This invention relates to a high density rigid molded body of composite mycological material.
Published US Patent Application 2015/0101509 discloses a method of making a composite body employing chitin and glucan-containing mycelia cells and discrete particles wherein a mass of material made up of the chitin and glucan-containing mycelia cells and discrete particles is compressed under heat and compression for a time sufficient to allow cross-linking between the cellular matrix in the mycelia cells to bind the discrete particles together in the compressed body.
Generation of mycelial tissue throughout a woven, or non-woven lignocellulosic, saccharide, or synthetic matrix offers the ability to produce a uniform or non-uniform distribution of biomass that can be used for enhancing or targeting physical properties of a biological composite material prepared in a rolled format. Distribution of the fungal network provides a variety of intra or extracellular matrix components in fungal tissue that may act as a resin during a post-growth activation, or catalyzed process.
Compounds that are often associated with the fungal cell wall include chitin, chitosan, β-glucan, proteins, minerals, and other polysaccharides. When exposed to sufficient heat, moisture, or other catalyst, these have the potential to flow, contact, fuse and/or form covalent, physical, or ionic crosslinks throughout the material.
A network of mycelial tissue proliferated across and throughout a fibrous, high flexibility or low-flexibility substrate, can be accessed or activated in a variety of ways to modify the physical characteristics of the fungal cell wall components and subsequently the bulk properties of the biomaterial. This practice proposes preparation, distribution, and activation pathways upon the extracellular (and/or intracellular) fungal cell saccharides, and other macro and micromolecular components.
It is an object of the invention to provide a high density rigid molded body of composite mycological material processed in a simple manner.
It is another object of the invention to provide a mycological composite in rolled format.
Briefly, the invention provides a mycological composite material in the form of a web of mycelial tissue impregnated fibrous material characterized in being flexible and wherein the mycelial tissue contains chitin and glucan-containing mycelial cells.
In one embodiment, the mycological composite material is in the form of a roll with a web of porous material disposed in alternating layers the fibrous material.
In one embodiment, the method of producing the mycological composite material includes the steps of forming an inoculum of mycelial tissue; of inoculating a substrate of fibrous material with said inoculum; of rolling the inoculated substrate into a roll; and thereafter incubating the rolled inoculated substrate for a time sufficient for the mycelial tissue to grow hyphae that enmesh with the substrate by extending around the fibers of the substrate to form a cohesive unified filamentous network with the rolled inoculated substrate being characterized in being flexible.
The step of inoculating may be conducted by deposition of the inoculum on a surface of the substrate. For example, where the inoculum is in the form of solid particles, the inoculum is deposited under gravity onto the substrate of fibrous material and where the inoculum is in the form of a liquid, the inoculum is sprayed onto the substrate of fibrous material. In addition, the substrate may be conveyed in a continuous manner during deposition of the inoculum on the surface of the substrate.
Alternatively, the step of inoculating may be conducted by conveying the substrate of fibrous material through a bath of said inoculum.
After inoculation, the incubated substrate may be rolled up on itself or may be co-rolled with a support web of porous material into a composite roll of alternating layers (or convolutions) of substrate and porous material. Thereafter, the composite roll is dehydrated to below 20% moisture and ideally below 8% for storage and/or transportation to another site for further processing. In this condition, the incubated substrate. is flexible.
The term “flexible” means that the rolled substrate may be unrolled, for example, into a flat web or sheet while retaining the integrity of the incubated substrate.
In accordance with the invention, the mycelial tissue of the inoculum contains chitin and glucan-containing mycelial cells. Thus, in order to further process the rolled inoculated substrate, a length of the incubated substrate is unrolled from the rolled substrate and subjected to heat and pressure sufficient to cause the glucan-containing mycelial cells therein to bond said length into a rigid structure.
In order to prepare the composite roll of alternating layers of substrate and porous material, a flow of moisture is passed through the layers of porous material into the layers of substrate to re-hydrate the layers of substrate to between 30% and 70% moisture.
Alternatively, where a length of the incubated substrate is unrolled from the rolled substrate and subjected to heat and pressure, a flow of steam may be passed through the layers of porous material into the layers of substrate to re-hydrate the layers of substrate.
The method described here can be applied to any species of fungi and tailored to yield the desired extent, or combination of modifications thereof.
These and other objects and advantages of the invention will become more apparent form the following detailed description taken in conjunction with the accompanying drawings wherein:
As illustrated in the detail at Right, top, the fungal cell wall has repeat units of the structural polymer chitin, and the deacetylated derivative, chitosan, where the degree of deacetylation (DD), and degree of acetylation (DA) can vary as complimentary fractions between 0-1. As illustrated in the detail at Right, middle, the fungal cell wall has structural sterol commonly found in fungal cell membranes and as illustrated in the detail at Right, bottom the fungal cell wall has repeat units of the structural saccharides β-d (1,3) and (1,6) glucans. Not shown: catechols, hydrophobins, proteins or other more complex structural cell components.
Referring to
First, an inoculum 11 of mycelial tissue is provided at an inoculation station 12. For example, the inoculum 11 may be obtained by growing a growth media as a solid mass which is then ground up to produce particles or pellets with mycelium therein as disclosed in US 2015/0101509.
Second, a substrate of fibrous material 13 is passed under the inoculation station 12 as a travelling web with the inoculum 11 being deposited under gravity onto the surface of the web 13.
Third, the inoculated substrate 13 is rolled into a roll 14 and thereafter incubated for a time sufficient for the mycelial tissue to grow hyphae that enmesh with the substrate by extending around the fibers of the substrate to form a cohesive unified filamentous network with the rolled inoculated substrate being characterized in being flexible.
Alternatively, the incubated substrate 13 may be rolled up with a support web of porous material 15 into a roll of alternating layers of substrate and porous material.
Fourth, in either case, the roll 14 is dehydrated to below 20% moisture and ideally below 8% for storage and/or transportation to another site for further processing. In this condition, the incubated substrate 13. is flexible.
Referring to
Referring to
As indicated in
Referring to
The particulars of the process steps are as follows:
Nutrition may be added as an option with the amount of added nutrition ranging from no additive (0 g) to 25% by mass of substrate mat or pre-matted fiber/particle) material. If added, the nutrition may be selected from:
Referring to
As indicated in
Thereafter, as indicated in
After opening of the mold forms 22, 23 from each other as indicated in
As indicated in
The particulars of the process steps for processing of the inoculated substrate roll 14 are as follows:
It should be noted that all chemical modifications (naturally, synthetically, or enzymatically derived) may be executed in variant levels of functionality (i.e. substitutions may range from 0 to 1 to 2 or higher), e.g. bifunctional or higher to involve reactive steps intra or inter-cellular biomolecule chain linking to impart targeted chemical modification characteristics, and additionally effect network structure and performance, and subsequently bulk material properties.
The following is an example of making a rolled composite in accordance with the invention.
The invention thus provides a relatively simple process for the production of mycelial composite surfaces in a roll-to-roll format as well as a mycological composite in rolled format.
The invention further provides a mycological composite in rolled forma that can be unrolled and subjected to heat and pressure to make rigid mycological products.
This application claims the benefit of U.S. Provisional Patent Application No. 62/147,813, filed Apr. 15, 2015 and is a Division of U.S. Ser. No. 15/099,790 filed Apr. 15, 2016.
Number | Name | Date | Kind |
---|---|---|---|
1979176 | Schicht | Oct 1934 | A |
2509984 | Morrow | May 1950 | A |
2657647 | Rapisarda | Nov 1953 | A |
2723493 | Stoller | Nov 1955 | A |
2815621 | Carter | Dec 1957 | A |
2964070 | Linhardt | Dec 1960 | A |
3268606 | Jaeger | Aug 1966 | A |
3316592 | Forrest | May 1967 | A |
3317375 | Molinet et al. | May 1967 | A |
3421554 | Carter | Jan 1969 | A |
3477558 | Fleischauer | Nov 1969 | A |
3499261 | Hullhorst et al. | Mar 1970 | A |
3708952 | Schulze et al. | Jan 1973 | A |
3717953 | Kuhn et al. | Feb 1973 | A |
3782033 | Hickerson | Jan 1974 | A |
3810327 | Giansante | May 1974 | A |
3828470 | Stoller | Aug 1974 | A |
3885048 | Liggett | May 1975 | A |
3911141 | Farr et al. | Oct 1975 | A |
3961938 | Iizuka et al. | Jun 1976 | A |
4027427 | Stoller et al. | Jun 1977 | A |
4036122 | Langen | Jul 1977 | A |
4038807 | Beardsley et al. | Aug 1977 | A |
4063383 | Green | Dec 1977 | A |
4073956 | Yates | Feb 1978 | A |
4127965 | Mee | Dec 1978 | A |
4136767 | Sarovich | Jan 1979 | A |
4226330 | Butler | Oct 1980 | A |
4233266 | Kummer | Nov 1980 | A |
4263744 | Stoller | Apr 1981 | A |
4265915 | MacLennan et al. | May 1981 | A |
4294929 | Solomons et al. | Oct 1981 | A |
4337594 | Hanacek et al. | Jul 1982 | A |
4370159 | Holtz | Jan 1983 | A |
4568520 | Ackermann et al. | Feb 1986 | A |
4620826 | Rubio et al. | Nov 1986 | A |
4716712 | Gill | Jan 1988 | A |
4722159 | Watanabe et al. | Feb 1988 | A |
4878312 | Shimizu | Nov 1989 | A |
4922650 | Akao et al. | May 1990 | A |
4960413 | Sagar et al. | Oct 1990 | A |
5021350 | Jung et al. | Jun 1991 | A |
5030425 | Bowers-Irons et al. | Jul 1991 | A |
5074959 | Yamanaka et al. | Dec 1991 | A |
5085998 | Lebron et al. | Feb 1992 | A |
5088860 | Stockdale et al. | Feb 1992 | A |
5123203 | Hiromoto | Jun 1992 | A |
5230430 | Kidder | Jul 1993 | A |
5306550 | Nishiyama et al. | Apr 1994 | A |
5335770 | Baker et al. | Aug 1994 | A |
5370714 | Ogawa | Dec 1994 | A |
5433061 | Hutchinson et al. | Jul 1995 | A |
5440860 | Meli et al. | Aug 1995 | A |
5475479 | Hatakeyama et al. | Dec 1995 | A |
5498384 | Volk et al. | Mar 1996 | A |
5503647 | Dahlberg et al. | Apr 1996 | A |
5511358 | Morita et al. | Apr 1996 | A |
5532217 | Silver et al. | Jul 1996 | A |
5569426 | Le Blanc | Oct 1996 | A |
5589390 | Higuchi et al. | Dec 1996 | A |
5590489 | Hattori et al. | Jan 1997 | A |
5598876 | Zanini et al. | Feb 1997 | A |
5606836 | Insalaco et al. | Mar 1997 | A |
5647180 | Billings et al. | Jul 1997 | A |
5681738 | Beelman et al. | Oct 1997 | A |
5682929 | Maginot et al. | Nov 1997 | A |
5685124 | Jandl | Nov 1997 | A |
5711353 | Ichikawa et al. | Jan 1998 | A |
5802763 | Milstein | Sep 1998 | A |
5854056 | Dschida | Dec 1998 | A |
5888803 | Starkey | Mar 1999 | A |
5897887 | Haeberli | Apr 1999 | A |
5919507 | Beelman et al. | Jun 1999 | A |
5944928 | Seidner | Aug 1999 | A |
5948674 | Mankiewicz | Sep 1999 | A |
5979109 | Sartor et al. | Nov 1999 | A |
6041544 | Kananen et al. | Mar 2000 | A |
6041835 | Price | Mar 2000 | A |
6073388 | Kananen et al. | Jun 2000 | A |
6098677 | Wegman et al. | Aug 2000 | A |
6112504 | McGregor et al. | Sep 2000 | A |
6143549 | Lamar et al. | Nov 2000 | A |
6197573 | Suryanarayan et al. | Mar 2001 | B1 |
6226962 | Eason et al. | May 2001 | B1 |
6300315 | Liu | Oct 2001 | B1 |
6306921 | Al Ghatta et al. | Oct 2001 | B1 |
6329185 | Kofod et al. | Dec 2001 | B1 |
6349988 | Foster et al. | Feb 2002 | B1 |
6402953 | Gorovoj et al. | Jun 2002 | B1 |
6425714 | Waddell | Jul 2002 | B1 |
6444437 | Sporleder et al. | Sep 2002 | B1 |
6471993 | Shastri et al. | Oct 2002 | B1 |
6475811 | Babcock | Nov 2002 | B1 |
6482942 | Vittori | Nov 2002 | B1 |
6491480 | Waddell | Dec 2002 | B2 |
6500476 | Martin et al. | Dec 2002 | B1 |
6523721 | Nomoto et al. | Feb 2003 | B1 |
6603054 | Chen et al. | Aug 2003 | B2 |
6620614 | Luth et al. | Sep 2003 | B1 |
6660164 | Stover | Dec 2003 | B1 |
6679301 | Makino et al. | Jan 2004 | B2 |
6726911 | Jülich et al. | Apr 2004 | B1 |
6737065 | Song et al. | May 2004 | B2 |
7043874 | Wasser et al. | May 2006 | B2 |
7073306 | Hagaman | Jul 2006 | B1 |
7122176 | Stamets | Oct 2006 | B2 |
7179356 | Aksay et al. | Feb 2007 | B2 |
7395643 | Franchini et al. | Jul 2008 | B2 |
7514248 | Gower et al. | Apr 2009 | B2 |
7573031 | Behar et al. | Aug 2009 | B2 |
7621300 | Bonney et al. | Nov 2009 | B2 |
7661248 | Conti et al. | Feb 2010 | B2 |
7754653 | Hintz | Jul 2010 | B2 |
7836921 | Isomura et al. | Nov 2010 | B2 |
8001719 | Bayer et al. | Aug 2011 | B2 |
8067237 | Mooney et al. | Nov 2011 | B2 |
8205646 | Isomura et al. | Jun 2012 | B2 |
8227224 | Kalisz et al. | Jul 2012 | B2 |
8227233 | Kalisz et al. | Jul 2012 | B2 |
8241415 | Wantling et al. | Aug 2012 | B2 |
8298809 | Kalisz et al. | Oct 2012 | B2 |
8298810 | Rocco et al. | Oct 2012 | B2 |
8313939 | Kalisz et al. | Nov 2012 | B2 |
8517064 | Isomura et al. | Aug 2013 | B2 |
8658407 | Lyons et al. | Feb 2014 | B2 |
8763653 | Weigel et al. | Jul 2014 | B2 |
8999687 | Bayer et al. | Apr 2015 | B2 |
9068171 | Kelly et al. | Jun 2015 | B2 |
9079978 | Räsänen et al. | Jul 2015 | B2 |
9085763 | Winiski et al. | Jul 2015 | B2 |
9253889 | Bayer et al. | Feb 2016 | B2 |
9332779 | Marga | May 2016 | B2 |
9394512 | Bayer et al. | Jul 2016 | B2 |
9469838 | Schaak et al. | Oct 2016 | B2 |
9485917 | Bayer et al. | Nov 2016 | B2 |
9555395 | Araldi et al. | Jan 2017 | B2 |
9714180 | McIntyre et al. | Jul 2017 | B2 |
9752122 | Marga et al. | Sep 2017 | B2 |
9795088 | Bayer et al. | Oct 2017 | B2 |
9801345 | Bayer et al. | Oct 2017 | B2 |
9803171 | Bayer et al. | Oct 2017 | B2 |
9879219 | McIntyre et al. | Jan 2018 | B2 |
9914906 | Winiski et al. | Mar 2018 | B2 |
10125347 | Winiski | Nov 2018 | B2 |
10144149 | Araldi et al. | Dec 2018 | B2 |
10154627 | McIntyre et al. | Dec 2018 | B2 |
10172301 | McNamara et al. | Jan 2019 | B2 |
10266695 | Lucht et al. | Apr 2019 | B2 |
10407675 | Bayer et al. | Sep 2019 | B2 |
10525662 | Bayer et al. | Jan 2020 | B2 |
10533155 | Kozubal et al. | Jan 2020 | B2 |
10537070 | Betts et al. | Jan 2020 | B2 |
10575579 | Egeland et al. | Mar 2020 | B2 |
10577579 | Kozubal et al. | Mar 2020 | B2 |
10583626 | Bayer et al. | Mar 2020 | B2 |
10589489 | Bayer et al. | Mar 2020 | B2 |
10590379 | Kozubal et al. | Mar 2020 | B2 |
10687482 | Ross et al. | Jun 2020 | B2 |
10785925 | McNamara et al. | Sep 2020 | B2 |
11001801 | Kozubal et al. | May 2021 | B2 |
11015168 | Kozubal et al. | May 2021 | B2 |
11149247 | Harney et al. | Oct 2021 | B2 |
11261420 | Kozubal et al. | Mar 2022 | B2 |
11266085 | Kaplan-Bie et al. | Mar 2022 | B2 |
11272726 | Macur et al. | Mar 2022 | B2 |
11277979 | Greetham et al. | Mar 2022 | B2 |
11277981 | Ross | Mar 2022 | B2 |
11293005 | Carlton et al. | Apr 2022 | B2 |
11297866 | Kozubal et al. | Apr 2022 | B2 |
11343979 | Mueller et al. | May 2022 | B2 |
11359074 | Kaplan-Bie et al. | Jun 2022 | B2 |
11359174 | Winiski et al. | Jun 2022 | B2 |
11407973 | Harney et al. | Aug 2022 | B2 |
11420366 | McIntyre et al. | Aug 2022 | B2 |
11432575 | Macur et al. | Sep 2022 | B2 |
11459541 | Harney et al. | Oct 2022 | B2 |
11464251 | Kozubal et al. | Oct 2022 | B2 |
11466245 | Harney et al. | Oct 2022 | B2 |
11478007 | Macur et al. | Oct 2022 | B2 |
11505779 | Kozubal et al. | Nov 2022 | B2 |
11666080 | Kozubal et al. | Jun 2023 | B2 |
20010012235 | Schuchardt | Aug 2001 | A1 |
20020110427 | Waddell | Aug 2002 | A1 |
20020131828 | Waddell | Sep 2002 | A1 |
20020131933 | Delmotte | Sep 2002 | A1 |
20030017565 | Echigo et al. | Jan 2003 | A1 |
20030056451 | Plsek et al. | Mar 2003 | A1 |
20030121201 | Dahlberg et al. | Jul 2003 | A1 |
20030157219 | Bijl et al. | Aug 2003 | A1 |
20030232895 | Omidian et al. | Dec 2003 | A1 |
20040000090 | Miller | Jan 2004 | A1 |
20040020553 | Amano | Feb 2004 | A1 |
20040166576 | Sadaie | Aug 2004 | A1 |
20040177585 | Vermette | Sep 2004 | A1 |
20040211721 | Stamets | Oct 2004 | A1 |
20050053778 | Hukkanen | Mar 2005 | A1 |
20050133536 | Kelsey et al. | Jun 2005 | A1 |
20050137272 | Gaserod et al. | Jun 2005 | A1 |
20060121006 | Chancellor et al. | Jun 2006 | A1 |
20060134265 | Beukes | Jun 2006 | A1 |
20060280753 | McNeary | Dec 2006 | A1 |
20070079944 | Amidon et al. | Apr 2007 | A1 |
20070196509 | Riman et al. | Aug 2007 | A1 |
20070225328 | Fritz et al. | Sep 2007 | A1 |
20070227063 | Dale et al. | Oct 2007 | A1 |
20070294939 | Spear et al. | Dec 2007 | A1 |
20080017272 | Isomura et al. | Jan 2008 | A1 |
20080046277 | Stamets | Feb 2008 | A1 |
20080047966 | Carson | Feb 2008 | A1 |
20080145577 | Bayer et al. | Jun 2008 | A1 |
20080234210 | Rijn et al. | Sep 2008 | A1 |
20080295399 | Kawai et al. | Dec 2008 | A1 |
20080296295 | Kords et al. | Dec 2008 | A1 |
20090107040 | Vandnhove | Apr 2009 | A1 |
20090111163 | Hoang et al. | Apr 2009 | A1 |
20090191289 | Lutz et al. | Jul 2009 | A1 |
20090241623 | Matano et al. | Oct 2009 | A1 |
20090246467 | Delantar | Oct 2009 | A1 |
20090272758 | Karwacki et al. | Nov 2009 | A1 |
20090307969 | Bayer et al. | Dec 2009 | A1 |
20090321975 | Schlummer | Dec 2009 | A1 |
20100101190 | Dillon | Apr 2010 | A1 |
20100158976 | O'Brien et al. | Jun 2010 | A1 |
20100159509 | Xu et al. | Jun 2010 | A1 |
20100199601 | Boldrini et al. | Aug 2010 | A1 |
20100227931 | Kuwano et al. | Sep 2010 | A1 |
20100243135 | Pepper et al. | Sep 2010 | A1 |
20100326564 | Isomura et al. | Dec 2010 | A1 |
20110094154 | Joaquin | Apr 2011 | A1 |
20110108158 | Huwiler et al. | May 2011 | A1 |
20110265688 | Kalisz et al. | Nov 2011 | A1 |
20110268980 | Kalisz et al. | Nov 2011 | A1 |
20110269209 | Rocco et al. | Nov 2011 | A1 |
20110269214 | Kalisz et al. | Nov 2011 | A1 |
20110306107 | Kalisz et al. | Dec 2011 | A1 |
20120000165 | Williams | Jan 2012 | A1 |
20120006446 | Isomura et al. | Jan 2012 | A1 |
20120060446 | Merz | Mar 2012 | A1 |
20120076895 | Kirejevas et al. | Mar 2012 | A1 |
20120115199 | Li et al. | May 2012 | A1 |
20120124839 | Kalisz et al. | May 2012 | A1 |
20120132314 | Weigel et al. | May 2012 | A1 |
20120135504 | Ross | May 2012 | A1 |
20120225471 | McIntyre et al. | Sep 2012 | A1 |
20120227899 | McIntyre et al. | Sep 2012 | A1 |
20120231140 | Hofmann et al. | Sep 2012 | A1 |
20120270031 | Guan et al. | Oct 2012 | A1 |
20120270302 | Bayer et al. | Oct 2012 | A1 |
20120315687 | Bayer et al. | Dec 2012 | A1 |
20130095560 | McIntyre et al. | Apr 2013 | A1 |
20130105036 | Smith et al. | May 2013 | A1 |
20130210327 | Corominas | Aug 2013 | A1 |
20130224840 | Bayer | Aug 2013 | A1 |
20130274892 | Lelkes et al. | Oct 2013 | A1 |
20130309755 | McIntyre et al. | Nov 2013 | A1 |
20140038619 | Moulsley | Feb 2014 | A1 |
20140056653 | Scully et al. | Feb 2014 | A1 |
20140069004 | Bayer et al. | Mar 2014 | A1 |
20140093618 | Forgacs et al. | Apr 2014 | A1 |
20140120602 | Winiski et al. | May 2014 | A1 |
20140163142 | Zhang et al. | Jun 2014 | A1 |
20140173977 | Juscius | Jun 2014 | A1 |
20140186927 | Winiski et al. | Jul 2014 | A1 |
20140371352 | Dantin et al. | Dec 2014 | A1 |
20150033620 | Greetham et al. | Feb 2015 | A1 |
20150038619 | McIntyre et al. | Feb 2015 | A1 |
20150101509 | McIntyre et al. | Apr 2015 | A1 |
20150197358 | Larsen | Jul 2015 | A1 |
20150342138 | Bayer et al. | Dec 2015 | A1 |
20150342224 | Medoff | Dec 2015 | A1 |
20160002589 | Winiski | Jan 2016 | A1 |
20160073589 | McNamara et al. | Mar 2016 | A1 |
20160264926 | Winiski et al. | Sep 2016 | A1 |
20160355779 | Ross | Dec 2016 | A1 |
20170000040 | Bayer et al. | Jan 2017 | A1 |
20170028600 | McIntyre et al. | Feb 2017 | A1 |
20170071214 | Rehage | Mar 2017 | A1 |
20170218327 | Amstislavski et al. | Aug 2017 | A1 |
20170253849 | Miller et al. | Sep 2017 | A1 |
20170253852 | Bayer et al. | Sep 2017 | A1 |
20180014468 | Ross et al. | Jan 2018 | A1 |
20180148682 | Ross et al. | May 2018 | A1 |
20180282529 | Kaplan-Bie | Oct 2018 | A1 |
20180368337 | McIntyre et al. | Dec 2018 | A1 |
20190059431 | Kozubal et al. | Feb 2019 | A1 |
20190284307 | Chase et al. | Sep 2019 | A1 |
20190322997 | Schaak | Oct 2019 | A1 |
20190330668 | Kozubal et al. | Oct 2019 | A1 |
20190338240 | Carlton et al. | Nov 2019 | A1 |
20190357454 | Mueller et al. | Nov 2019 | A1 |
20190359931 | Mueller et al. | Nov 2019 | A1 |
20190390156 | Bayer et al. | Dec 2019 | A1 |
20200024577 | Carlton et al. | Jan 2020 | A1 |
20200025672 | Scullin et al. | Jan 2020 | A1 |
20200055274 | Bayer et al. | Feb 2020 | A1 |
20200095535 | Kozubal et al. | Mar 2020 | A1 |
20200102530 | Winiski et al. | Apr 2020 | A1 |
20200146224 | Kaplan-Bie et al. | May 2020 | A1 |
20200157506 | Bayer et al. | May 2020 | A1 |
20200196541 | Ross et al. | Jun 2020 | A1 |
20200208097 | Winiski | Jul 2020 | A1 |
20200239830 | O'Brien et al. | Jul 2020 | A1 |
20200255794 | Amstislavski et al. | Aug 2020 | A1 |
20200268031 | Macur et al. | Aug 2020 | A1 |
20200270559 | Macur et al. | Aug 2020 | A1 |
20200392341 | Smith et al. | Dec 2020 | A1 |
20210017486 | Kozubal et al. | Jan 2021 | A1 |
20210127601 | Kaplan-Bie et al. | May 2021 | A9 |
20210317433 | Schaak | Oct 2021 | A9 |
20210348117 | Winiski | Nov 2021 | A9 |
20210401019 | Bayer et al. | Dec 2021 | A1 |
20220025318 | Gandia et al. | Jan 2022 | A1 |
20220142907 | Bayer et al. | May 2022 | A1 |
20220240557 | Kawabata et al. | Aug 2022 | A1 |
20220290199 | Greetham et al. | Sep 2022 | A1 |
20220295825 | Ghotra et al. | Sep 2022 | A1 |
20220298470 | Sayed et al. | Sep 2022 | A1 |
20220315881 | Macur | Oct 2022 | A1 |
20220333055 | Winiski et al. | Oct 2022 | A1 |
20220354068 | Carlton et al. | Nov 2022 | A1 |
20220354152 | Winiski et al. | Nov 2022 | A1 |
20220361424 | Mueller et al. | Nov 2022 | A1 |
20220386666 | Kawabata et al. | Dec 2022 | A1 |
20220396052 | Bayer et al. | Dec 2022 | A9 |
20230013465 | Kaplan-Bie et al. | Jan 2023 | A1 |
20230016412 | Perry | Jan 2023 | A1 |
20230024708 | Kaplan-Bie et al. | Jan 2023 | A1 |
20230056666 | Winiski et al. | Feb 2023 | A1 |
20230219265 | McIntyre et al. | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
1059662 | Mar 1992 | CN |
1273249 | Nov 2000 | CN |
1358413 | Jul 2002 | CN |
1732887 | Feb 2006 | CN |
101248869 | Aug 2008 | CN |
101653081 | Feb 2010 | CN |
101743854 | Feb 2013 | CN |
103146585 | Jun 2013 | CN |
101892163 | Jul 2013 | CN |
103283482 | Jul 2014 | CN |
103396954 | Nov 2014 | CN |
104025909 | May 2016 | CN |
105961035 | Sep 2016 | CN |
106380166 | Feb 2017 | CN |
106635825 | May 2017 | CN |
106947702 | Jul 2017 | CN |
108249037 | Jul 2018 | CN |
108753624 | Nov 2018 | CN |
108934760 | Dec 2018 | CN |
109897394 | Jun 2019 | CN |
106613359 | Jan 2020 | CN |
111066577 | Apr 2020 | CN |
112225326 | Jan 2021 | CN |
112442449 | Mar 2021 | CN |
113501994 | Oct 2021 | CN |
108753625 | Nov 2021 | CN |
113692913 | Nov 2021 | CN |
114175968 | Mar 2022 | CN |
216106969 | Mar 2022 | CN |
114617025 | Jun 2022 | CN |
111990171 | Jul 2022 | CN |
115104479 | Sep 2022 | CN |
115181679 | Oct 2022 | CN |
0226292 | Jun 1987 | EP |
1312547 | May 2003 | EP |
2677030 | Dec 2013 | EP |
2735318 | May 2014 | EP |
2835058 | Feb 2015 | EP |
2875805 | May 2015 | EP |
2878340 | Jun 2015 | EP |
2485779 | Feb 2018 | EP |
3292769 | Mar 2018 | EP |
2497415 | Apr 2015 | ES |
3006693 | Dec 2014 | FR |
3071507 | Mar 2019 | FR |
142800 | Jan 1921 | GB |
1525484 | Sep 1978 | GB |
2032456 | May 1980 | GB |
2165865 | Apr 1986 | GB |
358266 | Jul 2020 | IN |
202111003691 | Feb 2021 | IN |
202141024595 | Jul 2021 | IN |
202031032279 | Feb 2022 | IN |
S52066679 | Jun 1977 | JP |
S55048388 | Apr 1980 | JP |
H03234889 | Oct 1991 | JP |
H049316 | Jan 1992 | JP |
2002104988 | Apr 2002 | JP |
2003526353 | Sep 2003 | JP |
2009519042 | May 2009 | JP |
2011130766 | Jul 2011 | JP |
2016512699 | May 2016 | JP |
6111510 | Apr 2017 | JP |
2023002897 | Jan 2023 | JP |
20050001175 | Jan 2005 | KR |
101569282 | Nov 2015 | KR |
101619664 | May 2016 | KR |
101851655 | Apr 2018 | KR |
102256335 | May 2021 | KR |
1020220138955 | Oct 2022 | KR |
102463058 | Nov 2022 | KR |
1020220163083 | Dec 2022 | KR |
1020220163084 | Dec 2022 | KR |
2017016725 | Jun 2019 | MX |
163845 | Oct 2017 | MY |
2716106 | Mar 2020 | RU |
WO 1992013960 | Aug 1992 | WO |
WO 1998052403 | Nov 1998 | WO |
WO 1999024555 | May 1999 | WO |
WO 2001087045 | Nov 2001 | WO |
WO 2002019798 | Mar 2002 | WO |
WO 2003089506 | Oct 2003 | WO |
WO 2004111181 | Dec 2004 | WO |
WO 2005023323 | Mar 2005 | WO |
WO 2005067977 | Jul 2005 | WO |
WO 2007031129 | Mar 2007 | WO |
WO 2007139321 | Dec 2007 | WO |
WO 2008025122 | Mar 2008 | WO |
WO 2008073489 | Jun 2008 | WO |
WO 2010005476 | Jan 2010 | WO |
WO 2012122092 | Sep 2012 | WO |
WO 2012148995 | Nov 2012 | WO |
WO 2014039938 | Mar 2014 | WO |
WO 2014110539 | Jul 2014 | WO |
WO 2014195641 | Dec 2014 | WO |
WO-2014195641 | Dec 2014 | WO |
WO 2015024751 | Feb 2015 | WO |
WO 2016149002 | Sep 2016 | WO |
WO 2017056059 | Apr 2017 | WO |
WO 2017120342 | Jul 2017 | WO |
WO 2017125602 | Jul 2017 | WO |
WO 2017132523 | Aug 2017 | WO |
WO 2017136950 | Aug 2017 | WO |
WO 2017151684 | Sep 2017 | WO |
WO 2017205750 | Nov 2017 | WO |
WO 2018011805 | Jan 2018 | WO |
WO 2018014004 | Jan 2018 | WO |
WO 2018064968 | Apr 2018 | WO |
WO 2018183735 | Oct 2018 | WO |
WO 2018189738 | Oct 2018 | WO |
WO 2019046480 | Mar 2019 | WO |
WO 2019099474 | May 2019 | WO |
WO 2019178406 | Sep 2019 | WO |
WO 2019217175 | Nov 2019 | WO |
WO 2019226823 | Nov 2019 | WO |
WO 2019237059 | Dec 2019 | WO |
WO 2019246636 | Dec 2019 | WO |
WO 2020023450 | Jan 2020 | WO |
WO 2020072140 | Apr 2020 | WO |
WO 2020082043 | Apr 2020 | WO |
WO 2020082044 | Apr 2020 | WO |
WO 2020102552 | May 2020 | WO |
WO 2020106743 | May 2020 | WO |
WO 2020176758 | Sep 2020 | WO |
WO 2020186068 | Sep 2020 | WO |
WO 2020186169 | Sep 2020 | WO |
WO 2020237201 | Nov 2020 | WO |
WO 2021092051 | May 2021 | WO |
WO 2021144603 | Jul 2021 | WO |
WO 2022079452 | Apr 2022 | WO |
WO 2022091089 | May 2022 | WO |
WO 2022135757 | Jun 2022 | WO |
WO 2022157326 | Jul 2022 | WO |
WO 2022189600 | Sep 2022 | WO |
WO 2022195617 | Sep 2022 | WO |
WO 2022200049 | Sep 2022 | WO |
WO 2022212945 | Oct 2022 | WO |
WO 2022265498 | Dec 2022 | WO |
Entry |
---|
Bartnicki-Garcia, “Cell wall chemistry, morphogenesis, and taxonomy of fungi”, Annual Review Microbiol. (1968) 22(1): 87-108. |
Cha et al., “Biomimetic synthesis of ordered silica structures mediated by block copolypeptides”. Nature (2000) 403(6767): 289-292. |
Dugdale J. “This new surf company is making boards of mushrooms”. Blog post—Jun. 25, 2015. |
Halseide P., “Cutting brick the safe way”. The Aberdeen Group (1988) Publication #M880354 in 2 pages. |
Highland Woodworking, “Making Thin Lumber and Veneer Out of Ordinary Boards”, Sales Website (2017) in 3 pages. |
Holt et al., “Biobased Composition Boards Made from Cotton Gin and Guayule Wastes: Select Physical and Mechanical Properties”, Int J Mater Prod Tech. (2009) 36: 104-114. |
Islam et al., “Morphology and mechanics of fungal mycelium”, Scientific Reports, (2017) 7(1): 1-12. |
Kerem et al., “Chemically defined solid-state fermentation of Pleurotus Ostreatus”. Enzyme Microbiol Tech. (1993) 15(9): 785-790. |
Kokubo et al., “Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W”. J Biomed Mater Res. (1990) 24(3): 331-343. |
Koutsoukos et al., “Precipitation of calcium carbonate in aqueous solutions”. J Chem Soc., Faraday Trans. 1, Physical Chemistry in Condensed Phases, (1984) 80(5): 1181-1192. |
Lu et al., “Theoretical Analysis of Calcium Phosphate precipitation in simulated Body Fluid”. Biomaterials (2005) 26(10): 1097-1108—Pre-Pub. Version by Hong Kong University of Science and Technology, Department of Mechanical Engineering, Kowloon; 34 pages. |
Molvinger et al., “Porous chitosan-silica hybrid microspheres as a potential catalyst”. Chem Mater. (2004) 16(17): 3367-3372. |
Monmaturapoj et al., “Influence of preparation method on hydroxyapatite porous scaffolds”. Bull Mater Sci. (2011) 34(7): 1733-1737. |
Manoli et al., “Crystallization of calcite on chitin”. J Cryst Growth, (1997) 182(1-2): 116-124. |
Mushroom Source, “Aspen Wood Shavings for Mushroom Cultivation”, Website (2015) in 2 pages. |
National Institute of Health (NIH/NIBIB), “Tissue Engineering and Regenerative Medicine”, Retrieved Sep. 24, 2018 from https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine in 13 pages. |
Passauer U. et al., “Pilze in Hohlen” [Cave Mushrooms]. Denisia (2016) 37: 211-224. |
Stewart B., “Concrete Fence Posts: Fact Sheet”, Texas Agriculture Extension Service, Texas A & M University (1975) Article L-1368 in 4 pages. |
Trinci et al., “II. Unrestricted Growth of Fungal Mycelia”, The Mycota—Growth, Differenciation and Sexuality by Wessels et al. [Eds], Springer, Berlin, Heidelberg, (1994) Chapter II: 175-193. |
Udawatte et al., “Solidification of xonotlite fibers with chitosan by hydrothermal hot pressing”. J Mater Sci. Lttrs. (2000) 45(6): 298-301. |
University of Sydney, “Competition Between Fungi”. Webpage, accessed Jul. 16, 2014—http://bugs.bio.usyd.edu.au/learning/resources/Mycology/Ecology/competition.shtml in 3 pages. |
Varma et al., “Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method”. Biomaterials (1999) 20(9): 879-884. |
Wagner A. “Mycelium Biking—Eco-Design at its Best”, Master's Thesis at Lulea University of Technology (2016) in 92 pages. |
Woller R. “The Pearl Oyster Mushroom”, University of Wisconsin Website (2011) in 2 pages. |
Wan-Mohtar et al., “The morphology of Ganoderma lucidum mycelium in a repeated-batch fermentation for exopolysaccharide production”, Biotechnology Reports (2016) 11: 2-11. |
Weaver et al., “The stomatopod dactyl club: a formidable damage-tolerant biological hammer”. Science (2012) 336(6086): 1275-1280. |
Yamasaki et al., “A hydrothermal hot-pressing method: Apparatus and Application”. J Mater Sci Lttrs. (1986) 5(3): 355-356. |
Zivanovic et al., “Changes in Mushroom Texture and Cell Wall Composition Affected by Thermal Processing”. J Food Service (2004) 69: 44-49. |
Agnese et al., “Investigating the Influence of Various Plasticizers on the Properties of Isolated Films of Polyvinyl Acetat”. The 37th Annual meeting and Exposition of the Controlled Release Society, Jul. 2010, Portland, OR U.S.A. |
Amsellem et al., “Long-term preservation of viable mycelia of two mycoherbicidal organisms”. Crop Protection (1999) 18: 643-649. |
Angelini et al., “Effect of antimicrobial activity of Melaleuca alternifolia essential oil on antagonistic potential of Pleurotus species against Trichoderma harzianum in dual culture.” World J Microbiol Biotech. (2008) 24(2): 197-202. |
Antón et al., “PimM, a PAS Domain Positive Regulator of Pimaricin Biosynthesis in Streptomyces natalensis.” Microbiol. (2007) 153: 3174-3183. |
Appels et al., “Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material.” Scientific Reports (2018) 8(1): 1-7. |
Arshad et al., “Tissue engineering approaches to develop cultured meat from cells: a mini review.” Cogent Food & Agriculture (2017) 3(1): 1320814 in 11 pages. |
Ashiuchi et al., “Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence”. Appl Microbiol Biotechnol. (2011) 57: 764-769. |
Bajaj et al., “Poly (glutamic acid)—An emerging biopolymer of commercial interest”. Bioresource Tech. (2011) 102(10): 5551-5561. |
Baysal et al., “Cultivation of oyster mushroom on waste paper with some added supplementary materials”. Biosource Technology (2003) 89: 95-97. |
Begum et al., “Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production”. Elect J Biotech. (2011) (14)5: 3 in 8 pages. |
Belardinelli et al., “Actions of Adenosine and Isoproterenol on Isolated Mammalian Ventricular Myocytes.” Circulation Res. (1983) 53(3): 287-297. |
Belay et al., “Preparation and Characterization of Graphene-agar and Graphene Oxide-agar Composites.” JOAPS (2017) 134(33): 45085. |
Binder et al., “Phylogenetic and phylogenomic overview of the Polyporales”. Mycologia (Nov. 12, 2013) 105(6): 1350-1373. |
Blanchette et al., “Fungal mycelial mats used as textile by indigenous people of North America”, Mycologia (Feb. 20, 2021) pp. 1-7. |
Booth et al., “Potential of a dried mycelium formulation of an indigenous strain of Metarhizium anisopliae against subterranean pests of cranberry.” Biocontrol Science and Technology (2000) 10: 659-668. |
Bormann et al., “Characterization of a Novel, Antifungal, Chitin-binding Protein from Streptomyces Tendae Tü901 that Interferes with Growth Polarity.” J Bacter. (1999) 181(24): 7421-7429. |
Bowman et al., “The structure and synthesis of the fungal cell wall”. Bioassays (2006) 28(8): 799-808. |
Bružauskaite et al., “Scaffolds and Cells for Tissue Regernation: Different Scaffold Pore Sizes-Different Cell Effects.” Cytotechnology (2016) 68(3): 355-369. |
Byrd, “Clean meat's path to your dinner plate”, The Good Food Institute, website accessed Nov. 14, 2018, https://www.gfi.org/clean-meats-path-to-commercialization; 11 pages. |
Cerimi et al., “Fungi as source for new bio-based materials: a patent review”, Fungal Biol Biotechnol. (2019) 6: 17; 10 pgs. |
Chai et al., “β-Glucan Synthase Gene Overexpression and β-Glucans Overproduction in Pleurotus ostreatus Using Promoter Swapping”. PLoS One (2013) 8(4): e61693 in 7 pages. |
Chaudhary et al., “Understanding rice hull ash as fillers in polymers: a review”. Silicon Chemistry (2002) 1:281-289. |
Chi et al., “Can Co-culturing of Two White-rot Fungi Increase Lignin Degradation and the Production of Lignin-degrading Enzymes?” Inter'l Biodeter Biodegrad. (2007) 59(1): 32-39. |
Collins English Dictionary, “Mould”, retrieved from http://collinsdictionary.com/dictionary/english/mould, archived on Apr. 8, 2015, 3 pages. |
Dias et al., “Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes”. Biomatter (2011) 1(1): 114-119. |
Elleuche et al., “Carbonic anhydrases in fungi”. Microbiology (2010) 156: 23-29. |
Elsacker et al., “Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting”, Construction Bldg Mater. (2021) 283: 122732 in 16 pages. |
Fleet G.H., “Cell walls”. in The Yeasts, by Rose et al. [Eds.] 2nd Edition. vol. 4. London: Academic Press. (1991) pp. 199-277. |
Frandsen R.J.N., “A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation”. J Microbiol Methods (2011) 87: 247-262. |
Gardening KnowHow, Perlite Soil Info: Learn About Perlite Potting Soil, online at www.gardeningknowhow.com/garden-how-to/soil-fertilizers/perlite-potting-soil.htm downloaded on Dec. 16, 2015., 3 pages. |
Glowacki et al., “Bioconjugation of Hydrogen-bonded Organic Semiconductors with Functional Proteins.” J Mate Chem. C (2015) 3(25): 6554-6564. |
Goodell et al., “Fungal Decay of Wood: Soft Rot-Brown Rot-white Rot”. In Development of Commercial Wood Preservatives; Schultz et al. [Ed.] ACS Symposium Series; American Chemical Society, Washington, D.C. (2008), Chapter 2, pp. 9-31. |
Google Report, Complete colonization substrate mushroom (2 pages) Jan. 30, 2018., 2 pages. |
Google Dictionary Definition “Composite”, downloaded on Nov. 21, 2018; 1 page. |
GOURMET Mushroom, Inc., “What is Mushroom?”—Mushroom Facts Mushroom Information—Educational & Science Projects (2004). Downloaded from www.gmushrooms.com, on Nov. 27, 2017; 5 pages. |
Grant, James. J.—“An investigation of the airflow in mushroom growing structures, the development of an improved, three-dimensional solution technique for fluid flow and its evaluation for the modelling of mushroom growing structures”, Doctoral Thesis Sep. 2002; 326 pages. |
Greetham et al., “Pheotypic characterisation of Saccharomyces sensu stricto to InhibitoryCompounds Released During the Deconstruction of Lignocellulosic Material.” 3th International Congress on Yeasts, ICY, Aug. 26-30, 2012 Madison, USA; 1 page. |
Griffin et al., “Regulation of macromolecular synthesis, colony development and specificgrowth rate of Achlya bisexualis during balanced growth”. J General Microbiol. (1974) 80(2): 381-388. |
Growers Supply. “Horticultural Coarse Perlite—4 Cubic Fee—Growers Supply”. URL: https://growerssupply.com; Growers Supply 2012; www.growerssupply.com/farm/supplies/prod1:gs_growing_mediums:pg111049.html; downloaded Dec. 14, 2020 in 3 pages. |
Haneef et al., “Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties”, Scientific Reports 7(1): 1-11; DOI: 10.1038/srep41292, Jan. 24, 2017. |
Heinzkill et al., “Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae).” Appl Environ Microbiol. (1998) 64: 1601-1606. |
Heisig et al., USGS, “Ground-Water Resources of the Clifton Park Area, Saratoga County, New York”, 2002, retrieved from the internet (Oct. 15, 2016): http://ny.water.usgs.gov/pubs/wri/wri014104/wrir01-4104.pdf; 27 pages. |
Home Depot “Miracle Gro® Perlite Mix”, retrieved from the internet: http://homedepot.com/p/Miracle-Gro-8-pt-Perlite-Mix-74278430/204502291; 2 pages. |
Home Depot “Pennington—Fast Acting Gypsum”, retrieved from the internet: http://homedepot.com/p/Miracle-Gro-8-pt-Perlite-Mix-74278430/204502291; 2 pages. |
Horton et al., “Regulation of Dikaryon-Expressed Genes by FRT1 in the Basidiomycete Schizophyllum commune”. Fungal Genet Biol. (1999) 26(1): 33-47. |
Howden et al., “The effects of breathing 5% CO2 on human cardiovascular responses and tolerance to orthostatic stress”. Exper. Physiol. (2004) 89(4): 465-471. |
Hüttner et al., “Recent advances in the intellectual property landscape of filamentous fungi”, Fungal Biol Biotechnol. (2020) 7:16; 17 pgs. |
Hyde et al., “The amazing potential of fungi: 50 ways we can exploit fungi industrially”. Fungal Diversity (2019) 97(1): 1-136. |
Instructables, How to Grow Oyster Mushroom Spawn (Low Tech), retrieved from the internet Aug. 19, 2018: http://www.instructables.com/id/1-How-to-Grow-Oyster-Mushroom-Spawn-Low-Tech/; 17 pages. |
Jones et al., “Leather-like material biofabrication using fungi”, Nature Sustainability (2020) https://doi.org/10.1038/s41893-020-00606-1, Sep. 7, 2020. |
Kamzolkina et al., “Micromorphological features of Pleurotus pulmonarius (Fr.) Quel. and P. ostreaturs (Jacq.) P. Kumm. Strains in pure and binary culture with yeasts”. Tsitologiia (2006) 48(2): 153-160. |
Kemppainen et al., “Transformation of the Mycorrhizal Fungus Laccaria Bicolor using Agrobacterium tumefaciens.” Bioengin Bugs (2011) 2(1): 38-44. |
Kerem et al., “Effect of Mananese on Lignin Degradation by Pleurotus ostreatus during Solid-State Fermentation”. Applied and Environmental Microbiology (1993) 59(12): 4115-4120. |
Kilaru et al., “Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and re-evaluation of hygromycin and phleomycin resistance vectors”. Curr Genet. (2009) 55: 543-550. |
Kim et al., “Current Technologies and Related Issues for Mushroom Transformation.” Mycobiology (2015) 43(1): 1-8. |
Kotlarewski et al., “Mechanical Properties of Papua New Guinea Balsa Wood.” European J Wood Wood Products (2016) 74(1): 83-89. |
Kück et al., “New tools for the genetic manipulation of filamentous fungi”. Appl Microbiol Biotechnol. (2010) 86: 51-62. |
Kües, U., “Life History and Development Processes in the Basidiomycete Coprinus Cinereus.” Micro Molecular Biol Rev. (2000) 64(2): 316-353. |
Kuhar et al., by Ingredi Potassium Sorbate vs Campden Tablets in Wine Making; Jun. 4, 2018. [online]; Retrieved from the Internet <URL: https://ingredi.com/blog/potassium-sorbate-vs-campden-tables-in-wine-making/>; 2 pages. |
Kuo, 2005-2006. Glossary of Mycological Terms. Mushroom Expert. Com., pp. 1-13; downloaded from http://www.mushroomexpert.com/glossary.html (May 8, 2015). |
Li et al., “Preparation and Characterization of Homogeneous Hydroxyapatite/Chitosan Composite Scaffolds via In-Situ Hydration”. J Biomaterials Nanobiotech. (2010) 1: 42-49. |
Luo et al., “Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematode.” Mycologia (2004) 96(6): 1218-1225. |
McPherson et al., “Dissolvable Antibiotic Beads in Treatment of Periprosthetic Joint Infection and Revision Arthroplasty: The Use of Synthetic Pure Calcium Sulfate (Stimulan®) Impregnated with Vancomycin & Tobramycin.” Reconstructive Review (2013) 3(1) 12 pages. |
Merriam-Webster, “Chamber” dictionary definition; https://www.merriam-webster.com/dictionary accessed Jul. 10, 2017; in 4 Pages. |
Merriam-Webster, “pack” Thesaurus definition; https://www.merriam-webster.com/thesaurus; synonyms accessed Aug. 19, 2019; in 10 Pages. |
Michielse et al., “Agrobacterium-mediated Transformation of the Filamentous Fungus Aspergillus Awamori.” Nature Protocols (2008) 3(10): 1671-1678. |
Mitchell et al., [Eds.] “Solid-State Fermentation Bioreactors.” Springer Verlag, Berlin/Heidelberg (2006); TOC in 12 Pages. |
Moore D., “Fungal Morphogenesis.” Cambridge University Press, Cambridge, UK; (1998) TOC in 8 Pages. |
Moore D., “Tolerance of Imprecision in Fungal Morphogenesis.” In Proceedings of the 4th Meeting on the Genetics and Cellular Biology of Basidiomycetes (Mar. 1998) pp. 13-19. |
Mushroom Growers' Handbook 1, “Oyster Mushroom Cultivation”. Part II, Chapter 5, (2005) pp. 75-85. |
Mushroom Growers' Handbook 2, “Shiitake Bag Cultivation”, Part I Shiitake. Published by Mush World (2005) Chapter 4, pp. 73-90 and pp. 105-109. |
Naknean et al., “Factors Affecting Retention and Release of Flavor Compounds in Food Carbohydrates.” Inter'l Food Res J. (2010) 17(1): 23-34. |
Newaz et al., “Characterization of Balsa Wood Mechanical Properties Required for Continuum Damage Mechanics Analysis.” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications (2016) 230(1): 206-218. |
Norvell L., Fungi Biology. Encyclopedia.(2002); 2 pages. |
Novoselova et al., “Cocultivation of Pleurotus ostreatus (Jacq.) P. Kumm. with yeasts”. Moscow University Biol Sciences Bulletin (2011) 66(3): 102-105. |
Nussinovitch “Polymer Macro-and Micro-Gel Beads: Fundamentals and Applications”, DOI 10.1007/978-1-4419-6618_2, Springer Science & Business Media LLC (2010) TOC in 8 Pages. |
Paz et al., “One Step Contruction of Agrobacterium-Recombination-ready-plasmids (OSCAR): An Efficient and Robust Tool for ATMT Based Gene Deletion Construction in Fungi.” Fungal Gen Biol. (2011) 48(7): 677-684. |
Peksen et al., “Favourable Culture Conditions for mycelial growth of Hydnum repandum, a medicinal mushroom.” African Journal of Traditional, Complementary and Alternative Medicines (2013) 10(6): 431-434. |
Peng et al., “Microbial biodegradation of polyaromatic hydrocarbons”. FEMS Microbiol Rev. (2008) 32:927-955. |
Perez et al., “Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor.” Microbial Biotech. (2011) 4(2): 175-183. |
Philippoussis et al., “Production of Mushrooms Using Agro-Industrial Residues as Substrates”, in Biotechnology for Agro-Industrial Residues, Chapter 9, (2009) pp. 163-187. |
Poppe J., Mushroom Growers' Handbook 1, 2004, Part II. Chapter 5, “Substrate”, pp. 80-81. |
Pompei et al., “The Use of Olive Milling Waste-Water for the Culture of Mushrooms on Perlite”. Acta Horticulturae (1994) 361:179-185. |
Rai et al., “Production of Edible Fungi”, in Fungal Biotechnology in Agricultural, Food, and Environmental Applications, D.K. Arora [Ed.], Marcel Dekker, Inc., (2003), Chapter 21, pp. 383-404. |
Ross, P., “Pure Culture” 1997-Present; URL: <http://billhoss.phpwebhosting.com/ross/index.php?kind>; downloaded Dec. 14, 2016 in 11 pages. |
Royse et al., “Influence of substrate wood-chip particle size on shiitake (Lentinula edodes) yield”. Bioresource Tehnology (2001) 76(3): 229-233. |
Sapak et al., “Effect of endophytic bacteria on growth and suppression of Tganoderma infection in oil palm”. Int J Agric Biol. (2008) 10(2): 127-132. |
Schaner et al., “Decellularized Vein as a Potential Scaffold for Vascular Tissue Engineering.” J Vascular Surg. (2004) 40(1): 146-153. |
Schirp et al., “Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the fungus Pleurotus ostreatus”. J Appl. Polym Sci. (2006) 102: 5191-5201. |
Scholtmeijer et al., “Effect of introns and AT-rich sequences on expression of the bacterial hygromycin B resistance gene in the basidiomycete Schizophyllum commune”. Appl Environ Microbiol. (2001) 67(1): 481-483. |
Schuurman J., “Unique agar Pearls.” YouTube video; Feb. 16, 2012, <https://www.youtube.com/watch?v=8GqTTOHETPQ>; 1 page. |
Science Daily, May 7, 2007, retrieved from the Internet; http://www.sciencedaily.com/releases/2007/05/070506085628.htm., 3 pages. |
Seamon K.B., “Forskolin: Unique Diterpene Activator of Adenylate Cyclase in Membranes and in Intact Cells.” PNAS (1981) 78(6): 3363-3367. |
Sinotech et al., (2015): retrieved from the Internet http://www.sinotech.com/compressionAndTransferMolding.html., 4 pages. |
Slater, M. “Young SoRo Entrepreneur Develops Environmentally Friendly Insulation.” The Herald of Randolph. Jun. 21, 2007, pp. 1-2. |
Staib et al., “Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis.” Molecular Microbiol. (2005) 55(2): 637-652. |
Stamets P., “Mycelium Running”. Ten Speed Press (2005); pp. 18, 56, 58, 59, 85, 149, 157, 160 and 291 only. |
Stamets P., “Growing Gourmet and Medicinal Mushrooms”, (Undated) Chapter 21; p. 363. |
Stanev et al., “Open Cell Metallic Porous Materials Obtained Through Space Holders. Part I: Production Methods, A Review”. JMSE (2016) 139(5): 21 pages. |
Stephens et al., “Bringing Cultured Meat to Market: Technical, Socio-political, and Regulatory Challenges in Cellular Agriculture.” Trends in Food Science & Technology (2018) 78: 155-166. |
Sundari et al., “Freeze-drying vegetative mycelium of Laccaria fraterna and its subsequent regeneration”. Biotechnology Techniques (1999) 13: 491-495. |
Tartar et al., “Differential expression of chitin synthase (CHS) and glucan synthase (FKS) genes correlates with the formation of a modified, thinner cell wall in in vivo-produced Beauveria bassiana cells.” Mycopathologia (2005) 160(4): 303-314. |
Téllez-Jurado et al., “Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations.” Enzyme Microbial Tech. (2006) 38(5): 665-669. |
Téllez-Téllez et al., “Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation.” Appl Microbiol Biotechnol. (2008) 81(4): 675-679. |
Thomas et al., “Growing Orchids in Perlite”. In Perlite Plant Guide, The Schundler Company 1951, pp. 1-6, downloaded from http://www.schundler.com/index.html, archived on May 11, 2015. |
TIMBERPRESS—“How Do Mushrooms Grow So Quickly.”, downloaded from the internet: www.timberpress.com/blog/2017/01/how-do-mushrooms-grow-so-quickly, download Feb. 27, 2018 in 7 Pages. |
Ugalde U., “Autoregulatory Signals in Mycelial Fungi” in The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. K. Esser [Ed.] Springer Publisher, 2nd Edition (2006) Chapter 11; pp. 203-213. |
Universal Oil Field, “Sawdust”, downloaded from universaloilfield.org on Aug. 23, 2018, 4 pages. |
Vara et al., “Cloning and expression of a puromycin N-acetyl transferase gene from Streptomyces alboniger in Streptomyces lividans and Escherichia coli”. Gene (1985) 33(22): 197-206. |
Visser et al., “Pseudoxylaria as stowaway of the fungus-growing termite nest: Interaction asymmetry between Pseudoxylaria, Termitomyces and free-living relatives”. Fungal Ecology (2011) 4(5): 322-332. |
Volk (2003) “Tom Volk's Fungus of the Month for Oct. 1998”. This month's fungus isPleurotus ostreatus; the Oyster mushroom, pp. 1-4, downloaded from http://botit.botany.wise.edu/toms_fungi/oct98.html on May 8, 2015. |
Wang et al., “Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2”. Appl Microbiol Biothechnol. (2003) 97: 5527-5534. |
Wikipedia, “Water gel (plain)”, Wikipedia Contributors downloaded Aug. 21, 2017 in 1 Page. |
Wikipedia, “Wood”, downloaded on Nov. 26, 2018, 1 page. |
Xiao et al., “A Water-soluble Core Material for Manufacturing Hollow Composite Sections.” Comp. Structures (2017) 182: 380-390. |
Yang et al., “Medicinal Mushroom Ganoderma lucidum as a Potent Elicitor in Production of t-Resveratrol and t-Peceatannol in Peanut Calluses”. J Agric Food Chem. (2010) 58(17): 9518-9522. |
Zadrazil et al., “Influence of CO2 Concentration on the Mycelium Growth of Three Pleurotus Species”, European J. Appl. Microbiol., vol. 1, pp. 327-335 (1975). |
Zimin et al., “The MaSuRCA genome assembler”. Bioinformatics (2013) 29(21): 2669-2677. |
International Search Report and Written Opinion for PCT/US2016/027698, mailed Aug. 10, 2016. |
Abbadi et al., “Immunocytochemical identification and localization of lipase in cells of the mycelium of Penicillium cyclopium variety”, Appl Microbial Biotechnol (1995) 42: 923-930. |
Ando et al., “Cosmetic material for skin whitening—contains mushroom mycelium cultured matter and e.g. ginseng extract, chondroitin sodium sulphate and/or hyaluronic acid”, WPI/Thomson (Jan. 14, 1992), 1992(8): Accession #1992-062018; Abstract of JP4009316A; in 9 pages. |
Antinori et al., “Advanced mycelium materials as potential self-growing biomedical scaffolds.” Scientific reports (2021) 11(1): 1-14. |
Attias et al., “Biofabrication of Nanocellulose-Mycelium Hybrid Materials”, Adv Sustainable Syst. (2020) 5(2): 2000196 in 12 pages; Supporting Information in 7 pages. |
Borrás et al., “Trametes versicolor pellets production: Low-cost medium and scale-up”, Biochem Eng J. (2008) 42(1): 61-66. |
Collins English Dictionary, “Cavity”, Definition; retrieved on Nov. 8, 2021; 1 page. |
Green et al., “Mechanical Properties of Wood”, Forest Products Laboratory, 1999. in Wood Handbook—Wood as an engineering material. Gen Tech. Rep. FPL-GTR-113, Chapter 4 in 46 pages. |
Hidayat et al., “Characterization of polylactic acid (PLA)/kenaf composite degradation by immobilized mycelia of Pleurotus ostreatus”. Inter Biodeter Biodegrad. (2012) 71: 50-54. |
Holt et al. “Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts.” J Biobased Mater Bioenergy (2012) 6(4): 431-439. |
Jiang et al., “Manufacturing of Natural Composites with a Mycelium Binder and Vacuum-infused Vegetable Oil-based Resins”, Poster dated May 2014; 1 page. |
Jiang et al., “Vacuum Infusion of Mycelium-Bound Biocomposite Preforms with Natural Resins”, CAMX ExpoConference Proceedings, Oct. 13-16, 2014, 13 pages. |
Jiang et al., “Bioresin Infused then Cured Mycelium-based Sandwich-structure Biocomposites: ResinTransfer Molding (RTM) Process, Flexural Properties, and Simulation.” J Cleaner Production (2019) 207: 123-135. |
Jones et al., “Mycelim Composites: A Review of Engineering Characteristics and Growth Kinetics”, J Bionanoscience (2017) 11(4): 241-257. |
Jones et al., “Waste-derived Low-cost Mycelium Composite Construction Materials with Improved Fire Safety”, FAM (Fire and Materials) (2018) 42(7): 816-825. |
Jones et al., Chitin-chitosan Thin Films from Microbiologically Upcycled Agricultural By-products. In 13th International Conference on the Mechanical Behavious of Materials, Melbourne, Australia (Jun. 2019) p. 66; in 7 pages. |
Kuhn et al., [Eds.] Cell Walls and Membranes in Fungi—An Introduction (Abstract) in Biochemistry of Cell Walls and Membranes in Fungi, Chapter 1, Springer Verlag Berlin/Heidelberg 1990, 2 pages. |
Merriam-Webster, “desiccated” (Adj.) Definition; downloaded on Nov. 8, 2021; 1 page. |
Meyer et al., “Comparison of the Technical Performance of Leather, Artificial Leather, and Trendy Alternatives.” Coatings (Feb. 2021) 11(2): 226; 14 pages. |
Pathway-27, “Beta-glucan”, Aug. 2012, retrieved from http://http://www.pathway27.eu/topstory/beta-glucan/ on Oct. 7, 2021 in 2 pages. |
Vetchinkina et al., “Bioreduction of Gold (III) Ions from Hydrogen Tetrachloaurate . . . ” Scientific Practical J Health Life Sciences No. 4, ISSN 22188-2268, (2013) pp. 51-56. |
Wang et al., “Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce”. Biomass Bioengin. (2018) 109: 125-134. |
Williams, J. “Growth Industry”, Financial Times Jan. 12, 2019 (Mogu—Radical by Nature); download from URL <: https://mogu.bio/growth-industry-financial-times-uk-article/> in 1 page. |
Wosten et al., “How a fungus escapes the water to grow into the air”, Current Biology. (1999) 9(2): 85-88. |
Wösten et al., “Growing Fungi Structures in Space”, ACT Research Category/Space Architecture; Noordwijk, The Netherlands (Oct. 15, 2018) in 17 pages. |
Zeng Z., “Cosmetic composition for cleaning skin, comprises glossy ganoderma spores and collagens, content of glossy ganoderma spores in composition and content of collagens in composition”, WPI/Thomson (Feb. 5, 2006) 7: Accession #2007-057767; Abstract of CN1732887A; in 11 pages. |
Ziegler et al., “Evaluation of Physico-mechanical Properties of Mycelium Reinforced Green Biocomposites Made from Cellulosic Fibers”, Appl Engin Agricult. (2016) 32(6): 931-938. |
Britannica, The Editors of Encyclopaedia. “mold”. Encyclopedia Britannica, Feb. 7, 2021, https://www.britannica.com/science/mold-fungus. 1 page. |
Voronin et al., “Carbon and Nitrogen Isotope Composition of the Wood of Pinus sylvestris, Betula pendula and Populus tremula”. Paleonotal J., Dec. 2020;54(8): 819-824. |
Bandalan et al., “Inhibitory effect of garlic (Allium sativum L.) against bread mold and its influence on the quality of yeast-leavened bread”, Int J Food Engineer. (Dec. 2018) 4(4): 256-262. |
Bianchi et al., “Comparison between Allo-Kramer and Warner Bratzler Devices to Assess Rabbit Meat Tenderness”, Italian J Animal Science (2007) 6(supp1): 749-751. |
Boudaoud et al., “FibrilTool, an ImageJ plug-in to quantify fibrillar structures in rax microscopy images”, Nature Protocols (2014) 9: 457-483. |
Britannica, The Editors of Encyclopedia. “mold”. Encyclopedia Britannica, Feb. 7, 2021, https://www.britannica.com/science/mold-fungus. 1 page. |
Enrione et al., “Edible scaffolds based on non-mammalian biopolymers for Myoblast growth”. Materials (Basel) (Dec. 2017) 10(12): 1404 in 15 pages. |
Guan et al., “Construction and development of an auto-regulatory gene expression system in Bacillus subtilis”. Microb Cell Fact Dec. 2015;14(1): 1-5. |
Huang et al., “Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste”. Appl Enviro Microbiol. Oct. 1, 2015;81(19): 6718-6724. |
Kim et al., “Effect of aeration and agitation on the production of mycelial biomass and exopolysaccharides in an enthomopahtogenic fungus Paecilomyces sinclairlii”. Ltts Applied Microbiol. May 1, 2003;36(5): 321-326. |
Kumla et al., “Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste”. Molecules Jun. 2020;25(12): 2811 in 41 pages. |
Lumb et al., “Metal Chelating Tendencies of Glutamic and Aspartic Acids”. J Phys Chem., Jul. 1953;57(7): 690-693. |
Magyar C., “11 Smart uses for sawdust around your home & garden”. Rural Sprout, published Oct. 26, 2020, 19 pages. |
Miller R.K., “Quality Characteristics”, in Muscle Foods: Meat Poultry and Seafood Technology, Kinsman et al. [eds], Springer Science & Media, (Mar. 2013) Chapter 11, 37 pages. |
Mitcheson et al., “Cultured adult cardiac myocytes: Future applications, culture methods, morphological and electrophysiological properties”. Cardiovasc Res. (1998) 39: 280-300. |
OCDE—Organisation for Economic Co-operation and Development, Environment, Health and Safety Publications Series on the Safety of Novel Foods and Feeds, No. 26, Consensus Document on Compositional Considerations for New Varieties of Oyster Mushroom [Pleurotus ostreatus]: Key Food and Feed Nutrients, Anti-nutrients and Toxicants; Paris Nov. 2013, 42 pages. |
Pacquette et al., “Simultaneous determination of chromium, selenium, and molybdenum in nutritional products by inductively coupled plasma/mass spectrometry: Single-laboratory validation”, J of AOAC International (Jul. 2011) 94(4): 1240-1252. |
Pang et al., “Facile fabrication of gradient density organic aerogel foams via density gradient centrifugation and UV curing in one-step”, J Sol-Gel Sci Technol. (Nov. 2018) 85: 243-250. |
Peter et al., “High Terpene Pines: Transforming existing and enabling new forest biorefineries”. 2013; 1 page. |
Phillips E., “Lignocellulose-degrading Microbes Give Plants New Life”, American Soc Microb. (Mar. 25, 2022) 6 pages. |
PubMLST (Public databases for Molecular Typing and Microbial Genome Diversity), “Isolate Bacillus Subtilis ATCC 6051”, retrieved Sep. 15, 2022 from PubMLST; 1 page. |
Roshita et al., “Effect of exposure to different colors light emitting diode on the yield and physical properties of grey and white oyster mushrooms”, AIP Conference Proceedings (Nov. 2018) 2030(1): 020110 in 8 pages. |
Sansinenea et al., “Secondary Metabolites of Soil Bacillus spp.”; Biotechnol Lett. (2011) 33: 1523-1538. |
Silverman J., “Development and Testing of Mycelium-based Composite Materials for Shoe Sole Applications.” Thesis Spring 2018; Retrieved from the Internet: URL: http://udspace.udel.edu/bitstream/handle/19716/23768/Silverman_udel_006M_13300.pdf?sequence=1&isAllowed=y; (Apr. 1, 2018); 99 pages. |
Tapias et al., Decellularized scaffolds as a platform for bioengineered organs, Curr Opin Organ Transplant (Apr. 2014) 19(2): 145-152. |
Voronin et al., “Carbon and Nitrogen Isotope Composition of the Wood of Pinus sylvestris, Betula pendula and Populus tremula”. Paleontological J., Dec. 2020;54(8): 819-824. |
Wikipedia, “Soil”. Downloaded on Sep. 14, 2022, 51 pages. |
Wikipedia, “Compost”. Downloaded on Sep. 14, 2022, 21 pages. |
Yang et al., “Physical and mechanical properties of fungal mycelium-based biofoam”, J Mater Civil Engin. (Jul. 2017) 29(7): 04017030 in 9 pages. |
Zeigler et al., “The Origins of 168, W23, and other Bacillus subtilis Legacy Stains”, J Bacter. (Nov. 2008) 190: 6983-6995. |
ASTM International, “Standard Test Method for Tensile Properties of Plastics”. Designation: D638-10, published Jun. 2010 in 16 pages. |
Elsacker et al., “Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates”. PLoS One. Jul. 22, 2019;14(7): e0213954 in 20 pages. |
Elsoud et al., “Current trends in fungal biosynthesis of chitin and chitosan”. Bull Nat'l Res Centre. Dec. 2019;43(1): 12 pages. |
Fisher A., “Industrial-strength fungus—Densely packed rootlike fibers can do the job of Styrofoam, insulation and, yes, even bricks”. TIME Feb. 8, 2010:1 page. |
Hartl et al., “Fungal chitinases: diversity, mechanistic properties and biotechnological potential”. Appl Microbiol Biotechnol. Jan. 2012;93: 533-543. |
IFC Solutions. Natural Food Coloring. 2023; pp. 1-4. |
INSIDER Business, “How Mushrooms are Turned into Bacon and Styrofoam—World Wide Waste”, Apr. 11, 2021; XP093055859; Retrieved from the Internet: URL:https://www.youtube.com/watch?v=uznXI8wrdag&t=325s&ab_channel=InsiderBusiness [retrieved on Jun. 20, 2023] in 4 pages. |
Kadirgamar S., “Company Uses Mushrooms to Grow Plastic Alternatives”. Oct. 17, 2017; downloaded from https://daily.jstor.org/daily-author/skanda-kadirgamar/ in 5 pages. |
Kumar, M.N.V.R., “A review of chitin and chitosan applications”. React Function Polymers. Nov. 1, 2000;46(1):1-27. |
MILLIPORE Sigma Database Search “Chelators”, 2023, pp. 1-4. |
Valencia et al., “Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration”. Molecules. Oct. 16, 2018;23(10): 2651 in 16 pages. |
Wrona T., 10 Powerful Nutrients Found Only in Meat. Jun. 9, 2022. 20 pages. |
Number | Date | Country | |
---|---|---|---|
20190090436 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62147813 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15099790 | Apr 2016 | US |
Child | 16116545 | US |