This invention relates to high intensity arc discharge lamps and more particularly to high intensity arc discharge metal halide lamps having high efficacy.
Due to the ever-increasing need for energy conserving lighting systems that are used for interior and exterior lighting, lamps with increasing lamp efficacy are being developed for general lighting applications. Thus, for instance, arc discharge metal halide lamps are being more and more widely used for interior and exterior lighting. Such lamps are well known and include a light transmissive arc discharge chamber sealed about an enclosed a pair of spaced apart electrodes, and typically further contain suitable active materials such as an inert starting gas and one or more ionizable metals or metal halides in specified molar ratios, or both. They can be relatively low power lamps operated in standard alternating current light sockets at the usual 120 Volts rms potential with a ballast circuit, either magnetic or electronic, to provide a starting voltage and current limiting during subsequent operation.
These lamps typically have a ceramic material arc discharge chamber that usually contains quantities of metal halides such as CeI3 and NaI, (or PrI3 and NaI) and T1I, as well as mercury to provide an adequate voltage drop or loading between the electrodes, and also an inert ionization starting gas. Such lamps can have an efficacy as high as 145 LPW at 250 W with a Color Rendering Index (CRI) higher than 60, and with a Correlated Color Temperature (CCT) between 3000K and 6000K at 250 W.
Of course, to further save electric energy in lighting by using more efficient lamps, high intensity arc discharge metal halide lamps with even higher lamp efficacies are needed. The efficacy of a lamp is affected by the shape of the arc discharge chamber therein. If the ratio between the distance separating the electrodes in the arc discharge chamber to the diameter of the chamber is too small, such as being less than four, the relative abundance of Na between the arc and the chamber walls leads to a lot of absorption of generated light radiation by such Na due to its absorption lines near the peak values of visible light. Also, if this ratio is less than five, the lamp operated with its length positioned horizontally results in the arc established in the arc discharge chamber substantially bending upward due the buoyancy of its vaporized chamber constituents. This upward bending of the arc brings it nearer to the wall of the arc discharge chamber near the peak of the bend, and so raises the temperature of the chamber wall in that vicinity. Such temperature increases can accelerate reactions of some of these vaporized constituents in the chamber and the elevated temperature portions of the chamber wall to thereby ultimately result in the destruction of the wall integrity, and so reduce the operating life of the lamp when operated horizontally.
On the other hand, if the ratio between the distance separating the electrodes in the chamber to the diameter of the chamber is too great, such as being greater than five, initiating an arc discharge in the arc discharge chamber is difficult because of the relatively large breakdown distance between the electrodes. In addition, such lamps perform relatively poorly when the long dimension thereof is oriented vertically during operation in exhibiting severe colors segregation as the different buoyancies of the lamp content constituents cause them to segregate themselves from one another to a considerable degree along the arc length, and reduced efficacy.
Increased pressures in the arc discharge chamber of either the mercury or the starting gas constituents therein, although having some helpful effects on such color segregation and on efficiency, also has detrimental aspects. Increased starting gas pressure is usually insufficient by itself to achieve these goals, and increased mercury pressure leads to needing to generate high operating voltages between the chamber electrodes and also to substantial discharge arc bending bringing the arc closer to the wall of the chamber to thereby shorten the operational duration of the lamp. Thus, there is a desire for arc discharge metal halide lamps having higher efficacies and better color performance.
The present invention provides an arc discharge metal halide lamp for use in selected lighting fixtures comprising a discharge chamber having visible light permeable walls of a selected shape bounding a discharge region through which walls a pair of electrodes are supported in the discharge region and which are spaced apart from one another by a distance Le. These walls about the discharge region have an average interior diameter over Le, that is equal to D so they are related to have Le/D≦5 and even 4<Le/D≦5. Ionizable materials are provided in this chamber discharge region comprising a noble gas, a cerium halide or sodium halide or both, and mercury in an amount sufficiently small so as to result in a voltage drop between the electrodes during lamp operation that is less than 110 V rms at a selected value of electrical power dissipation in the lamp.
Referring to
Some remaining portion of access wire 15 in the interior of envelope 11 is bent at an obtuse angle away from the initial direction thereof parallel to the envelope length axis. Access wire 15 with this first bend therein past flare 16 directing it away from the envelope length axis, is bent again to have the next portion thereof extend substantially parallel that axis, and further along bent again at a right angle to have the succeeding portion thereof extend substantially perpendicular to, and more or less cross that axis near the other end of envelope 11 opposite that end thereof fitted into base 12. The succeeding portion of wire 15 parallel to the envelope length axis supports a conventional getter, 19, to capture gaseous impurities. Three additional right angle bends are provided further along in wire 15 to thereby place a short remaining end portion of that wire below and parallel to the portion thereof originally described as crossing the envelope length axis which short end portion is finally anchored at this far end of envelope 11 from base 12 in glass dimple 16′.
A ceramic arc discharge chamber, 20, configured about a contained region as a shell structure having polycrystalline alumina walls that are translucent to visible light, is shown in one of various possible geometric configurations in
In this structure for arc discharge chamber 20, as better seen in the cross section view thereof in
Chamber electrode interconnection wires, 26a and 26b, of niobium each extend out of a corresponding one of tubes 21a and 21b to reach and be attached by welding to, respectively, access wire 14 at its end portion crossing the envelope length axis and to access wire 15 at its portion first described as crossing the envelope length axis. This arrangement results in chamber 20 being positioned and supported between these portions of access wires 14 and 15 so that its long dimension axis approximately coincides with the envelope length axis, and further allows electrical power to be provided through access wires 14 and 15 to chamber 20.
In addition, a tungsten electrode coil, 32a, is integrated and mounted to the tip portion of the other end of the first main electrode shaft 31a by welding, so that an electrode, 33a, is configured by main electrode shaft 31a and electrode coil 32a. Electrode 33a is formed of tungsten for good thermionic emission of electrons while withstanding relatively well the chemical attack of the metal halide plasma. Lead-through wire 29a, spaced from tube 21a by a molybdenum coil, 34a, serves to dispose electrode 33a at a predetermined position in the region contained in the main volume of arc discharge chamber 20. A typical diameter of interconnection wire 26a is 0.9 mm, and a typical diameter of electrode shaft 31a is 0.5 mm.
Similarly, in
As indicated above, when arc discharge metal halide lamp 10 has its length oriented in a vertical position during operation, all or nearly all of the chamber contents constituents in arc discharge chamber 20 condense at the then lower end of that chamber and in the then lower capillary tube which could be either of tubes 21a and 21b. In some situations, some of the chamber content constituents are also present in the then upper capillary tube also. If the discharge vessel is relatively long and narrow, such as Le/D>5, the differing buoyancies of the chamber content constituents cause them to reach different heights in discharge chamber 20, and they do not circulate smoothly from the lower end of the chamber to the higher end thereof.
In such a situation, vaporized chamber content constituents in the lower end of chamber 20 and in the lower one of capillary tubes 21a and 21b cannot all reach upper end of the chamber, and so the actual vapor pressures of some of the contents constituents in the chamber over the distance between the higher and lower ends of the chamber become lower than the vapor pressures thereof toward the lower end of the chamber. As a result, color segregation in arc discharge chamber 20 occurs in accordance with the segregation of the contents constituents over the chamber length, and this also cause much lower efficacy than the efficacy occurring during operation of the lamp in a horizontal position. Furthermore, if arc discharge chamber 20 is formed to be more oblate in having the ratio Le/D≦4, absorption by sodium of radiation from the discharge arc is increased which causes lower lamp efficacy during lamp operation of the lamp in both the horizontal and vertical positions. As a result, lamp 10 is configured to have arc discharge chamber 20 such the electrode separation distance therein and the primary chamber wall diameter are chosen so as to maintain a ratio relationship satisfying 4<Le/D≦5 to thereby achieve high efficacy during operation of lamp 10 in either a vertical position or in a horizontal position.
As also noted above, lamps with an arc discharge chamber having electrode separation to chamber diameter ratios such that Le/D≦5 and which are operated with the length of the lamp extending horizontally, have the discharge arc established in the chamber observed to be bending upward due to the buoyancy of the chamber contents constituents. Such arc bending, as indicated above, increases the temperature of the arc discharge chamber wall portions approached by the bend peak portions of the bending arc to thereby accelerate reactions between at least some of those constituents and those wall portions to thereby significantly affect the structural integrity of the wall.
This temperature rise of some chamber wall portions is particularly severe when the chamber electrode separation distance and the primary chamber wall diameter are chosen, as was indicated above, to satisfy 4<Le/D≦5 in attempting to achieve the best lamp efficacies. This severity follows because, in chamber configurations above this range, i.e. in which electrode separations to chamber diameters ratios are such that Le/D>5, the discharge arc position along the chamber central length axis tends to be more stable insofar as departures of the arc position from that axis so as to result in any remaining arc bending thus being of moderate magnitude. Below the other end of this range in which Le/D≦4, the distance from the discharge arc to the wall of the arc discharge chamber is always enough to avoid excessive temperature rises at the nearest wall portions of that chamber even in those situations in which arc bending is severe.
In this regard, such bending of the discharge arc in the arc discharge chamber is seen in then graph of
The presence of mercury and the starting gas in the arc discharge chamber primarily provides the voltage drop or loading between the chamber electrodes during lamp operation. Thus, choosing to use smaller amounts of mercury or the starting gas (Xe in the examples above) results in reducing the voltage drop between the chamber electrodes during lamp operation. Suitable choices for such amounts can therefore be found from the relationships between lamp efficacy (in lumens per Watt), the lamp Color Rendering Index (CRI) and the operating voltage of the lamp between its chamber electrodes in view of such lamps for outdoor lighting being desired to have efficacies of 120 to 140 LPW and CRI values from 50 to 70 to provide advantages over currently used high pressure sodium lamps.
As shown in the graphs of
As described above, keeping the lamp operating voltage relatively low through correlates with less bending of the discharge arc and so relatively safer operation of the arc discharge chamber because of the resulting reduced temperatures at the top of the discharge chamber wall during lamp horizontal operation. Such temperatures otherwise sometimes lead to cracking of the ceramic chamber wall or some other catastrophic failure due to chemical reactions therewith at very high temperatures. Confirming data is shown in the graphs of
Some examples illustrating the foregoing lamp configurations follow:
The lamps of this example each have an arc discharge chamber with a ratio of chamber electrode separation distance to the primary chamber wall diameter relationship of Le/D=4.8 in which the discharge arc has a 24 mm length, the chamber also having 33.2 W/cm2 wall loading when the lamp is operated to dissipate 150 W of electrical power. The contents of each corresponding lamp arc discharge chamber comprise 15 mg total of metal halides NaI and CeI3 in the molar ratio of CeI3:NaI=1:10.5, and further include 2.2 mg of Hg and Xe sufficient to provide a chamber pressure thereof equal to 200 Torr at an ambient temperature of 25° C.
Table 1 displays the resulting photometry performance of these lamps for one being operated with its length axis positioned horizontally and the other with its length axis positioned vertically. The column providing values in lumens indicates the lamp luminous flux, the column providing values in lumens per Watt, or LPW, indicates the lamp efficacy, the column providing values in Kelvins indicates the lamp Correlated Color Temperature (CCT), the next column providing dimensionless numerical entries indicates the lamp Color Rendering Index (CRI), and the last column providing values in Duv indicating lamp radiation color deviation from black body radiation emitted by a black body at the same temperature.
The lamps of this example each have an arc discharge chamber with a ratio of chamber electrode separation distance to the primary chamber wall diameter relationship of Le/D=4.1 in which the discharge arc has a 28.9 mm length, the chamber also having 33.6 W/cm2 wall loading when the lamp is operated to dissipate 250 W of electrical power. The contents of each corresponding lamp arc discharge chamber comprise 15 mg total of metal halides NaI and CeI3 in the molar ratio of CeI3:NaI=1:10.5, and further include 3.5 mg of Hg and Xe sufficient to provide a chamber pressure thereof equal to 200 Torr at an ambient temperature of 25° C.
Table 2 displays the resulting photometry performance of these lamps for one being operated with its length axis positioned horizontally and the other with its length axis positioned vertically.
The lamps of this example each have an arc discharge chamber with a ratio of chamber electrode separation distance to the primary chamber wall diameter relationship of Le/D=4.1 in which the discharge arc has a 28.9 mm length, the chamber also having 33.6 W/cm2 wall loading when the lamp is operated to dissipate 250 W of electrical power. The contents of each corresponding lamp arc discharge chamber comprise 15.4 mg total of metal halides NaI, CeI3 and TlI in the molar ratios of CeI3:NaI:TlI=1:19.7:0.56, and further include 5.1 mg of Hg in #5 and 3.2 mg of Hg in #6 and Xe in both sufficient to provide a chamber pressure thereof equal to 200 Torr at an ambient temperature of 25° C.
Table 3 displays the resulting photometry performance of these lamps for both being operated with the length axis thereof positioned horizontally. Two further columns of data are included, the column providing values in Volts indicating the voltage dropped across the lamp during operation, and the column in degrees Centigrade indicating the maximum temperature reached on the arc discharge chamber wall during operation. The data for the lamps in this example form the basis for the graph of
The lamp of this example has an arc discharge chamber with a ratio of chamber electrode separation distance to the primary chamber wall diameter relationship of Le/D=4.8 in which the discharge arc has a 25.0 mm length, the chamber also having 33.5 W/cm2 wall loading when the lamp is operated to dissipate 150 W of electrical power. The contents of the lamp arc discharge chamber comprise 15 mg total of metal halides NaI and CeI3 in the molar ratio of CeI3:NaI=1:19.7, and further include 1.7 mg of Hg and Xe sufficient to provide a chamber pressure thereof equal to 200 Torr at an ambient temperature of 25° C.
Table 4 displays the resulting photometry performance of this lamp being operated with the length axis thereof positioned horizontally.
The lamp of this example has an arc discharge chamber with a ratio of chamber electrode separation distance to the primary chamber wall diameter relationship of Le/D=4.8 in which the discharge arc has a 24.0 mm length, the chamber also having 31.3 W/cm2 wall loading when the lamp is operated to dissipate 150 W of electrical power. The contents of the lamp arc discharge chamber comprise 15 mg total of metal halides NaI and CeI3 in the molar ratio of CeI3:NaI=1:10.5, and further include 1.7 mg of Hg and Xe sufficient to provide a chamber pressure thereof equal to 200 Torr at an ambient temperature of 25° C.
Table 4 displays the resulting photometry performance of this lamp being operated with the length axis thereof positioned horizontally.
Thus, the lamps of the present invention with a relatively small amounts of the chamber 20 contents constituent mercury and the constituent xenon, as the buffer gas, have a relatively small voltage dropped there across during operation, that is, Vlamp≦110V rms, while dissipating nominal electrical power. The result is moderate bending of the discharge arc during operation of lamp 10 with its length axis positioned horizontally, and consequently, lamp 10 will have both a long operational life and high reliability.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3786297 | Zollweg et al. | Jan 1974 | A |
5153482 | Keijser et al. | Oct 1992 | A |
5973453 | Van Vliet et al. | Oct 1999 | A |
6130511 | Rothwell et al. | Oct 2000 | A |
6300729 | Keijser et al. | Oct 2001 | B1 |
Number | Date | Country |
---|---|---|
56091368 | Jul 1981 | JP |
Number | Date | Country | |
---|---|---|---|
20050052139 A1 | Mar 2005 | US |