity for producing complex tracks on surfaces which are not necessarily planar.
As already mentioned, the nesting is not necessarily limited to the cruciform (90°) configuration, but other angles and a number of nested parts are possible as is a stacking of more than two parts 1, or even triangular or rectangular, or any other desired form.
Obviously, the embodiments described are not exclusive, in other words technical features of one can be applied to another.
Furthermore, the embodiments are illustrative examples which should not be considered to be limiting and variations are possible in the context of the protection claimed, for example by using equivalent means.
Furthermore, as described above, the structures (cruciform, stacked, etc) described above can be produced by the assembly of individual parts (formed by molding or other equivalent method) or else manufactured as a single part (en bloc) by any appropriate method, but it is also possible to envisage a hybrid construction which would be a combination of the two methods: for example, the structure 10 of
The treatment for the metallization (for example according to the method described above) can be performed on individual parts, individual structures or even after the assembly of the parts.
Number | Date | Country | Kind |
---|---|---|---|
00731/11 | Apr 2011 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2012/052031 | 4/23/2012 | WO | 00 | 10/29/2013 |