Various types of vehicles have been developed to sweep or vacuum debris from pavements, roadways, and streets. In general, these vehicles can be classified as mechanical broom sweepers, air sweepers, and combinational variants thereof.
Mechanical broom sweepers use a motor-driven broom or brooms to mechanically sweep paper, plastic, litter, trash, vegetation (leaves, twigs, grass clippings, etc.), asphalt and concrete debris, and larger sand or gravel particles toward a conveyor for transport into a debris collection hopper.
Regenerative air sweepers use a motor-driven fan to create a high-velocity recirculating air flow to aspirate dust, particulates, and other debris from the pavement or street surface. Optionally, a gutter broom is often mounted adjacent one or both lateral sides of the intake hood to brush debris into the path of the intake hood, and a powered brush roll can be mounted with or contained within the intake hood to assist in dislodging particulates from the swept surface for entrainment into the air flow.
In a typical regenerative system, a motor-driven fan develops a high-volume, high-velocity recirculating air-flow through a pickup or intake hood that is mounted closely adjacent the pavement surface. As the intake hood is moved along the pavement surface, debris is aspirated into the air flow and carried by ducting into and through a debris-collecting hopper or container. As the debris-laden air enters the debris-collecting hopper, the velocity of the air flow is reduced sufficiently so that many particulates drop out the air stream with various types of baffles, screens, grates, panels, etc. causing additional particulates to drop out of the air flow and collect in the hopper.
In a variant of the regenerative air flow systems, a portion of the pressurized air from the fan is vented or bled-off to the ambient atmosphere to create a situation in which make-up air enters into the intake hood about the periphery thereof to minimize or at least reduce the probability of fugitive dust and particulates escaping from beneath the intake hood into the surrounding atmosphere.
In the air flow systems of the type described, the separation of the air-entrained particles takes place within the hopper. In general, the velocity of the air flow is reduced in the hopper and the air is constrained to flow though screens and around baffles to cause a percentage of the entrained particles to “drop-out” of the air flow and to be collected in the debris hopper. It is the nature of these types of systems that only a percentage of the entrained material is removed from the air flow with some material remaining in the air flow as it is cycled and re-cycled through the fan and through the intake hood. The particles that remain entrained in the circulating air-flow are typically the extra-fine, low-density particles.
An effort has been made to increase the removal efficiency of extra-fine particles by filtration. For example, U.S. Pat. No. 6,161,250 to Young et al. discloses an arrangement by which a portion of the debris-entrained air flow is directed to a debris separation system that includes cyclone-type separators and cartridge filters to remove particles. While filtrations systems are known, the air flow rates and the particle loads often cause the particulates to accumulate on the filter media to effectively clog the filters with the particles being filtered. While a filter or filter array can be reverse flushed or purged with compressed air, overall efficiency of such systems is not considered optimal.
An improved regenerative flow sweeping system for road and pavement sweeper vehicles includes first and second filter compartments as part of the recirculation loop in which the debris-entrained air is conducted from the intake hood into an initial separation compartment where some of the debris is removed from the air flow with the remaining air flow is directed alternatively through one or the other of the first and second filter compartments for a selected period of time during which time finer particulates accumulate on the surface of the filter media. Thereafter, the air flow is redirected to the other filter compartment while pneumatic valves in the first filter compartment are selectively actuated to direct one or more pulses of compressed air into the filter media of the first filter compartment to remove accumulated particles on the filter media and effectively “reverse flush” or purge the filter media. The first and second filter compartments are alternately place in and out of the air flow to filter particulates therefrom with the filter compartment that is taken out of the air flow subjected to the “reverse flush” to remove accumulated particulates therefrom.
a is a top view of a flow-control manifold, in partial cross-section, showing an internal adjustable vane;
b are detailed views of a flow control panels in a first and a second position;
c is a plan view of the filter plate showing the top of each filter;
d is an example process flow diagram for implementing filter purging;
a and 21b are example control diagrams for effecting control of the structures shown in
An exemplary pavement/street sweeper with a dust/particulate separation system in accordance with the preferred embodiment is shown in left and right side views in
A debris separation/filtration system 200 is mounted rearwardly of the power unit 28 and functions as part of the air-flow recirculation loop to receive and accumulate debris that is aspirated or swept from the roadway surface. The debris separation/filtration system 200 includes a rear door 202 that is opened and closed by a hydraulic cylinder 204 as well as various inspection and/or access doors, generally indicated at 206.
As shown in
The intake hood 100 extends laterally substantially across the side-to-side width of the truck chassis from a driver side to the non-driver side of the vehicle. The intake hood 100 is typically suspended below the truck chassis 24 by links, bars, or chains (not specifically shown), or a combination thereof, so that the intake hood 100 can ride on or above the surface to be sweep as the sweeper vehicle 20 moves forward.
As shown in
a is a plan view, in partial cross-section, of the flow-control manifold 110 of
As shown on the left in the representative view of the intake hood 100 in
As shown in
Filtered air enters the intake hood 100 via the filtered-air conduit 104 and is forced through a narrow-width slot 126 to create an “air blade” or “air knife” that is effective to energized particulates on the pavement or roadway surface (including particulates within cracks and fissures) and aspirate them into the air flow beneath the intake hood 100 and then through the intake duct 102.
The intake hood 100 shown in
The organization of the sweeper unit 20 is configured so that air flow through the intake hood 100 is from the driver side of the vehicle to the non-driver side of the vehicle, as is conventional in the industry. If desired, the sweeper can be configured so that air flow through the intake hood 100 is from the non-driver side to the driver side as disclosed in U.S. patent application Ser. No. 11/407,293 filed Apr. 20, 2006, the disclosure of which is incorporated herein by reference.
The forward end of the separation compartment 208 is defined by a partition 210 that includes a first baffle set 212 and a second baffle set 214 that constitute the entry openings into a first filter compartment 216 and the second filter compartment 218 (shown in
As shown in
As shown in
In the preferred embodiment, each filter compartment, 216 and 218, is equipped with fifteen cartridge filters 230 with each filter having an overall length of about 36 to 44 inches with a diameter of between 6 and 8 inches with a sufficient number of pleats (i.e, about 60-90 in the case of the preferred embodiment) to provide adequate filter surface area. The filter media is preferably a spun bond polyester. Suitable filters are available from Schwarze Industries, Huntsville Ala. under part number 23068. While pleated media cartridge-type filters are preferred, other type of filter structures/arrangements are equally suitable.
As shown in
As shown in
The forward portion of the filter mounting plate in each filter compartment 216 and 218 includes, in the preferred embodiment, a rectangular through opening through which filtered air from the filtered-air headspace passes into the filtered-air plenum 244. As shown
Air flow control from either the filtered-air headspace 232 into the filtered-air plenum 244 through the opening 252 or from the filtered-air headspace 234 into the filtered-air plenum 244 through the opening 254 is effected with a dual-panel flow diverter valve assembly, generally designed by the reference character 256. As shown in
In operation, a recirculating air flow loop is established with the air flow in the separation compartment 208 and flowing into both the first filter compartment 216 and the second filter compartment 218 through their respective first baffle set 212 and second baffle set 214. When the flow diverter valve 256 is controlled by its pneumatic actuator 264 to substantially block flow through the second filter compartment 218, the air flow will preferentially pass into the first filter compartment 216 and through the filter media of the various cartridge filters 230 with any dust, debris, particulates, etc. in the air flow separated therefrom by the filter media. Some of the separated material will fall to the bottom the filter compartment 216 while some of the material will remain on the filter media; with time, the material that remains on the filter media can accumulate to “face load” or “cake-on” the media. The filtered air that passes through the filter media enters the filtered-air headspace 232 above the filter mounting-plate 226 and passes through the opening 252 into the filtered-air plenum 244 and through the opening 250 therein into the fan 30 where the now-filtered air flows through the filtered-air conduit 104 into the intake hood 100 where the filtered air is directed against the pavement or roadway to remove and entrain dust, debris, particulates, etc. into the air flow for removal through the intake duct 102 and into the separation compartment 208 where the process cycle repeats.
With continued operation, the filter media will accumulate the finer dust, debris, particulates, etc. with the possibility of decreased performance.
After some period of time, the flow diverter valve 256 is controlled by its pneumatic actuator 264 to rotate shaft 258 and open flow through the second filter compartment 218 while substantially blocking flow through the first filter compartment 216, the air flow will now preferentially pass into the first second compartment 218 and through the filter media of the various cartridge filters 230 therein with any dust, debris, particulates, etc. in the air flow with separated therefrom by the filter media.
As can be appreciated, the first filter compartment 216 and the second filter compartment 218 are each alternately placed into or “switched” into the recirculating flow path to effect filtering of the air flow and each alternatively taken out of the flow path, i.e., each filter compartment is alternatively “on-line” or “off-line”.
Switching between the “on-line” filtration mode and the “off-line” purge mode can be accomplished using fix-length timing cycles in which switching is under clock control. For the structural and flow organization described above, alternating 45-second “on-line/off-line” cycles are generally adequate. During the 45-second “off-line” period, the air flow in the “off-line” filter compartment is substantially “stilled” by the blocking of its valve opening by its portion of the flow diverter valve to allow some of the entrained dust/particulates to “drop-out” of the air.
During the time period that a filter compartment is not in the flow path (i.e., it is effectively “off-line”), the purge valves 238 are operated to direct a burst or pulse of compressed air at an appropriate pressure (e.g., about 120 psi) into each cartridge filter 230 in the “off-line” filter compartment to effectively provide a “reverse flush” or “purge” air flow to dislodge or remove any dust, debris, particulates, etc. that has accumulated on the filter media. A filter compartment is taken “off-line” and its cartridge filters 230 is subjected to the “reverse flush” or purge operation at a frequency and duration sufficient to assure continued optimal function of the filter media.
Once the filter compartment is “off-line,” a filter purge sequence is initiated to a “reverse flush” or “purge” air flow to dislodge or remove any dust, debris, particulates, etc. that has accumulated on the filter media. In
d presents an illustrative or example process diagram for controlling the various purge valves 238. As shown and after initial start-up, the variable Fmax is set to 15 representing the fifteen filters (i.e., F01-F15) in the now “off-line” compartment and the variable Fnow is set to 01 (step 1.1). Thereafter and at step 2.1, a DoWhile loop is entered by which the purge valve for the first filter F01 is operated to subject the filter to an air blast having a duration of about 150 milliseconds+/−50 milliseconds with the system then waiting some time period (i.e., 1.5 seconds). The air blast effects a “reverse flush” or purge each filter cartridge 230 to clear or remove fine particulates that can “cake on,” clog, block, or impede air flow through the filter media.
The Fnow variable is incremented by one so that Fnow=02 and the second filter F02 thereafter subject to an air blast. The step 2.1 loop is continued until all filters are subject to one air flush to complete a single cycle. The 100-150 ms air pulse duration and the 1.5 second wait time are representative only; the air pulse duration and the wait time can be longer or shorter depending upon the environment in which the machine is operated. While one full cycle of each filter compartment is preferred and as shown in dotted-line, the steps 1.1 and 2.1 can optionally be repeated as steps 1.2 and 2.2 to provide a second cycle; additional cycles are not excluded. Upon the completion of the purging cycle for the one filter compartment, the flow diverter valve is operated to switch to the other compartment and the process repeated. While the process of
As can be appreciated, this reverse flush or purge program can be modified depending upon actual conditions experienced during use; thus, more than one filter cartridge 230 can be purged at the same time and pulse durations, inter pulse spacings, and the total number of cycles can be changed. For example and a shown in the following table, a 6-row look-up table can be stored in memory with each row specifying two or three filters for which their purge valves are to be operated simultaneously, as follows:
Using the table above, a first group of three filters in the first row would be purged followed by a subsequent group of two filters in the second row with this row-by-row sequence continuing until all filters are purged.
While a fixed-time “program” is preferred, control of the flow diverter valve 256 can be responsive to a sensor arrangement. For example, pressure sensors can be placed in each filter compartment on opposite sides of the filter media to measure the pressure on each side of the filter media and the pressure drop thereacross with the electrical output of each sensor provided to the controller so that the “on-line/off-line” changeover is responsive to the actual pressure differential experienced in each compartment.
The system described above can operate under the supervision of an appropriately programmed controller that can take the form of one or more stored-program controlled (i.e., firmware and/or software) microprocessors or microcomputers (as well as special-purpose processors, including RISC processors), application specific integrated circuits (ASIC), programmable logic arrays (PLA), discrete logic or analog circuits, with related non-volatile and volatile memory, and/or combinations thereof. In the preferred embodiment, a preferred commercially available 12 VDC “mobile” programmable controller is available from IFM Efector, Inc., Exton Pa. under the part designation CR0020 for use with the 12 VDC 8353 series ASCO valves (
While firmware- or software-controlled microprocessors or microcomputers are preferred for the controller, the controller can also take the form a set of motor-driven rotary cams operating cam-driven switches to turn the various purge valves 238 on and off and to control the pneumatic actuator assembly 264 (or an electrical or hydraulic functional equivalent). In some applications, the flow control valve can be directly controlled by mechanical links or Bowden-type cables connected to an operator-controlled manual manipulator in the cabin of the truck.
While the “on-line/off-line” procedure described above is preferred and is contemplated as the primary sweeping mode for the vehicle, there are occasional circumstances in which both filter compartments should be kept on-line for a selected time period. For example, where the vehicle is to sweep heavier-than-usual particulates from the roadway or pavement, the pneumatic actuator 264 can be adjusted so that the panels 260 and 262 are aligned at an angle (i.e., 45°) relative to their respective filtered air openings 252 and 254 so that a higher volume of air can be moved through the filter compartments to the fan 30. Once this both-compartments-on-line mode is completed, the system can return to the above described “on-line/off-line” procedure during the filters in each compartment will be subject to a reverse air flow purge.
The flow diverter valve 256 described above uses one actuator assembly 264 to control the flow through both filter compartments 216 and 218 by rotating and counter-rotating a common shaft 258 connected to the valve plates, 260 and 262. As can be appreciated and as shown in
Independent control of the filtered air valving from each filter compartment allows both filter compartment to be in the flow path, for example, where the vehicle is to sweep heavier-than-usual particulates from the roadway or pavement. Additionally, both valves can be closed to take both filter compartments “off-line” so both filter compartments can be subject to the reverse air purge sequence to remove particulates from the filter media in both filter compartments compartment 216 and 218.
The recirculating air flow and its passage through one or the other of the filter compartments is visualized in schematic view in
Each dust/debris filter compartment 216/218 includes one or more filter elements 230, such as pleated-media cartridge-type filters, and one or more screens or baffles, 212/214, separating the dust/particulate separation compartment 208 from the dust/debris filter compartments 216/218 and through which the air flow passes to separate larger dust/debris/particulates. As the dust/particulates laden air passes through the baffles, 212/214, into the respective filter compartments, 216/218, the larger dust/debris/particulates fall to and collect on the bottom of the compartment 208. A compressed-air purge valve 238 is mounted above each cartridge filter 230 to “reverse flush” or purge each filter cartridge 230 to reverse the effects of face loading on the surface of the filter media, i.e., to clear or remove fine particulates that can “cake on,” clog, block, or impede air flow through the filter media.
In the system of
The flow director valve 256-1 is controllable to connect the headspace plenum 232 above the filter compartment 216 to the inlet of the fan 30 or connect the head space plenum 234 above the filter compartment 218 to the inlet of the fan 30. In this embodiment, the flow director valve 256-1 includes movable plate, flap, or flow control panel 256-2 that is movable between a first position in which the filtered air from the head space plenum 232 is connected to inlet of the fan 30 and a second position in which the head space plenum 234 is connected to inlet of the fan 30. In general, it is not necessary that the flow control panel completely block or shut-off all the air flow through the off-line compartment; some small amount of air flow leakage can be tolerated and is expected, it is only necessary that the flow control panel cause most of or a major portion of the air flow to be diverted to the on-line filter compartment.
In the configuration shown in
During the filtration process, some of the dust and particulates will fall downwardly to the bottom of the filter compartment 216 while some of the finer particulates will accumulate on or “cake on” the filter media. The rate at which the finer particulates will accumulate on the filter media depends the inherent tendency of fine particulates to adhere to the filter media as well as the humidity and the “wetness” (i.e, moisture content) of the particulates.
With continued operation, the efficiency of the filter media will diminish. At some in time in the process and as explained below, the flow control panel 256-2 of the flow director valve 256-1 is operated to change or switch the air flow to the other filter compartment 218 (as shown in
The purge valves 238 are positioned to direct a compressed air blast downwardly though the plenum headspace 232 into respective filters 230. As shown in
While the purge valves 238 of
The timing of the “on-line/off-line” periods as well as the timing and duration of the reverse air pulses can be performed in accordance with the program described above with respect to the structures of
The system as described above includes compartments that having substantially equal working volumes; as can be appreciated, the filter compartments 232/234, need not be equal in working volume and one of the compartments can be substantially smaller than the other, as shown, for example, in
The systems of
In addition to the IFM controller disclosed above, the controller can take the form of one or more firmware- or software-controlled microprocessors or microcomputers (as well as special-purpose processors, including RISC processors), application specific integrated circuits (ASIC), programmable logic arrays (PLA), discrete logic or analog circuits, with associated volatile or non-volatile memory and/or combinations thereof.
b is similar to
While firmware- or software-controlled microprocessors or microcomputers are preferred for the controller, the controller can also take the form a set of motor-driven rotary cams operating cam-driven switches to turn the various purge valves 238 on and off and, in the case of
If desired, the “on-line/off-line” periods can be controlled using pressure sensors S1/S2 to sense the pressure differential across the filter media and provide inputs to the controller to control the on-line/off-line operation of the filter compartments.
As will be apparent to those skilled in the art, various changes and modifications may be made to the illustrated embodiment of the present invention without departing from the spirit and scope of the invention as determined in the appended claims and their legal equivalent.
This application claims the benefit of U.S. Provisional Patent Application 60/985,625 filed Nov. 5, 2007 in common assignment herewith.
Number | Date | Country | |
---|---|---|---|
60985625 | Nov 2007 | US |