The technology of the disclosure relates to providing fiber optic connections in fiber optic modules configured to be supported in fiber optic equipment.
Benefits of utilizing optical fiber include extremely wide bandwidth and low noise operation. Because of these advantages, optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. Fiber optic networks employing optical fiber are being developed for use in delivering voice, video, and data transmissions to subscribers over both private and public networks. These fiber optic networks often include separated connection points linking optical fibers to provide “live fiber” from one connection point to another. In this regard, fiber optic equipment is located in data distribution centers or central offices to support live fiber interconnections. For example, the fiber optic equipment can support interconnections between servers, storage area networks (SANs), and/or other equipment at data centers. Interconnections may be further supported by fiber optic patch panels or modules.
Fiber optic equipment is customized based on application and connection bandwidth needs. The fiber optic equipment is typically included in housings that are mounted in equipment racks to optimize use of space. Many data center operators or network providers also wish to monitor traffic in their networks. Monitoring devices typically monitor data traffic for security threats, performance issues and transmission optimization, for example. Typical users for monitoring technology are highly regulated industries like financial, healthcare or other industries that wish to monitor data traffic for archival records, security purposes, and the like. Thus, monitoring devices allow analysis of network traffic and can use different architectures, including an active architecture such as SPAN (i.e., mirroring) ports, or passive architectures such as port taps. Passive port taps in particular have the advantage of not altering the time relationships of frames, grooming data, or filtering out physical layer packets with errors, and are not dependent on network load.
Fiber optic cables are provided to provide optical connections to fiber optic equipment and monitoring devices. For example, a fiber optic ribbon cable may be employed that includes a ribbon including a group of optical fibers. Optical fiber ribbons can be connected to multi-fiber connectors, such as MTP connectors as a non-limiting example, to provide multi-fiber connections with a connection. Conventional networking solutions are configured in a point-to-point system. Thus, optical fiber polarity, (i.e., based on a given fiber's transmit to receive function in the system) is addressed by flipping optical fibers in one end of the assembly just before entering the multi-fiber connector in an epoxy plug, or by providing “A” and “B” type break-out modules where the fiber is flipped in the “B” module and straight in the “A” module. This optical fiber flipping scheme to maintain fiber polarity can cause complexity when technicians install fiber optic equipment. Technicians must be aware of the break-out type. Also, this optical fiber flipping scheme may also require additional fiber optic equipment to be employed to provided optical fiber tap ports for monitoring live optical fibers.
Further, data rates that may be provided by equipment in a data center are governed by the connection bandwidth supported by the fiber optic equipment. The connection bandwidth is governed by a number of live optical fiber ports included in the fiber optic equipment and the data rate capabilities of a transceiver connected to the live optical fiber ports. When additional bandwidth is needed or desired, additional live fiber optic equipment may be employed or scaled in the data center to increase optical fiber port count. However, increasing the number of live optical fiber ports may require additional equipment rack space in the data center, thereby incurring increased costs. If the live optical fiber ports are to be monitored, increasing the number of live optical fiber ports may also require additional equipment and/or equipment rack space in the data center to provide for additional tap ports to support the increased number of live optical fiber ports. As such, a need exists to provide fiber optic equipment that supports a foundation in data centers for migration to high-density patch fields for live optical fiber ports that can also support high-density tap ports, to provide greater monitored connection bandwidth capacity to provide a migration path for higher data rates while minimizing the space needed for such fiber optic equipment.
Embodiments of the disclosure include port tap fiber optic modules and related systems and methods for monitoring optical networks. In certain embodiments, the port tap fiber optic modules disclosed herein include connections that employ a universal wiring scheme. The universal wiring scheme ensures compatibility of attached monitor devices to permit a high density of both live and tap fiber optic connections, and to maintain proper polarity of optical fibers among monitor devices and other devices. In other embodiments, the port tap fiber optic modules are provided as high-density port tap fiber optic modules. The high-density port tap fiber optic modules are configured to support a specified density of live and passive tap fiber optic connections. Providing high-density port tap fiber optic modules can support greater connection bandwidth capacity to provide a migration path for higher data rates while minimizing the space needed for such fiber optic equipment.
In this regard, in one embodiment, a high-density port tap fiber optic apparatus is provided. The high-density port tap fiber optic apparatus comprises a chassis having a size based on U space. A U space is defined as having a 1.75 inch height and refers to equipment intended for mounting in a 19-inch rack or a 23-inch equipment rack. The chassis is configured to support a live fiber optic connection density of at least ninety-eight (98) live fiber optic connections per U space based on using at least two live simplex fiber optic components or at least one live duplex fiber optic component. The chassis is also further configured to support a tap fiber optic connection density of at least ninety-eight (98) passive tap fiber optic connections in the U space supporting the live fiber optic connection density.
In another embodiment, a method of supporting a live and tap fiber optic connection density is provided. The method comprises supporting a live fiber optic connection density of at least ninety-eight (98) live fiber optic connections per U space using at least one live simplex fiber optic component or live duplex fiber optic component. The method also comprises supporting a passive tap fiber optic connection density of at least ninety-eight (98) passive taps fiber optic connections in the U space supporting the live fiber optic connection density.
In another embodiment, a high-bandwidth port tap fiber optic apparatus is provided. The high-bandwidth port tap fiber optic apparatus comprises a chassis having a size based on U space. The chassis is configured to support a full-duplex live connection bandwidth of at least nine hundred sixty-two (962) Gigabits per second per U space using at least two live simplex fiber optic components or one live duplex fiber optic component. The chassis is further configured to support a passive tap connection bandwidth of at least nine hundred sixty-two (962) Gigabits per second per U space.
In another embodiment, a method of supporting a live and passive tap fiber optic connection bandwidth is provided. The method comprises supporting a live full-duplex connection bandwidth of at least nine hundred sixty-two (962) Gigabits per second per U space using at least two live simplex fiber optic components or one duplex fiber optic component. The method also comprises supporting a passive taps connection bandwidth of at least nine hundred sixty-two (962) Gigabits per second in the U space supporting the live full-duplex connection bandwidth.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.
Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.
Embodiments of the disclosure include port tap fiber optic modules and related systems and methods for monitoring optical networks. In certain embodiments, the port tap fiber optic modules disclosed herein include connections that employ a universal wiring scheme. The universal wiring scheme ensures compatibility of attached monitor devices to permit a high density of both live and tap fiber optic connections, and to maintain proper polarity of optical fibers among monitor devices and other devices. In other embodiments, the port tap fiber optic modules are provided as high-density port tap fiber optic modules. The high-density port tap fiber optic modules are configured to support a specified density of live and passive tap fiber optic connections. Providing high-density port tap fiber optic modules can support greater connection bandwidth capacity to provide a migration path for higher data rates while minimizing the space needed for such fiber optic equipment.
In certain embodiments disclosed herein, high-density port tap fiber optic modules are provided. In one embodiment, a fiber optic apparatus is provided. The high-density fiber optic apparatus comprises a chassis having a size based on U space. A U space is defined as having a 1.75 inch height and refers to equipment intended for mounting in a 19-inch rack or a 23-inch equipment rack. The chassis is configured to support a high-density live fiber optic connection density per U space based on using at least two live simplex fiber optic components or at least one live duplex fiber optic component. The chassis is also further configured to support a high-density tap fiber optic connection density in the U space supporting the live fiber optic connection density.
In this regard,
The cavity of the enclosure 12 is configured to receive or retain optical fibers or a fiber optic cable harness. Live LC fiber optic connectors 14 may be disposed through a front side of the enclosure 12 and configured to receive fiber optic connectors connected to fiber optic cables (not shown). In one example, the live LC fiber optic connectors 14 may be duplex LC fiber optic adapters that are configured to receive and support connections with duplex LC fiber optic connectors. However, any type of fiber optic connection desired may be provided in the port tap fiber optic module 10. The live LC fiber optic connectors 14 are connected to the live MTP fiber optic connectors 16 disposed through a rear side of the enclosure 12. The tap MTP fiber optic connector 18, disposed through a rear side of the enclosure 12, is connected to both the live LC fiber optic connectors 14 and the live MTP fiber optic connector 16. In this manner, a connection to the live LC fiber optic connector 14 creates a live fiber optic connection with the live MTP fiber optic connector 16, and further permits a tap fiber optic connection via the tap MTP fiber optic connector 18. In this example, the live MTP fiber optic connector 16 and the tap MTP fiber optic connector 18 are both multi-fiber push-on (MPO) fiber optic adapters equipped to establish connections with multiple optical fibers (e.g., either twelve (12) or twenty-four (24) optical fibers). The port tap fiber optic module 10 may also manage polarity between the live and tap fiber optic connectors 14, 16, 18.
As will be described in greater detail with respect to
In one non-limiting example, a universal wiring scheme may be formed by inserting a conventional twelve-fiber optical ribbon into a multi-fiber connector on one end and routing the optical channel/path to single optical fiber connectors on the other end so that the first six fibers (1-6) are generally aligned with the second six fibers (7-12) for providing correct transmit-receive optical polarity. In this example, providing six optical fiber pairs (1-12, 2-11, 3-10, 4-9, 5-8, 6-7) for transmit-receive optical polarity. By way of example, the universal wiring scheme matches transmit/receive pairs from the middle channels of the multi-fiber ferrule outward to the end channels, thereby yielding the pairing of 1-12 fibers, 2-11 fibers, 3-10 fiber and continuing toward the middle channels of the multi-fiber connector such as listed in the table below. Likewise, a 24-fiber connector could use two 12-fiber groupings to create two sets of transmit/receive pairs in a similar fashion. Ideally, all of the channels of the multi-fiber connector are used to create a high-density solution, but this is not necessary according to the concepts disclosed.
As is evident from the numbering of the fibers in each pair, all but one pair are selected from fibers on the optical ribbon that are not adjacent to each other. Each pair can then be separated and connected to a duplex LC connector or a pair of simplex LC connectors. Thus, when each pair of LC connectors is connected to a device that employs transmit and receive signals, the transmit signals are all routed to six adjacent optical paths of the multi-fiber connector, and the receive signals are all received from the other six adjacent optical paths of the multi-fiber connector. Further, the multi-fiber connector may now be directly connected, for example via a flat, twelve-fiber optical ribbon, to another multi-fiber connector connected to a second device by a universal wiring scheme; the transmit signals of the first multi-fiber connector will be routed to the receive ports of the second multi-fiber connector and vice versa.
In this disclosure, the universal wiring schemes are also applied to tap connections in port tap fiber optic modules. In some embodiments, pairs of transmit and receive signals of optical fibers may be passively tapped such that the data carried on both fibers of each pair may be transmitted to respective pairs of tap connections. The tap connections may be pairs of simplex LC connectors, duplex LC connectors, or one or more multi-fiber connectors, for example. When using a universal wiring scheme to output the tap connections via a multi-fiber tap connection, for example, the tap connections may then be easily converted back and forth between LC and MTP configurations with a minimal number of types of connection cabling and other conversion equipment. Using universal wiring also allows for implementation of standardized tap modules that add tap functionality to existing fiber optic wiring modules without sacrificing connection density of the standalone wiring modules. These tap modules are also compatible with existing mounting structures, such as a rack-mount chassis that can accommodate a high density of fiber optic connections.
In this regard,
The port tap fiber optic modules can be provided in various packagings with different sizes and footprints. In this regard,
Each pair of fiber optic splitters 72 is oriented in a direction opposite the other, such that the pair of fiber optic splitters 72 is configured to receive optical fibers pairs having opposite polarities. In other words, one of the splitters of the pair is orientated for the transmit path and the other splitter of the pair is orientated for the receive path of the 2-fiber pair. A first live fiber group 80 of twelve (12) fibers is optically connected to and extends from the plurality of live LC fiber optic connectors 14. For each pair of fibers of the first live fiber group 80, one fiber of the optical fiber pair is optically connected to the live optical input 74 of one of a pair of fiber optic splitters (e.g., fiber optic splitter 72(2)); the other optical fiber of the optical fiber pair is optically connected to the live optical output 76 of the other of the pair of fiber optic splitters (e.g., fiber optic splitter 72(1)). Meanwhile, a second live fiber group 82 of twelve (12) fibers is optically connected to and extends from the live MTP fiber optic connector 16. Similar to the first live fiber group 80, for each pair of fibers of the second live fiber group 82, one fiber of the optical fiber pair is optically connected to the live optical input 74 of one of a pair of fiber optic splitters (e.g., fiber optic splitter 72(1)), and the other optical fiber of the optical fiber pair is optically connected to the live optical output 76 of the other of the pair of fiber optic splitters (e.g., fiber optic splitter 72(2)).
Finally, a tap fiber group 84 of twelve (12) fibers is optically connected to and extends from the tap MTP fiber optic connector 18. For each pair of fibers of the tap fiber group 84, the optical fibers of the optical fiber pair are optically connected to the respective tap optical output 78 of each of the pair of fiber optic splitters (e.g., the pair of fiber optic splitters 72(1) and 72(2)). Thus, a single port tap fiber optic module 10 employing a universal wiring scheme may permit a throughput of multiple live fiber optic connections while simultaneously monitoring those live connections via a passive tap connection.
In some embodiments, each fiber optic splitter 72 is configured to transmit power in different proportions to the respective live and tap optical outputs 76, 78, based on an amount of power received at the live optical input 74 of the fiber optic splitter 72. In some embodiments, N % of the power received from the live optical input 74 is transmitted to the live optical output 76 of the fiber optic splitter 72 and (100-N)% of the power is transmitted to the tap optical output 78 of the fiber optic splitter 72. N may be any number between and including one (1) and ninety-nine (99). In some embodiments, N may substantially be ninety five (95), seventy (70), fifty (50), or any other number for the desired power split to the tap optical output 78 of the fiber optic splitter 72. N may also be in a range substantially between ninety five (95) and fifty (50), a range substantially between eighty (80) and sixty (60), or any other range to provide the desired power split to the tap optical output 78 of the fiber optic splitter 72.
In addition to the versatility of the different configurations described above, another advantage of the described embodiments is that live and tap fiber optic connections can be densely arranged, for example, within the limited space of a 1-U or 3-U space.
It should be noted that 1-U or 1-RU-sized equipment refers to a size standard for rack and cabinet mounts and other equipment, with “U” or “RU” equal to a standard 1.75 inches in height and nineteen (19) inches in width. In certain applications, the width of “U” may be twenty-three (23) inches. In this embodiment, the chassis 36 is 1-U in size; however, the chassis 36 could be provided in a size greater than 1-U as well.
In many embodiments, the port tap fiber optic module 10 and universal fiber optic module 48 are both approximately 1/3 U in height. Thus, with three (3) fiber optic equipment trays 108 disposed in the 1-U height of the chassis 36, a total of twelve (12) port tap fiber optic modules 10 may be supported in a given 1-U space. Supporting up to twelve (12) live fiber optic connections per port tap fiber optic module 10 equates to the chassis 36 supporting up to one hundred forty-four (144) live fiber optic connections, or seventy-two (72) duplex channels, in a 1-U space in the chassis 36 (i.e., twelve (12) fiber optic connections X twelve (12) port tap fiber optic modules 10 in a 1-U space). Thus, the chassis 36 is capable of supporting up to one hundred forty-four (144) live fiber optic connections in a 1-U space by twelve (12) simplex or six (6) duplex fiber optic adapters being disposed in the port tap fiber optic modules 10. Likewise, each port tap fiber optic module 10 also supports the same number of tap fiber optic connections via the tap MTP fiber optic connector 18, which supports twelve (12) tap fiber optic connections. Thus, the chassis 36 is capable of supporting up to one hundred forty-four (144) tap fiber optic connections in a 1-U space by twelve (12) tap MTP fiber optic connectors 18.
The width W1 of the front opening 110 could be designed to be greater than eighty-five percent (85%) of the width W2. For example, the width W1 could be designed to be between ninety percent (90%) and ninety-nine percent (99%) of the width W2. As an example, the width W1 could be less than ninety (90) millimeters (mm). As another example, the width W1 could be less than eighty-five (85) mm or less than eighty (80) mm. For example, the width W1 may be eighty-three (83) mm and the width W2 may be eighty-five (85) mm, for a ratio of width W1 to width W2 of 97.6%. In this example, the front opening 110 may support twelve (12) fiber optic connections in the width W1 to support a fiber optic connection density of at least one fiber optic connection per 7.0 mm of width W1 of the front opening 110. Further, the front opening 110 may support twelve (12) fiber optic connections in the width W1 to support a fiber optic connection density of at least one fiber optic connection per 6.9 mm of width W1 of the front opening 110.
With an increase in fiber optic connection density comes a commensurate increase in data bandwidth through the live LC and MTP fiber optic connectors 14, 16 and through the tap MTP fiber optic connector 18. For example, two (2) optical fibers duplexed for one (1) transmission/reception pair may allow for a data rate of ten (10) Gigabits per second in half-duplex mode, or twenty (20) Gigabits per second in full-duplex mode. As another example, eight (8) optical fibers in a twelve (12) fiber MPO fiber optic connector duplexed for four (4) transmission/reception pairs may allow for a data rate of forty (40) Gigabits per second in half-duplex mode, or eighty (80) Gigabits per second in full-duplex mode. As another example, twenty optical fibers in a twenty-four (24) fiber MPO fiber optic connector duplexed for ten (10) transmission/reception pairs may allow for a data rate of one hundred (100) Gigabits per second in half-duplex mode, or two hundred (200) Gigabits per second in full-duplex mode. Because the tap MTP fiber optic connector 18 does not interfere with live connection density in many embodiments, the port tap fiber optic module 10 can simultaneously support equal live and tap connection bandwidths.
Thus, with the above-described embodiment, providing at least seventy-two (72) live duplex transmission and reception pairs in a 1-U space employing at least one duplex or simplex fiber optic component can support a data rate of at least seven hundred twenty (720) Gigabits per second in half-duplex mode in a 1-U space, or at least one thousand four hundred forty (1440) Gigabits per second in a 1-U space in full-duplex mode, including a commensurate tap data rate if employing a ten (10) Gigabit transceiver. This configuration can also support at least six hundred (600) Gigabits per second in half-duplex mode in a 1-U space and at least one thousand two hundred (1200) Gigabits per second in full-duplex mode in a 1-U space, respectively, and a commensurate tap data rate, if employing a one hundred (100) Gigabit transceiver. This configuration can also support at least four hundred eighty (480) Gigabits per second in half-duplex mode in a 1-U space and nine hundred sixty (960) Gigabits per second in full duplex mode in a 1-U space, respectively, and a commensurate tap data rate, if employing a forty (40) Gigabit transceiver. Note that these embodiments are exemplary and are not limited to the above fiber optic connection densities and bandwidths.
Alternate port tap fiber optic modules with alternative fiber optic connection densities are also possible. For example, up to four (4) MPO fiber optic adapters can be disposed through the front opening 110 of the port tap fiber optic module 90. Thus, if the MPO fiber optic adapters support twelve (12) fibers, the port tap fiber optic module 90 can support up to twenty four (24) live fiber optic connections via four live MTP fiber optic connectors 16 and twenty four (24) tap fiber optic connections via two tap MTP fiber optic connectors 18 (as shown in
If the four MPO fiber optic adapters disposed in the port tap fiber optic module 90 support twenty-four (24) fibers, the port tap fiber optic module 90 can support up to forty eight (48) live fiber optic connections and forty eight (48) tap fiber optic connections. Thus, in this example, up to five hundred seventy six (576) live fiber optic connections and five hundred seventy six (576) tap fiber optic connections can be supported by the chassis 36 in a 1-U space.
Further, with the above-described embodiment, providing at least two hundred eighty eight (288) live duplex transmission and reception pairs in a 1-U space employing at least one twenty-four (24) fiber MPO fiber optic components can support a live and tap data rate of at least two thousand eight hundred eighty (2880) Gigabits per second in half-duplex mode in a 1-U space, or at least five thousand seven hundred sixty (5760) Gigabits per second in a 1-U space in full-duplex mode if employing a ten (10) Gigabit transceiver. This configuration can also support at least two thousand four hundred (2400) Gigabits per second in half-duplex mode in a 1-U space and at least four thousand eight hundred (4800) Gigabits per second in full-duplex mode in a 1-U space, respectively, if employing a one hundred (100) Gigabit transceiver.
Thus, in summary, the table below summarizes some of the fiber optic live connection densities and bandwidths that are possible to be provided in a 1-U and 4-U space employing the various embodiments of fiber optic tap modules, fiber optic equipment trays, and chassis described above. For example, two (2) optical fibers duplexed for one (1) transmission/reception pair can allow for a data rate of ten (10) Gigabits per second in half-duplex mode or twenty (20) Gigabits per second in full-duplex mode. As another example, eight (8) optical fibers in a twelve (12) fiber MPO fiber optic connector duplexed for four (4) transmission/reception pairs can allow for a data rate of forty (40) Gigabits per second in half-duplex mode or eighty (80) Gigabits per second in full-duplex mode. As another example, twenty optical fibers in a twenty-four (24) fiber MPO fiber optic connector duplexed for ten (10) transmission/reception pairs can allow for a data rate of one hundred (100) Gigabits per second in half-duplex mode or two hundred (200) Gigabits per second in full-duplex mode. Note that this table is exemplary and the embodiments disclosed herein are not limited to the fiber optic connection densities and bandwidths provided below.
As used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. Non-limiting examples of bend-insensitive, or bend resistant, optical fibers are ClearCurve® Multimode or single-mode fibers commercially available from Corning Incorporated. Suitable fibers of these types are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entireties.
Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation of U.S. application Ser. No. 13/663975, filed Oct. 30, 2012, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Patent Application Ser. No. 61/647,911, filed on May 16, 2012 the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61647911 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13663975 | Oct 2012 | US |
Child | 15886402 | US |