1. Field of the Invention
The present invention relates to a high-density disk structure preventing collision of an optical pickup's objective lens with a high-density disk which is placed upside down in a disk device being able to reproduce and record signals from/to a high-density disk such as a high-density digital versatile disk (called “HD-DVD” hereinafter).
2. Description of the Related Art
A compact disk, usually called “CD,” is 1.2 mm in thickness and 120 mm in diameter as shown in
When a CD is normally placed into a disk device, its recording layer, which has pit patterns, is approximately 1.2 mm from an objective lens of an optical pickup equipped in the disk device. The objective lens for a CD has a numerical aperture (NA) of 0.45, which is relatively small.
A digital versatile disk, usually called “DVD,” is 1.2 mm in thickness and 120 mm in diameter like a CD as shown in
When a DVD is normally placed into a disk device, its recording layer, which has pit patterns, is approximately 0.6 mm from an objective lens of an optical pickup equipped in the disk device. The objective lens for a DVD has a NA of 0.6, which is relatively large.
A HD-DVD, which is currently being commercialized, is 1.2 mm in thickness and 120 mm in diameter, like a CD as shown in
Therefore, in comparison with a CD or a DVD, HD-DVD uses an objective lens that is situated closer to the recording layer, that uses a laser beam of shorter wavelength, and that has a greater NA. According to these conditions, it is possible to concentrate a stronger intensity of light on a smaller beam spot formed on the high-density pit patterns of the recording layer of the HD-DVD. Consequently, the transmitting distance of a laser beam of shorter wavelength is shortened, and the variation of the laser beam and its spherical aberration are minimized.
If a HD-DVD 10 is normally placed onto a turntable 11 installed in a disk device as shown in
However, when the HD-DVD 10 is misplaced onto the turntable 11 by, for example, being placed upside down as shown in
In this misplacement, a laser beam cannot be focused within the conventional operating distance of the objective lens OL of the pickup 14. Therefore, the servo controller 15 supervising the focusing-servo operation continues to move the objective lens OL upward to the maximum movable distance ‘OD_Max’ until the laser beam is correctly focused. However, in this case, the objective lens OL will collide with the misplaced HD-DVD 10. Consequently, the HD-DVD 10, the objective lens OL, and/or the servo-mechanism would be irreparably damaged.
It is an object of the present invention to provide a high-density disk structured to prevent the collision of an objective lens of an optical pickup and the high-density disk even though the objective lens moves upward to maximum movable distance, and to enable the detection of the misplacement of a high-density disk as no disk state through a conventional focusing operation on the condition that the high-density disk has been placed upside down.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a recording medium for storing data comprises a disk having first and second surfaces, the disk including a recording area and a clamping area and defining a center hole for receiving a spindle therein, wherein the clamping area includes corresponding first and second clamping surfaces; a recording layer coplanarly disposed in the disk, wherein the recording layer is in closer proximity to the second surface of the disk; and the clamping area at least partially having a protruding portion on the first clamping surface so that the disk is raised from the spindle when the disk is inserted by placing the first clamping surface on the spindle.
According to one aspect of the present invention, the clamping area at the protruding portion has first and second thicknesses measured from a center plane of the disk, the first thickness measured in a direction extending from the center plane of the disk toward the first surface of the disk and the second thickness measured in a direction toward the second surface, wherein the first thickness is greater than the second thickness. Preferably, the difference between the first and the second thicknesses is approximately 0.1 mm to 0.6 mm.
According to another aspect of the present invention, the second clamping surface is coplanar with the second surface of the disk.
According to another aspect of the present invention, the clamping area at least partially has a protruding portion on the second clamping surface.
According to another aspect of the present invention, the second clamping surface is at an uneven level with respect to the second surface of the disk.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide a further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention, illustrate the preferred embodiments of the invention, and together with the description, serve to explain the principles of the present invention.
In order that the invention may be fully understood, a preferred embodiment thereof will now be described with reference to the accompanying drawings.
However, the present HD-DVD 20 in
The height D1 preferably ranges from about 0.1 mm to 0.6 mm and guarantees a marginal gap between the present disk and the objective lens for preventing a collision- between the objective lens of an optical pickup even though the objective lens moves upward to the maximum movable distance on the condition that the present high-density disk has been placed upside down. Alternatively, other suitable height D1 may also be used without deviating from the present invention.
If the disk 20 structured as above is placed normally on a spindle or turntable 11 equipped in a disk device as shown in
After successful clamping of the high-density disk 20, a conventional servo-controlling operation, characterized by the operation of the spindle motor 12, the motor driving unit 13 and the servo controller 15, is conducted to rotate the right-clamped disk 20 at a constant and high speed. Subsequently, a focusing-servo operation is conducted to focus a laser beam exactly onto a recording layer by moving the objective lens OL of the optical pickup 14 up and down within the operating distance OD. Once the laser beam is exactly focused, reproduction (or recording) of the high-density pit patterns begins.
However, if the present disk 20 is placed upside down on the turntable 11 as shown in
Therefore, although the objective lens OL of the optical pickup 14 moves up to the maximum distance to acquire the exact focus while the misplaced disk 20 is rotating at a high speed, the objective lens OL will not collide with the surface of the misplaced disk 20, due to the marginal gap D1 created by the protruding side of the clamping zone. Furthermore, because the recording layer, and the high-density pit patterns contained within, is also further apart from the objective lens OL than in normal placement, the focusing operation will fail. As a result, the misplacement of the disk would be judged as “no disk.” Because a judgment of “no disk” ceases the focusing operation, a collision between the objective lens OL and the disk 20 is avoided.
The protruding height D2 of the recording side is preferably determined to be within a range that ensures a successful focus of the pit patterns within the recording layer by the objective lens OL as it moves up and down within the operating distance OD on the condition that the disk 21 has been normally placed.
Therefore, if the high-density disk 21 structured as above is placed normally on the turntable 11, the recording layer of the disk 21 is further apart from the objective lens OL by the small protruding height D2 than that of a conventional disk. However, because the distance D2 is within a range ensuring successful focus as described above, it is possible to focus a light beam on the recording layer so that reproduction (or recording) of the high-density pit patterns can be conducted.
If the high-density disk 21 is placed upside down on the turntable 11 as shown in
Therefore, if the high-density disk 22 structured as above is placed normally on the turntable 11, the indented side of the clamping zone, which is in contact with a holder of the turntable 11, allows the recording layer of the disk 22 to be appropriately apart from the optical pickup 14. However, the distance between the recording layer and the objective lens OL for this embodiment is longer within the acceptable range for a conventional disk.
In this situation, an exact focus on the recording layer is acquired through moving the objective lens OL up and down within the operating distance OD, which can then result in the reproduction (or recording) of high-density pit patterns.
If the present disk 22 is placed upside down on the turntable 11 as shown in
In addition, the protrusion and/or indentation of the claming zone may be shaped variously other than the aforementioned embodiments, for example, a clamping zone may be protruded or indented partially.
The invention may be applicable to a rewritable high-density disk as well as a read-only high-density disk without departing from the sprit or essential characteristics thereof. Alternatively, the present invention may also be applied to any other rewritable or read-only type disk medium. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
2001-0026250 | May 2001 | KR | national |
This application is a division of U.S. application Ser. No. 10/097,547, filed Mar. 5, 2002, now U.S. Pat. No. 7,012,880 which claims the benefit of Korean Patent Application No. 2001-26250, filed on May 14, 2001, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4634617 | Ohta | Jan 1987 | A |
4683560 | Takeuchi et al. | Jul 1987 | A |
5235581 | Miyagawa et al. | Aug 1993 | A |
5301183 | Minoda et al. | Apr 1994 | A |
5418766 | Fujisawa et al. | May 1995 | A |
5448547 | Minoda et al. | Sep 1995 | A |
5476700 | Asai et al. | Dec 1995 | A |
5864534 | Fairchild | Jan 1999 | A |
5999513 | Arakawa et al. | Dec 1999 | A |
6214430 | Kim et al. | Apr 2001 | B1 |
6445649 | Saito et al. | Sep 2002 | B1 |
6507559 | Iwaki | Jan 2003 | B1 |
6532210 | Park | Mar 2003 | B2 |
6576317 | Yoshimura | Jun 2003 | B2 |
6584067 | Oshima | Jun 2003 | B2 |
6747943 | Netsu et al. | Jun 2004 | B2 |
6865745 | Myrtle | Mar 2005 | B2 |
7012880 | Kim | Mar 2006 | B2 |
7027385 | Shimazaki et al. | Apr 2006 | B1 |
7197756 | Lee | Mar 2007 | B2 |
20020067689 | Yamazaki | Jun 2002 | A1 |
20020167892 | Kim | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
1224216 | Jul 1999 | CN |
1385848 | Dec 2002 | CN |
0554885 | Aug 1993 | EP |
0567318 | Oct 1993 | EP |
1067538 | Jan 2001 | EP |
1152407 | Jul 2001 | EP |
1258872 | Nov 2002 | EP |
1339054 | Aug 2003 | EP |
09-204686 | Aug 1997 | JP |
10-269620 | Oct 1998 | JP |
10-283683 | Oct 1998 | JP |
11-053764 | Feb 1999 | JP |
11-232701 | Aug 1999 | JP |
2000-251324 | Sep 2000 | JP |
2000-322765 | Nov 2000 | JP |
WO0028538 | May 2000 | WO |
WO0245082 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040257941 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10097547 | Mar 2002 | US |
Child | 10892879 | US |