The present invention relates to a nonvolatile programmable semiconductor memory, and more particularly to a single transistor memory cell programmed by break down of the transistor gate oxide, and a memory array incorporating such cells.
Nonvolatile memory retains stored data when power is removed, which is desirable in many different types of electronic devices. One commonly available type of nonvolatile memory is the programmable read-only memory (“PROM”), which uses word line—bit line crosspoint elements such as fuses, anti-fuses, and trapped charge devices such as the floating gate avalanche injection metal oxide semiconductor (“FAMOS”) transistor to store logical information.
An example of one type of PROM cell that uses the breakdown of a silicon dioxide layer in a capacitor to store digital data is disclosed in U.S. Pat. No. 6,215,140 to Reisinger et al. The basic PROM disclosed by Reisinger et al. uses a series combination of an oxide capacitor and a junction diode as the crosspoint element (the term “crosspoint” refers to the intersection of a bitline and a wordline). An intact capacitor represents the logic value 0, and an electrically broken-down capacitor represents the logic value 1. The thickness of the silicon dioxide layer is adjusted to obtain the desired operation specifications. Silicon dioxide has a breakdown charge of about 10 C/cm2 (Coulomb/cm2). If a voltage of 10 volts is applied to a capacitor dielectric with a thickness of 10 nm (resultant field strength 10 mV/cm), a current of about 1 mA/cm2 flows. With 10 volts, this thus results in a substantial amount of time for programming a memory cell. However, it is more advantageous to design the capacitor dielectric to be thinner, in order to reduce the high power loss which occurs during electrical breakdown. For example, a memory cell configuration having a capacitor dielectric with a thickness of 3 to 4 nm can be operated at about 1.5 V. The capacitor dielectric does not yet break down at this voltage, so that 1.5 V is sufficient to read data from the memory cell. Data are stored, for example, at 5 V, in which case one cell strand in a memory cell configuration can be programmed within about 1 millisecond. The energy loss which occurs in this case per cm2 of capacitor dielectric is then about 50 Watts (10 Coulomb*5 V). If the desired power loss is about 0.5 W, about 100 seconds are required to program a 1 Gigabit memory. If the permissible power losses are higher, the programming can be carried out correspondingly more quickly.
Some types of nonvolatile memory are capable of being repeatedly programmed and erased, including erasable programmable read only semiconductor memory generally known as EPROM, and electrically erasable programmable read only semiconductor memory generally known as EEPROM. EPROM memory is erased by application of ultraviolet light and programmed by application of various voltages, while EEPROM memory is both erased and programmed by application of various voltages. EPROMs and EEPROMs have suitable structures, generally known as floating gates, that are charged or discharged in accordance with data to be stored thereon. The charge on the floating gate establishes the threshold voltage, or VT, of the device, which is sensed when the memory is read to determine the data stored therein. Typically, efforts are made to minimize gate oxide stress in these types of memory cells.
A device known as a metal nitride oxide silicon (“MNOS”) device has a channel located in silicon between a source and drain and overlain by a gate structure that includes a silicon dioxide layer, a silicon nitride layer, and an aluminum layer. The MNOS device is switchable between two threshold voltage states VTH(high) and VTH(low) by applying suitable voltage pulses to the gate, which causes electrons to be trapped in the oxide-nitride gate (VTH(high)) or driven out of the oxide-nitride gate (VTH(low)). Again, efforts are made to minimize gate oxide stress in these types of memory cells.
A junction breakdown memory cell that uses a stored charge on the gate of a gate controlled diode to store logic 0 and 1 values is disclosed in U.S. Pat. No. 4,037,243 to Hoffman et al. Charge is stored on the gate by using a capacitance formed between the p-type electrode of the gate controlled diode and the gate electrode. Charge storage is enhanced by using a composite dielectric in the capacitor formed from silicon dioxide and silicon nitride layers in place of silicon dioxide. The application of an erase voltage to the electrode of the gate controlled diode causes the oxide-nitride interface surface to fill with negative charge, which is retained after the erase operation is completed. This negative interface charge causes the gate controlled diode to operate in an induced junction mode even after the erase voltage is removed. When the gate controlled diode is thereafter read, it exhibits field-induced junction breakdown of its channel and a saturation current flows. The field induced junction breakdown voltage is less than the metallurgical junction breakdown voltage. However, the application of a write voltage to the electrode of the gate controlled diode causes the silicon dioxide/silicon nitride interface to fill with positive charge, which is retained after the write operation is completed. When the gate controlled diode is thereafter read, it will not break down because no channel exists. Only a slight current flows. The different current flows are sensed and indicate different logic states.
Improvements in the various processes used for fabricating the various types of nonvolatile memory tend to lag improvements in widely used processes such as the advanced CMOS logic process. For example, processes for devices such as flash EEPROM devices tend to use 30% more mask steps than the standard advanced CMOS logic process to produce the various special regions and structures required for the high voltage generation circuits, the triple well, the floating gate, the ONO layers, and the special source and drain junctions typically found in such devices. Accordingly, processes for flash devices tend to be one or two generations behind the standard advanced CMOS logic process and about 30% more expensive on a cost-per-wafer basis. As another example, processes for antifuses must be suitable for fabricating various antifuse structures and high voltage circuits, and so also tend to be about one generation behind the standard advanced CMOS process.
Generally, great care is taken in the fabrication of the silicon dioxide layer used in metal-oxide-silicon (MOS) devices such as capacitors and transistors. The high degree of care is necessary to ensure that the silicon dioxide layer is not stressed during manufacture or subsequent normal operation of the integrated circuit, so that the desired device characteristics are attained and are stable over time. One example of how much care is taken during fabrication is disclosed in U.S. Pat. No. 5,241,200 to Kuroda, which discloses the use of a diffused layer and a shunt to discharge charges accumulated in the word line during a wafer fabrication process. Avoiding this charge accumulation ensures that a large electric field is not applied to the gate insulating film, so that variations in the characteristics of transistors using the word line as their gate wiring line and degradation and breakdown of the gate insulating film are prevented.
An example of how much care is taken in circuit design to avoid stressing the silicon dioxide layer of a transistor during normal circuit operation is disclosed in U.S. Pat. No. 6,249,472 to Tamura et al. Tamura et al. disclose an antifuse circuit having an antifuse in series with a p-channel MOS transistor in one embodiment and in series with an n-channel MOS transistor in another embodiment. While the antifuse is fabricated without the additional film manufacturing processes typically required for fabricating antifuse circuits, Tamura et al. poses another problem. When the antifuse is shorted out, the series-connected transistor is exposed to a high voltage sufficient to break down the silicon dioxide layer of the transistor. Tamura et al. disclose the addition of another transistor to the circuit to avoid exposing the first transistor to the break down potential.
The observations above generally indicate that there are still disadvantages with each of the prior art memory technologies.
A semiconductor memory cell having a data storage element constructed around a gate oxide is used to store information by stressing the ultra-thin dielectric into breakdown (soft or hard breakdown) to set a leakage current level of the memory cell. The memory cell is read by sensing the current drawn by the cell. A suitable ultra-thin dielectric is the high quality gate oxide of about 10–50 Å thickness or less used in a transistor, as is commonly available from presently available advanced CMOS logic processes. Such oxides are commonly formed by deposition, by oxide growth from a silicon active region, or by some combination thereof. Other suitable dielectrics include oxide-nitride-oxide composites, compound oxides, and so forth.
In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
The present invention is related to other types of gate oxide breakdown based non-volatile memory designs developed by the present inventor and assigned to the same assignee as the present invention. Examples are shown in U.S. patent application Ser. No. 09/955,641 filed on Sep. 18, 2001 entitled “SEMICONDUCTOR MEMORY CELL AND MEMORY ARRAY USING A BREAKDOWN PHENOMENA IN AN ULTRA-THIN DIELECTRIC”, U.S. patent application Ser. No. 10/024,327 filed on Dec. 17, 2001 entitled “SEMICONDUCTOR MEMORY CELL AND MEMORY ARRAY USING A BREAKDOWN PHENOMENA IN AN ULTRA-THIN DIELECTRIC”, U.S. patent application Ser. No. 09/982,034 filed on Oct. 17, 2001 entitled “SMART CARD HAVING NON-VOLATILE MEMORY FORMED FROM LOGIC PROCESS”, and U.S. patent application Ser. No. 09/982,314 filed on Oct. 17, 2001 entitled “REPROGRAMMABLE NON-VOLATILE OXIDE MEMORY FORMED FROM LOGIC PROCESS”, each of which is hereby incorporated by reference. However, in each of the memory cells described above, the cell size is relatively large. The present invention provides a much smaller cell size, thereby allowing a higher density.
As will be seen below, during the programming step, a relatively large voltage is applied to the gate of the transistor 102 (through the bitline Cx, where x=1 to M and M is the total number of columns) of the selected column to break down the gate oxide of the transistor 102. The other memory cells 102 shown in
The use of transistors 102 as data storage elements in the memory array 100 of
Although only a four by three memory array 100 is shown, in practice such memory arrays contain on the order of about one gigabit or more of memory cells when fabricated using, for example, an advanced 0.13 μm CMOS logic process. Even larger memories will be realized as CMOS logic processes improve further. The memory array 100 in practice is organized into bytes and pages and redundant rows (not shown), which may be done in any desired manner. Many suitable memory organizations are well known in the art.
The memory array 100 preferably is laid out in a grid in which the column lines such as C1, C2, C3, and C4 are orthogonal to the row lines such as R1, R2, and R3, as well as the diffused source and drains of the transistors 104. The transistor 104 at the crosspoint of the row line R1 and the column line C1 is formed in a p-well active region 302 in the following manner.
An ultra-thin gate oxide layer 304 is formed by either deposition or thermal oxidation. This is followed by a deposition and doping of a polysilicon layer, which is patterned using a gate mask containing patterns for the column bitlines C1, C2, C3, and C4, which also serve as gates 310 for the transistors 104. Alternatively, the column bitlines may be separate structure that are connected to the gates 310 of the transistors through column bitline segments. The various source and drain regions are formed by conventional process steps (implants, spacers, and n+ source/drain implants), creating the n+ source regions 306 and n+ drain regions 308. Importantly, it should be noted that the polysilicon gate 310 for the transistors 104 should not overlap with the n+ source/drain regions. Thus, a lightly doped drain structure is not employed. As will be seen below, by not having the polysilicon gate 310 overlap or proximal to the n+ source/drain regions, during programming, the polysilicon gate will not short directly to the n+ source/drain regions.
Further, contacts (also referred to as row wordline segments) to n+ source regions 306 are formed to allow connection with the row lines Ry. The row lines Ry are formed from a metal deposition that is subsequently etched. Further, an interlayer dielectric (not shown) is deposited over the polysilicon layer. Thus, the contact vias connecting the metal row lines Ry to the n+ source regions 306 are formed within the interlayer dielectric.
The operation of the memory array 100 is now explained with reference to the illustrative voltages shown in
It can be appreciated that the precise magnitude of voltages applied is dependent upon the thickness of the gate oxide and other factors. Thus, for example, for a 0.13 micron CMOS process, the gate oxide is typically thinner, thereby requiring a lower voltage differential between the selected wordline and the selected bitline. In one embodiment, where a 0.13 micron CMOS process is used, the bitline C1, and the unselected word line has a voltage of 4.5 volts and the unselected bitline R1 has a voltage of between 0 and 1.2 volts.
With R1 and C1 being the selected row and column, consider the impact on the memory cell 102 at the crosspoint of a selected row and an unselected column (“SR/UC”), e.g., R1 and C2. As shown on line 405, the voltage on the wordline R1 is 0 volts and the voltage on the unselected bitline C2 is 0 or floating. This causes a relatively low potential difference across the gate oxide 304 of the transistor 104, which is insufficient to break down the gate oxide for the transistor 104 at the crosspoint. The memory cell 102 does not program under these conditions.
With R1 and C1 being the selected row and column, consider the impact on the memory cell 102 at the crosspoint of a selected column and an unselected row (“UR/SC”), e.g. R2 and C1. As shown on line 403, the voltage on the unselected wordline R2 is floating or VPP and the voltage on the bit line C1 is at VPP (8 volts in this example). This causes a relatively low potential difference across the gate oxide 304 of the transistor 104. The memory cell 102 does not program under these conditions.
With R1 and C1 being the selected row and column, consider the impact on the memory cell 102 at the crosspoint of an unselected column and an unselected row (“UR/UC”), e.g. R2 and C2. As shown on line 407, the voltage on the unselected wordline R2 is floating or VPP and the voltage on the unselected bitline C2 is 0 volts or floating. This causes a negative potential difference across the gate 304 and the N+ source/drain of the transistor 104. Since the N+ source/drain is positive and gate is negative, the higher voltage on the source/drain will not pass under the gate, so the memory cell 102 does not program under these conditions. Further, the voltage on the unselected wordline could be biased to an intermediate voltage, such as 2V to 6V to prevent the cell from being programmed. However, the programmed cell will cause a leakage current from the selected bitline to the unselected wordline. If the unselected bit line is floating, the leakage current will charge it up, which causes the voltage to raise up in the bitline. By biasing the unselected wordlines Rx to VPP, we can prevent this leakage and thus the charge time of the selected bitline through programmed cells can be reduced.
After a memory cell 102 has been programmed by breaking down the gate oxide 304, the physical characteristics of the cell 102 is changed. Turning to
Although difficult to view clearly in
The programmed memory cell of
The memory array 100 is read in the following manner. A read select voltage VRD (for example 1.8 volts) is placed on the selected column bitline (“SC”) and a read select voltage of 0 volts is placed on the selected row wordline (“SR”). Note that these voltages are for a typical 0.18 micron CMOS process. Lower voltages would be typically used for smaller more advanced CMOS processes. For example, for a 0.13 micron CMOS process, the read select voltage on the selected column bitline may be approximately 1.2 volts.
Assume that R1 and C1 are the selected row and column (“SC/SR”) and that the memory cell 102 at that crosspoint is programmed. As shown on line 409, 1.8 volts (a read select voltage) is applied via bitline C1 to the gate of the transistor 104 and 0 volts is applied to the source via the wordline R1. This causes a current to flow from the bitline C1, through the gate oxide of the transistor 104, and out through the wordline R1, which is ground to zero. By detecting the current on the bitline, it can be determined whether the memory cell 102 is programmed. If the memory cell 102 is not programmed, no current will flow, which indicates that the memory cell is not programmed.
With R1 and C1 being the selected row and column for the read operation, consider the impact on the memory cell 102 at the crosspoint of a selected column and an unselected row (“UR/SC”), e.g. R2 and C1. As shown on line 411, 1.8 volts is on the selected bitline C1 and the source via the unselected wordline R2 is held to floating or VRD. There is no voltage potential across the transistor and no current flow, which indicates that the memory cell is not programmed. By biasing the unselected wordline R2 to VRD, the charge time of the selected bitline through programmed cells can be reduced. This is because if the unselected wordline is floating, it will take some time to charge it up to by the selected bit through the programmed cell.
With R1 and C1 being the selected row and column for the read operation, consider the impact on the memory cell 102 at the crosspoint of an unselected column and a selected row (“SR/UC”), e.g. R1 and C2. As shown on line 413, 0 volts is on the unselected bitline C2 and 0 volts is applied to the source via the selected wordline R1. There is no voltage potential across the transistor and no current flow, which indicates that the memory cell is not programmed.
With R1 and C1 being the selected row and column for the read operation, consider the impact on the memory cell 102 at the crosspoint of an unselected column and an unselected row (“UR/UC”), e.g. R2 and C2. As shown on line 415, 0 volts is on the unselected bitline C2 and the source via the unselected wordline R2 is held to floating or VRD. Even for the cell that was previously programmed, and the programmed cell acts like a reversed biased diode, so there is no current going from the unselected wordline (1.8V) to the unselected bitline (0V), which indicates that the memory cell is not programmed.
Thus, as seen above, during the read cycle, no current is drawn by memory cells at crosspoints having either an unselected row or an unselected column. Note that the unselected wordlines may be left floating. This embodiment will tend to reduce leakage current through the wordlines, as well as allowing the use of smaller word line drivers, thereby saving integrated circuit space.
Moreover, in an alternative embodiment, in order to increase the n+ source/drain junction breakdown voltage and reduce junction leakage in the case of an unselected wordline charged to VPP either from the selected word line through prior programmed cells or through a word line driver, a high energy, low dose n+ implant can be used. The implant may be a standard n+ electrostatic discharge protection implant from a conventional CMOS process or other existing implant steps, thus staying within standard CMOS logic process. Still, in other embodiments, a special implant step may be added to optimize the implanting.
An alternative embodiment of the present invention is shown in
For clarity purposes, it should be noted that the buried N+ layer forming the row wordlines R1 and R2 of
The formation of the buried n+ layers 1301 will require additional masking and implantation steps. In one embodiment, or arsenic may be used as the dopent instead of phosphorous in order to limit the diffusion layer thickness in the deep submicron process. The buried n+ layer 1301 can be formed using high energy ion implantation either before or after the formation of the thin gate oxide layer and/or the polysilicon deposition. Alternatively, the buried n+ layer 1301 may be deposited using an epitaxial deposition technique. Further, in order to be CMOS logic process compatible, the lightly doped P-type implant is the same as the logic NMOS threshold voltage Vt implant.
Compared to the embodiment shown in
Finally,
Various studies of oxide breakdown, which were performed in contexts different than the memory cells 102 shown in the array 100, indicate suitable voltage levels for breaking down ultra-thin gate oxides and establishing that the breakdown is controllable. When an ultra-thin gate oxide is exposed to voltage-induced stress, breakdown in the gate oxide occurs. Although the actual mechanisms leading to the intrinsic breakdown of gate oxide are not well understood, the breakdown process is a progressive process passing through a soft breakdown (“SBD”) stage followed by a hard breakdown (“HBD”) stage. One cause of breakdown is believed to be oxide defect sites. These may act alone to cause breakdown, or may trap charges and thereby cause high local fields and currents and a positive feedback condition that leads to thermal runaway. Improved fabrication processes resulting in fewer oxide defects are reducing the occurrence of this type of breakdown. Another cause of breakdown is believed to be electron and hole trapping at various sites even in defect-free oxide, which also leads to thermal runaway.
Rasras et al. performed a carrier separation experiment which demonstrated that, under positive gate bias, impact ionization of the electrons in the substrate is the dominant source of the substrate hole current. Mahmoud Rasras, Ingrid De Wolf, Guido Groeseneken, Robin Degraeve, Herman e. Maes, Substrate Hole Current Origin after Oxide Breakdown, IEDM 00-537, 2000. A constant voltage stress experiment was performed on ultra-thin oxide in an arrangement in which channel inversion was involved, and established that both SBD and HBD may be used for storing data, and that a desired degree of SBD or HBD may be obtained by controlling the time over which the gate oxide storage element is stressed.
Sune et al. studied post SBD conduction in ultra-thin silicon dioxide films. Jordi Sune, Enrique Miranda, Post Soft Breakdown conduction in SiO2 Gate Oxides, IEDM 00-533, 2000. Various stages in the current-voltage (“I-V”) characteristics of an ultra-thin gate oxide as degradation proceeds are shown in
Wu et al. studied the voltage dependency of voltage acceleration for ultra-thin oxides. E. Y. Wu et al., Voltage-Dependent Voltage-Acceleration of Oxide Breakdown for Ultra-Thin Oxides, IEDM 00-541, 2000.
Miranda et al. measured the I-V characteristics of nMOSFET devices having an oxide thickness of 3 nm and an area of 6.4×10−5 cm2 after the detection of successive breakdown events. Miranda et al., “Analytic Modeling of Leakage Current Through Multiple Breakdown Paths in SiO2 Films”, IEEE 39th Annual International Reliability Physics Symposium, Orlando, Fla., 2001, pp 367–379.
In the embodiments described above, typically the n-type lightly doped drain (NLDD) implant is blocked to not have the gate overlap with the source/drain N+ diffusions (see
In the structures shown in
Thus, in accordance with the present invention, the gate oxide that is proximal to the floating N+ diffusion region is made to be more susceptible to breakdown than the gate oxide that is proximal to the wordline N+ diffusion region. While this can be done in a myriad of ways, two separate approaches are described herein: (1) making the gate oxide near the floating N+ diffusion regions thinner than the gate oxide near the wordline N+ diffusion region (various methods for implementing with two specific embodiments shown below); or (2) damaging the gate oxide near the floating N+ diffusion region with an implant so as to make the gate oxide more susceptible to breakdown. It can be appreciated that the present invention is primarily directed to having a lower breakdown voltage at the floating N+ diffusion region and that any manufacturing or structural implementation now possible or developed in the future for achieving that aim is within the scope of this invention.
In one embodiment, as seen in
Memory cells using this differential gate oxide MOS device have the following advantages:
1. Cell programming by oxide breakdown always occurs preferentially on the floating source side of the gate.
2. This provides a robust reverse diode between the drain (wordline contact) and the polysilicon gate (bitline) of a programmed cell.
3. The reverse diode punchthrough voltage is thereby greatly improved compared with the uniform gate oxide cell, where the gate oxide breakdown could occur near the drain side (resulting in low punch through voltage of the reverse diode).
4. The programming voltage will be reduced (down to 3.5–5V) since the source side gate oxide thickness is much thinner than the standard gate oxide, which normally requires 6 to 6.5V to program.
Alternative 1: Using nitrogen (N2) implant (or other implant species which can reduce the silicon oxidation rate) on one side of the gate to create differential gate oxide thickness. However, the differential gate oxide created by this method is not self-aligned.
As seen in
Next, turning to
Turning to
Finally, turning to
In an alternative method (Alternative 2), an isotropic etch is used on the drain side followed by oxidation. The differential gate oxide created by this method is self-aligned. Specifically, as seen in
Next, as seen in
The above two methods describe making the thickness of the gate oxide different based upon location relative to the source and drain of the transistor. This is done in order to have a lower breakdown voltage for the gate oxide nearer the floating N+ diffusion region. Another method for accomplishing the same task is to damage the gate oxide nearer the floating N+ diffusion region by, for example, implantation of heavy ions.
Specifically, another method is to implant heavy ions, such as As+, to selectively damage the gate oxide to make its oxide breakdown voltage lower than the normal gate oxide. This is also a self-aligned process. For example, as seen in
To summarize the above embodiments, the buried N+ layer embodiment of
In yet another alternative embodiment shown in
As seen in
After the N+ wordline 2801 is formed in the substrate, and the gate oxidation process is complete, the polysilicon layer is formed over the gate oxide. The polysilicon layer is then conventionally etched to form the bitlines 2803. Then, collateral (i.e. unnecessary) P+ S/D regions 2805 are also formed, such as for example, by using a self-aligned implant step. As part of this implantation, the polysilicon layer that forms the gate of the transistors is implanted and becomes P+ type polysilicon. This implementation is compatible with standard CMOS logic process and saves additional masking and implantation steps. However, this implementation will also result in unneeded collateral P+ source/drain doping.
It should be noted that the N+ wordline 2801 should be deeper than the P+ S/D region 2805 to ensure a good conductance to the N+ wordline 2801. However, the N+ wordline should not be too deep in order to prevent low punch-through leakage between the adjacent bitlines through the shallow trench isolation (STI).
In order to minimize the effect of the collateral P+ source/drain doping blocking the buried N+ connection, the spacing between adjacent polysilicon lines can be made as small as possible. By doing this, the lightly doped drain (LDD) spacer will approach each other to effectively minimize or even eliminate the P+ source/drain implant. An example of this can be seen in
The operation of the memory array is shown in the table of
In one embodiment, VPP=|Vwp−Vbp|=7˜10V for Gox=32 A (0.18 um process) or 5˜7V for 20 A (0.13 um process). In one embodiment, Vwp=0˜VPP and Vwp can be conveniently set as Vdd. Vbp can be in the range of −VPP˜+VPP. Vrd is the read voltage, which is between Vcc to Vdd. Vcc=1.8V for 0.18 um process and 1.2V for 0.13 um process. Vdd is the I/O voltage (3.3V or 2.5V).
An alternative embodiment is shown in
The concepts above can be easily extended to a N+ poly/gate oxide/P+ wordline embodiment. In such an embodiment, the doping types are simply reversed, with the array formed in an N-well. Specifically, as seen in
After the P+ wordline 3103 is formed in the substrate, and the gate oxidation process is complete, the polysilicon layer is formed over the gate oxide. The polysilicon layer is then conventionally etched to form the bitlines 3105. Then, N+ S/D regions 3107 are formed, such as for example, by using a self-aligned implant step. As part of this implantation, the polysilicon layer that forms the gate of the transistors is also implanted and becomes N+ type polysilicon.
It should be noted that the P+ wordline 3103 should be deeper than the N+ S/D region 3107 to ensure a good conductance to the P+ wordline 3103. However, the P+ wordline should not be too deep in order to prevent low punch-through leakage between the adjacent bitlines through the shallow trench isolation (STI).
Further, in this embodiment, source and drain regions need not be formed. This embodiment would likely be implemented where a CMOS process that has selective doping (such as during polysilicon deposition, or implant doping after the polysilicon deposition) for N+ polysilicon prior to the polysilicon etch. In that case, the concern of the N+ S/D doping blocking the P+ wordline is no longer an issue.
The cell array operation is shown in the table of
The embodiments shown in
(1) A gate oxide anti-fuse memory cell array consisting of cells with size 4F^2 (where F is the minimum feature size) can be constructed using standard CMOS process with only one additional buried N+ or P+ mask and implants.
(2) The cells are constructed by structures of P+poly/Gox/N+ wordline/P-well or N+poly/Gox/P+ wordline/N-well/P-substrate. The buried diffusion wordlines can be isolated by standard STI or by other isolation methods.
(3) The bitlines and wordlines are constructed by counterdoped polysilicon lines and buried diffusion lines.
(4) The cell array can be selectively programmed by applying the VPP across the cell gate oxide in both polarities. After the programming Gox breakdown, a P-N junction diode is formed between the polysilicon and the buried diffusion lines.
(5) The programmed cell can be selectively read out by apply positive voltage to the P terminal of the PN junction diode so as to forward bias the diode to form a sense current.
(6) The programming voltage VPP can be distributed between the bitlines and wordlines, so the programming voltage on either bitlines or wordlines can be reduced.
Note that the transistors used in the memory cells described herein in most cases are normal low voltage logic transistors having, for example, an ultra-thin gate oxide thickness on the order of 50 Å for a 0.25 μm process, or on the order of 20 Å for a 0.13 μm process. The voltage across such an ultra-thin gate oxide can be temporarily during programming much higher than VCC, which typically is 2.5 volts for an integrated circuit fabricated with a 0.25 μm process, and 1.2 volts for an integrated circuit fabricated with a 0.13 μm process. Such ultra-thin oxides typically can stand up to as much as 4 or 5 volts without significant degradation on the transistor performance.
The description of the invention and its applications as set forth herein is illustrative and is not intended to limit the scope of the invention. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments are known to those of ordinary skill in the art. For example, the various voltages set forth in the various examples are only illustrative, since one has some discretion as to the precise voltage to select within a range of voltages, and the voltages are in any event dependent on the device characteristics. The terms row wordline and column bitline have been used to describe types of lines commonly used in memories, but some memories may have alternatives thereto. Further, the various doping types may be reversed, such that an n-channel transistor described above may be replaced with a p-channel transistor. In such a situation, the p-channel transistor would be formed in a large n-well and a buried p+ layer may be used. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/765,802 filed Jan. 26, 2004 now U.S. Pat. No. 6,940,751 entitled “HIGH DENSITY SEMICONDUCTOR MEMORY CELL AND MEMORY ARRAY USING A SINGLE TRANSISTOR AND HAVING VARIABLE GATE OXIDE BREAKDOWN”, which is a continuation-in-part of U.S. patent application Ser. No. 10/677,613 filed Oct. 1, 2003 now U.S. Pat. No. 6,898,116 entitled “HIGH DENSITY SEMICONDUCTOR MEMORY CELL AND MEMORY ARRAY USING A SINGLE TRANSISTOR HAVING A BURIED N+ CONNECTION”, which is a continuation-in-part of U.S. patent application Ser. No. 10/448,505 filed May 30, 2003 now U.S. Pat. No. 6,856,540 entitled “HIGH DENSITY SEMICONDUCTOR MEMORY CELL AND MEMORY ARRAY USING A SINGLE TRANSISTOR” and U.S. patent application Ser. No. 10/133,704 filed Apr. 26, 2002 now U.S. Pat. No. 6,777,757 entitled “HIGH DENSITY SEMICONDUCTOR MEMORY CELL AND MEMORY ARRAY USING A SINGLE TRANSISTOR”, to which priority from all is hereby claimed under 35 USC § 120.
Number | Name | Date | Kind |
---|---|---|---|
3634929 | Yoshida et al. | Jan 1972 | A |
4322822 | McPherson | Mar 1982 | A |
4488262 | Basire et al. | Dec 1984 | A |
4490900 | Chiu | Jan 1985 | A |
4502208 | McPherson | Mar 1985 | A |
4507757 | McElroy | Mar 1985 | A |
4543594 | Mohsen et al. | Sep 1985 | A |
4546273 | Osman | Oct 1985 | A |
4599705 | Holmberg et al. | Jul 1986 | A |
4613886 | Chwang | Sep 1986 | A |
4677742 | Johnson | Jul 1987 | A |
4720818 | Takeguchi | Jan 1988 | A |
4758745 | El Gamal et al. | Jul 1988 | A |
4758986 | Kuo | Jul 1988 | A |
4794562 | Kato et al. | Dec 1988 | A |
4823181 | Mohsen et al. | Apr 1989 | A |
4870302 | Freeman | Sep 1989 | A |
4876220 | Mohsen et al. | Oct 1989 | A |
4899205 | Hamdy et al. | Feb 1990 | A |
4943538 | Mohsen et al. | Jul 1990 | A |
4962342 | Mead et al. | Oct 1990 | A |
5138410 | Takebuchi | Aug 1992 | A |
5150179 | Gill | Sep 1992 | A |
5303185 | Hazani | Apr 1994 | A |
5304871 | Dharmarajan et al. | Apr 1994 | A |
5323342 | Wada et al. | Jun 1994 | A |
5412244 | Hamdy et al. | May 1995 | A |
5455525 | Ho et al. | Oct 1995 | A |
5477499 | Van Buskirk et al. | Dec 1995 | A |
5496756 | Sharma et al. | Mar 1996 | A |
5576568 | Kowshik | Nov 1996 | A |
5578848 | Kwong et al. | Nov 1996 | A |
5586270 | Rotier et al. | Dec 1996 | A |
5587603 | Kowshik | Dec 1996 | A |
5600265 | El Gamal et al. | Feb 1997 | A |
5650336 | Eriguchi et al. | Jul 1997 | A |
5675541 | Leterrier | Oct 1997 | A |
5675547 | Koga | Oct 1997 | A |
5745417 | Kobayashi et al. | Apr 1998 | A |
5781032 | Bertolet et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5825200 | Kolze | Oct 1998 | A |
5825201 | Kolze | Oct 1998 | A |
5880512 | Gordon et al. | Mar 1999 | A |
5889411 | Chaudhary | Mar 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5909049 | McCollum | Jun 1999 | A |
5929482 | Kawakami | Jul 1999 | A |
5986931 | Caywood | Nov 1999 | A |
5986939 | Yamada | Nov 1999 | A |
6016268 | Worley | Jan 2000 | A |
6031761 | Ghilardelli et al. | Feb 2000 | A |
6034893 | Mehta | Mar 2000 | A |
6040968 | Duvvury et al. | Mar 2000 | A |
6047243 | Bang | Apr 2000 | A |
6064225 | Andrews et al. | May 2000 | A |
6064595 | Logie et al. | May 2000 | A |
6077719 | Koike | Jun 2000 | A |
6084428 | Kolze et al. | Jul 2000 | A |
6097077 | Gordon et al. | Aug 2000 | A |
6153463 | Wei et al. | Nov 2000 | A |
6157568 | Schmidt | Dec 2000 | A |
6166954 | Chern | Dec 2000 | A |
6198652 | Kawakubo | Mar 2001 | B1 |
6214666 | Mehta | Apr 2001 | B1 |
6215140 | Reisinger et al. | Apr 2001 | B1 |
6218274 | Komatsu | Apr 2001 | B1 |
6232631 | Schmidt et al. | May 2001 | B1 |
6236229 | Or-Bach | May 2001 | B1 |
6249809 | Bro | Jun 2001 | B1 |
6282123 | Mehta | Aug 2001 | B1 |
6294809 | Logie | Sep 2001 | B1 |
6297103 | Ahn et al. | Oct 2001 | B1 |
6304666 | Warren et al. | Oct 2001 | B1 |
6337250 | Furuhata | Jan 2002 | B2 |
6351428 | Forbes | Feb 2002 | B2 |
6421293 | Candelier et al. | Jul 2002 | B1 |
6431456 | Nishizawa et al. | Aug 2002 | B2 |
6445619 | Mihnea et al. | Sep 2002 | B1 |
6456535 | Forbes et al. | Sep 2002 | B2 |
6459634 | Sher | Oct 2002 | B1 |
6476636 | Lien et al. | Nov 2002 | B1 |
6515509 | Baxter | Feb 2003 | B1 |
6556481 | Hsu et al. | Apr 2003 | B1 |
6602729 | Lin | Aug 2003 | B2 |
6633182 | Pileggi et al. | Oct 2003 | B2 |
6650143 | Peng | Nov 2003 | B1 |
6674670 | Jeung | Jan 2004 | B2 |
6678646 | McConnell et al. | Jan 2004 | B1 |
6700151 | Peng | Mar 2004 | B2 |
6753590 | Fifield et al. | Jun 2004 | B2 |
6754881 | Kuhlmann et al. | Jun 2004 | B2 |
6777757 | Peng et al. | Aug 2004 | B2 |
6856540 | Peng et al. | Feb 2005 | B2 |
6862205 | Agata et al. | Mar 2005 | B2 |
6898116 | Peng | May 2005 | B2 |
6903984 | Tang et al. | Jun 2005 | B1 |
20010003374 | Bohmer et al. | Jun 2001 | A1 |
20030218920 | Harari | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
0 295 935 | Dec 1988 | EP |
61292295 | Dec 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20040223363 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10765802 | Jan 2004 | US |
Child | 10798753 | US | |
Parent | 10677613 | Oct 2003 | US |
Child | 10765802 | US | |
Parent | 10448505 | May 2003 | US |
Child | 10677613 | US | |
Parent | 10133704 | Apr 2002 | US |
Child | 10448505 | US |