The present invention relates to oil separation devices configured to separate oil from crankcase gas generated during the operation of an internal combustion engine.
An internal combustion engine includes a combustion chamber and a crankcase. The combustion chamber is where a fuel air mixture is burned to cause movement of a set of reciprocating pistons. The crankcase houses the crankshaft driven by the pistons. During operation, it is normal for the engine to generate “crankcase gas.” Crankcase gas is the combusted gas that leaks from the combustion chamber past the piston-cylinder gap into the crankcase. Crankcase gas includes oil. If this oil is not removed, it will be consumed by the engine when the crankcase gas is returned to the combustion chamber of the engine via the intake manifold.
It is known to use a Positive Crankcase Ventilation (“PCV”) system for filtering crankcase gas so as to remove oil particles and prevent those particles from the entering the engine and being consumed in the combustion process. Such PCV systems may also include an oil separating device configured to remove oil from crankcase gas. The crankcase gas flows into localized high velocity areas of the oil separator and impact at high velocity into a punched-hole impact plate (“PIP”) to promote separation of oil from the gas. The oil is re-introduced back to a sump via a drain device which is located generally at the bottom of the oil separator to allow for gravity to assist the drainage of oil. The sump generally holds excess oil in the system.
Accordingly, it is an objective of the present invention to increase the amount of oil separated from gas as compared to previous designs.
An oil separating device for separating oil from crankcase gas generated in an internal combustion engine is provided. The oil separating device includes an inlet and an outlet. The inlet is upstream and in fluid communication with the separation chamber. The inlet is configured is to receive the crankcase gas. The outlet is configured to allow crankcase gas to be sent to an intake manifold of the engine. The oil separating device further includes a separation chamber having a first end. The first end is elevated relative to a second end so as to form a passage extending along an axis. The first end has a larger diameter than a diameter of the second end. The first and second ends are disposed on respective first and second planes. The first and second planes are generally parallel to each other and orthogonal to the axis. The outlet is downstream from the second plane and displaced from the axis and second plane.
In operation, crankcase gas enters the separation chamber though the inlet, micron size particles of oil are separated from the crankcase gas within the separation chamber, and cling to the inner wall of the separation chamber and fall towards the second end. Thus, within the walls of the separation chamber, separated oil and crankcase gas flows in the same direction. Further, crankcase gas helps urge the oil out of the second end as both are traveling in the same direction. The separated oil drops via gravity and flows to a sump, and the crankcase gas is drawn into the outlet away from the direction of the falling oil.
The oil separating device includes a housing. The housing includes a pair of side walls, a top wall, and a bottom wall so as to define a chamber. The bottom wall has an oil drain.
The oil separating device includes a first oil separation portion and a second oil separation portion disposed within the chamber. The first oil separation portion is downstream the inlet and includes a separation chamber. The separation chamber is configured to remove micron size particles of oil from crankcase gas. The separation chamber is disposed between the inlet and the second separation portion. The separation chamber is in fluid communication with both the second oil separation portion and an inlet. The gas outlet is disposed downstream from the second oil separation portion.
The oil separating device further includes a dividing wall disposed within the second separation portion. The dividing wall extends between the separation chamber and one of the pair of side walls of the housing and is disposed between the top wall and the bottom wall of the housing, partitioning the second separation portion so as to define a first chamber and a second chamber. The dividing wall includes one or more through holes. A blocking wall is disposed between the dividing wall and the top wall of the housing.
In operation, crankcase gas enters the oil separation device through the inlet and is directed into the separation chamber where micron size particles of oil are separated from the crankcase gas. The separated oil falls onto the bottom wall and crankcase gas is drawn generally laterally from the falling oil into the second oil separation chamber. The separated oil is further directed to the oil drain. The crankcase gas is then drawn through the through holes in the dividing wall and directed into a blocking wall, where oil is further separated from the crankcase gas. The crankcase gas flows out the gas outlet, and the separated oil flows back to the oil drain.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
With reference now to
The oil separating device 10 includes an inlet 12, an outlet 14, and a separation chamber 200a, 200b. The inlet 12 may be fluidly coupled to a PCV system (not shown) and is configured to receive crankcase gas. The outlet 14 is downstream of the separation chamber 200a, 200b and is configured to direct crankcase gas back into the internal combustion engine's intake manifold. The oil separating device 10 further includes at least one oil drain 16 for collecting oil separated from the crankcase gas.
The separation chamber 200a, 200b is configured to separate micron size particles of oil from crankcase gas. For illustrative purposes, the separation chamber shown is configured to separate oil particles having a diameter larger than about one micron. The separation chamber 200a, 200b shown in the Figures is further configured to accommodate crankcase gas being drawn there through at a volumetric rate of up to about 60 l/min.
The separation chamber 200a, 200b is disposed downstream the inlet 12, and upstream both the outlet 14 and oil drain 16. The inlet 12 includes an inlet port 12a and an inlet passage 12b having a labyrinth structure 12c configured to block and redirect crankcase gas. The crankcase impacts the labyrinth structure 12c so as to separate particles of oil having a diameter larger than about 3 microns.
The separation chamber 200a has an inner wall 202 with open ends so as to define a first end 204a and a second end 206a. The first end 204a, when mounted to an internal combustion engine of an automotive vehicle, is elevated relative to the second end 206a. The first end 204a is larger in diameter than the second end 206a, D1 and D2 respectively. The first end 204a is in fluid communication with the second end 206a so as to form a passage 208a from which crankcase gas flows. Oil from crankcase gas coming into contact with the inner wall 202 of the separation chamber 200a may collect onto the inner wall 202 and pool so as to form collections of oil having a volume larger than the micron size particle. It should also be appreciated that gravity urges oil on the inner wall 202 to fall downwardly along the inner wall 202.
The first and second ends 204a 206a are disposed on planes which are relatively parallel to each other and generally orthogonal to the axial orientation of the passage 208a. Specifically, the first end 204a is disposed on a first plane “P1” and the second end 206a is disposed on a second plane “P2” as the first and second planes “P1” and “P2” are disposed on a plane X and Y as defined by the coordinates labeled “X”, “Y”, and “Z.” As is shown, both the first and second planes are generally parallel to a bottom wall 205 of the oil separating device 10.
The second end 206a of the separation chamber 200a is elevated relative to the bottom wall 205. Thus, as micron size particles of oil are separated from the crankcase gas, the micron size particles of oil collect on the inner wall 202 surface of the separation chamber 200a and fall via gravity assist onto the bottom wall 28. Further, crankcase gas flows along the same direction as gravity, and thus as oil is collected on the inner wall 202, the directional flow of the crankcase gas within the passage 208a facilitates the collection of oil at the second end 206a, wherein the oil eventually falls onto the bottom wall 28 and crankcase gas are drawn away from the falling oil, and into the outlet port 14a and the outlet passage 14b of the outlet 14.
The second end 206a of the separation chamber 200a may be offset from the oil drain 16. More specifically, the oil drain 16 is shown laterally displaced from the axial length of the passage 208a. Thus, a portion of the bottom wall 28 facilitates the movement of crankcase gas laterally with respect to the axis of the passage 208a as the crankcase gas flows out of the second end 206a of the separation chamber 200a.
For illustrative purposes, the Figures show an outlet port 14a located above the second end 206a, 206b of the separation chamber. The outlet port 14a is displaced laterally from the axial length of the passage 208a, 208b defined between the first end 204a 204b and the second end 206a, 206b of the separation chamber 200a, 200b. Thus, as crankcase gas is drawn out the outlet port 14a, the crankcase gas flows laterally as the crankcase gas exits the second end 206a, 206b. The crankcase gas is drawn along a path separate from the path of the falling oil as gravity generally urges the separated micron size particles of oil downwardly in generally the same direction as the axis of the passage 208a, 208b. It should be appreciated that the location of the outlet port 14a with respect to the second end 206a, 206b of the separation chamber 200a, 200b is illustrative, and should not be interpreted as limiting the scope of the appended claims, and that any location of an outlet port 14a which facilitates the flow of crankcase gas away from the path of dropping micron size particles of oil is within the scope of the appended claims.
With reference now to
Each of the frustoconically shaped inner walls 202 have a first end 204a and a second end 206a, wherein each of the first end 204a of the inner wall 202a is larger in diameter than the corresponding second end 206a. Though each of the frustoconically shaped inner walls 202 is dimensioned generally the same as each other, it should be appreciated that the dimensions of the frustoconically shaped inner walls 202 are designed to achieve a specific engine performance and that the size and dimension of one of the frustoconically shaped inner walls 202 may be different than the other to achieve a desired engine performance.
To increase efficiency of oil separation, the separation chamber 200a may include an axial protrusion 18. The axial protrusion 18 extends from a top portion 20 of the oil separation device 10 along the axis of the passage 208a. As shown in
The axial protrusion 18 directs incoming crankcase gas flow along the inner wall 202 of the separation chamber 200a. Directing the flow of crankcase gas along the inner wall 202 increases the cyclone effect within the separation chamber 200a. Crankcase gas flowing along the inner wall 202 travels at a higher velocity as they swirl from the first end 204a to the second end 206a of the separation chamber 200a. This higher velocity subjects the suspended oil to higher level of centrifugal force, inducing more oil particles to collect on the inner wall 202. To further the efficiency for the device, the axial protrusion 18 may extend past the first plane P1, thereby directing all the incoming crankcase gas along the inner wall 202.
With reference now to
A portion of the inlet passage 12b is generally perpendicular to the axis of the passage 208a, so as to feed crankcase gas into the first end of the separation chamber at a direction generally perpendicular to the axis so as to increase the cyclone effect by providing an incoming momentum of crankcase gas that is generally co-planar with the direction of swirl of the cyclone effect. This alignment transfers the motion from the incoming crankcase gas into the swirling motion, thereby increasing the rotational speed of the cyclone effect to separate more oil from the crankcase gas as described above.
Additionally, crankcase gas entering the separation chamber 200a from the inlet passage 12b can be directed such that the crankcase gas contacts the inner wall 202a at an angle so as to create a flow along the inner wall 202 of the separation chamber 200a conducive to generating a cyclone affect. Providing the flow of gas along the inner wall 202 increases the efficiency of the separation chamber 200a similar to the use of the axial protrusion 18 discussed above. It is understood and appreciated that an inlet structure that provides a perpendicular crankcase gas flow and/or an angular crankcase gas flow, and the axial protrusion 18 can be used alone or in various combinations to induce a cyclone effect, depending on the specific performance characteristic desired of the oil separating device 10.
With reference again to
The inlet 12 is disposed upstream the first oil separation portion 32. The outlet 14 is disposed downstream the second separation portion 34. The separation chamber 200a, 200b is disposed within the first separation portion 32. The separation chambers 200a, 200b are elevated and spaced apart from the bottom wall 28 of the housing, of the second end 206a, 206b of the separation chamber 200 is axially displaced from the oil drain 16.
The bottom portion includes lower portions of the first and second oil separation portions 32, 34 which are open with respect to each other, but is generally defined by the bottom wall 28 and side walls 24 of the housing. The top of the bottom portion of the first oil separation portion 32 is defined by the second end 206a, 206b of the separation chamber 200a, 200b, whereas the top of the bottom portion of the second oil separation portion 34 is defined by a dividing wall 36.
The dividing wall 36 extends between a side wall 25 of the separation chamber 200a, 200b and one of the pair of side walls 24 of the housing 22. The dividing wall 36 is disposed between the top wall 26 and the bottom wall 28 of the housing 22 so as to define a first chamber 38 and a second chamber 40. The first chamber 38 is disposed beneath the second chamber 40 and is open on one side with the bottom portion of the first oil separation portion 32. The dividing wall 36 is generally parallel to the bottom wall 28.
The dividing wall 36 includes one or more through-holes 42. The through-holes allow for crankcase gas in the first chamber 38 to flow to the second chamber 40. It is appreciated that the amount and size of the through-holes 42 is dependent on the intended performance criteria of the oil separating device 10. Decreasing the size or number of the though-holes 42 decreases the available area for the crankcase gas to flow though. Less area for flow of the crankcase gas will cause an increase in the velocity at which the gas flows through the through holes 42.
The dividing wall 36 may further include a drain tube 46. The drain tube 46 is generally a cylindrical member. A top portion of the drain tube 46 is generally chamfered so as to facilitate the drainage of oil dripping onto a top surface of the dividing wall 36. The drain tube 46 may be disposed between respective through-holes 42. Though
The oil separating device 10 may further include a blocking wall 44. The blocking wall 44 is disposed above the dividing wall 36, and below the top wall 26. Preferably, the blocking wall 44 is disposed directly above the through-holes 42 of the dividing wall. The blocking wall 44 has a generally planar underside 44b, and the side edges of the blocking wall 44 are spaced apart from side walls 24 and the side wall 25 of the separation chamber 200a, 200b. The blocking wall 44 is disposed beneath the outlet port 14b.
It should be appreciated that the distance between the through-holes 42 and the blocking wall 44 will determine the velocity at which crankcase gas impacts the blocking wall 44. The preferred embodiment is designed to handle a volumetric flow rate up to 60 l/min, and includes through-holes 42 having a diameter of about 3 mm. The blocking wall 44 is spaced about 5 mm above the through holes 42.
Collision between the crankcase gas and the blocking wall 44 helps to further separate any oil remaining in the gas. This oil collects on the blocking wall 44, where gravity causes the oil to flow to the drain 16 to be removed from the oil separating device 10. It should be appreciated that gravity may cause the oil to flow through the drain tube 46 or through the through-holes 42. The oil drops onto the bottom wall 28 and finds its way to the oil drain 16.
The separation chamber 200a, 200b is configured to separate micron size particles of oil from crankcase gas. As stated above, the separation chamber 200a, 200b is disposed in the first oil separation portion 32 of the housing 22. The separation chamber 200a, 200b is spaced apart from and above the bottom wall 28 of the housing 22. A side wall 25 of the separation chamber 200a, 200b forms a side wall of the second oil separation portion 34.
With reference again to
Each of the frustoconically shaped inner walls 202 have a first end 204a and a second end 206a, wherein each of the first end 204a of the inner wall 202a is larger in diameter than the corresponding second end 206a. Though each of the frustoconically-shaped inner walls 202 are dimensioned generally the same as each other, it should be appreciated that the dimensions of the frustoconical shaped inner walls 202 are designed to achieve a specific engine performance and that the size and dimension of one of the frustoconically-shaped inner walls 202 may be different than the other to achieve a desire engine performance.
The separation chamber 200a may include an axial protrusion 18. The axial protrusion 18 extends from a top portion 20 of the oil separation device 10 along the axis of the passage 208a. The axial protrusion 18 directs incoming crankcase gas flow along the inner wall 202 of the separation chamber 200a. Directing the flow of crankcase gas along the inner wall 202 increases the cyclone effect within the separation chamber 200a. Crankcase gas flowing along the inner wall 202 travels at a higher velocity as they swirl from the first end 204a to the second end 206a the separation chamber 200a. This higher velocity subjects the suspended oil to a higher level of centrifugal force, inducing more oil particles to collect on the inner wall 202. To further the efficiency for the device, the axial protrusion 18 may extend past the first plane P1, thereby directing all the incoming crankcase gas along the inner wall 202.
With reference now to
The crankcase gas and separated oil exit the narrow wave shaped passage(s) 208b at the second end 206b. Upon exiting the narrow wave shaped passage 208b, gravity causes separated oil to fall down to the bottom wall 28 of the housing and flow out the drain 16. The crankcase gas exiting the narrow wave shaped passage(s) 208b are separated from the falling oil by being drawn laterally to the first chamber 38 of the second oil separation portion 34, where they will eventually flow out the outlet as discussed above.
With reference now to
With reference now to
With reference now to
The second end 206a, 206b of the separation chamber 200a, 200b may be offset from oil drain 16. The oil drain 16 is shown laterally displaced from the axial length of the passage 208a, 208b. Thus, a portion of the bottom wall 28 facilitates the movement of crankcase gas laterally with respect to the axis of the passage 208a, 208b as the crankcase gas flows out of the second end 206a, 206b of the separation chamber 200a, 200b.
Crankcase gas exiting the second end 206a, 206b of the separation chamber 200a, 200b flow laterally from the first oil separation portion 32 to the first chamber 38 of the second oil separation portion 34. The lateral flow of the crankcase gas draws the crankcase gas away from the oil separated by the separation chamber 200a, 200b as the oil falls from the separation chamber 200a, 200b to the bottom wall 28 of the housing 22. The separated oil flows along the bottom wall 28 and out through the oil drain 16.
With reference now to
Crankcase gas is further drawn through the through-holes 42 and directed into the undersurface of the blocking wall 44, wherein oil is further separated from the crankcase gas. The oil drops onto the dividing wall 36 and drops onto the bottom wall via the through-holes 42 and the drain tube 46. Crankcase gas is drawn into the second chamber 40 and out the outlet port 14a.
With reference again to
As discussed above, the various chambers, channels, and other structures forming the oil separating device 10 are formed by overlaying shells 1, 2, 3, and 4. For example, with reference to
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise as specifically described while within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4378289 | Hunter | Mar 1983 | A |
6210575 | Chase et al. | Apr 2001 | B1 |
6279556 | Busen et al. | Aug 2001 | B1 |
6412478 | Ruehlow et al. | Jul 2002 | B1 |
6626163 | Busen et al. | Sep 2003 | B1 |
6739456 | Svoronos et al. | May 2004 | B2 |
6832603 | Knollmayr | Dec 2004 | B2 |
7007682 | Takahashi et al. | Mar 2006 | B2 |
7383829 | Shieh | Jun 2008 | B2 |
7406961 | Hilpert et al. | Aug 2008 | B2 |
20030230291 | Ko | Dec 2003 | A1 |
20060090737 | Pietschner | May 2006 | A1 |
20070151215 | Knittel | Jul 2007 | A1 |
20080099001 | Vichinsky | May 2008 | A1 |
20090229585 | Tanaka et al. | Sep 2009 | A1 |
20110146639 | Martinengo et al. | Jun 2011 | A1 |
20110315131 | Lohr | Dec 2011 | A1 |
20150114368 | Kurita et al. | Apr 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150167515 A1 | Jun 2015 | US |