This invention relates to filters for sampling or cleaning chemical compounds from the air and, more particularly, to a glass based filter for collecting volatile, semi-volatile and particulate phase chemical compounds from the air.
Air filtration devices are used primarily to clean air by removing particles and undesirable chemical odors. Secondarily, they are essential to air sampling technology for the determination of contaminants by collecting trace levels of chemical compounds. Air filter systems exist that are capable of collecting trace chemicals. Likewise, other air filter systems operate without a large pressure drop. However, at a practical level, a filter not only needs to collect chemical contaminants from the air, but it must do so without impeding the ventilation system in which it is installed. Therefore, a high capacity, low pressure drop filter capable of collecting volatile, semi-volatile and to a degree, particulate chemical compounds is needed.
Existing filter technology uses different substrates coated with, or created from activated carbon to collect chemical constituents from the air. These substrates include glass, paper and other fibers. It is well known in the art to coat these substrates with a coating including activated carbon. The activated carbon functions to “trap” or adsorb chemicals present in the air stream.
There is, therefore, provided in the practice of the invention a novel high-efficiency air filtration device and method of making the same for the collection of trace chemical constituents at a high linear face velocity and with a correspondingly low pressure drop. The high-efficiency filter includes a random glass substrate with a carbon coating. The high-efficiency filter can be used in sampling situations to collect trace chemicals, or as a filter or pre-filter to remove chemical compounds from the air.
In a preferred embodiment, a high-efficiency filter includes a random-strand, progressive denier, fiber-glass substrate and a carbon coating applied to the substrate. The carbon coating is applied in a manner to completely coat the glass substrate.
In another embodiment, the high-efficiency filter is made by thermally treating a random glass substrate to remove impurities, such as glue. The thermally cleaned substrate is then coated with a primer containing polydimethylsiloxane. Once the primer coat has dried, the carbon coating is applied.
Accordingly, it is an object of the present invention to provide an improved high-efficiency filter for use in sampling technologies to detect trace level chemical compounds.
It is a further object of the present invention to provide an improved method for making a high-efficiency filter for use in sampling technologies.
These and other inventive features, advantages, and objects will appear from the following Detailed Description when considered in connection with the accompanying drawing in which similar reference characters denote similar elements.
Referring to the drawings in greater detail,
In a preferred embodiment, the randomly oriented glass substrate, as shown in
In a preferred embodiment, the glass substrate bundle is heated at approximately 280° C. to thermally clean the filter, removing any glue or other impurities. Alternatively, the thermal cleaning may occur at a temperature in the range of between approximately 100°-350° C. The glass substrate bundles are placed in alignment with the flow path 26 as shown in
After the glass substrate bundle is treated to remove the glue, it is ready to be primed. The substrate bundle is spray coated with a pre-weighed amount of polydimethylsiloxane (“PDMS”) dissolved in methylene chloride (“MECL”), preferably at a ratio of approximately 0.27 g PDMS per gram of MECL. Before the primer coat is applied to the substrate bundle, a small amount of a platinum catalyst is added to the primer (approximately 15 ul, and shaken vigorously). The primer should be applied using a thin-layer chromatography sprayer equipped with a 0.8 mm orifice. In one embodiment, while priming, the glass fibers of the filter are maintained at a temperature above the ambient dew point. The primer should be applied to the substrate bundle while it is heated at approximately 50° C., although heating between 20° C. and 40° C. will be adequate. Once the substrate bundle is coated with the primer, it is allowed to rest at room temperature for approximately one hour. The resting period should be at least 60 minutes and up to several hours.
After the primed substrate has rested at room temperature, the carbon coating is applied. The carbon coating consists of a carbonaceous adsorbent and polydimethylsiloxane, with a platinum catalyst. In a preferred embodiment, the carbonaceous adsorbent is a product available commercially as Carboxen™ 1006 from Supelco, Bellefonte, Pa. The carbon coating should be applied using a thin-layer chromatography sprayer equipped with a 0.8 mm orifice, although any similarly small spraying device should suffice. The carbon coating consists of approximately 2-5 microns carbon particles placed in PMDS. Initially apply the carbon coating at a 90 angle to the substrate. Then multiple passes of the coating at a 45° angle should be accomplished to promote the maximum amount of penetration to the interior core of the substrate.
The carbon coating may be reapplied until the desired thickness of coating is achieved. In a preferred embodiment, the carbon coating is approximately 5-75 microns. In a more preferred embodiment, the carbon coating is approximately 25-50 microns.
Once the carbon coating is applied, the filter is conditioned or cured at a temperature in the range of between about 100° C. to about 350° C. in a special second vessel. The second vessel is similar to the first vessel in that it uses a coiled sparge tube at the bottom to ensure that the entire air space within the vessel is adequately purged of any volatile compounds during the conditioning stage. The sparging gas must be inert and of ultra-high purity. In a preferred embodiment, the filter is conditioned at a temperature in the range of approximately 280° C. to approximately 300° C. In a preferred embodiment, the filter is conditioned for approximately 120 minutes, following a 60 minute hold at 40° C. The conditioning period may last from 120 minutes to multiple hours, depending upon scheduling. After conditioning, the filter is cooled in this same second vessel.
Once the coating on the substrate bundle has been conditioned, the substrate bundle may be placed in a filter canister. The substrate bundle is removed, noting the alignment of the bundle to identify inlet and outlet, and placed in a filter canister in alignment with the flow path of the filter canister.
In another embodiment, the filter is used as a pre-filter in combination with a HEPA filter. While HEPA filters are efficient collectors for particulate forms of a variety of toxic industrial chemicals and certain biological airborne particles as well, they are unsuitable to collect gas phase industrial chemicals. The filter of the present invention is designed to efficiently collect industrial chemical vapors. When the two filter types are combined, they effectively collect both particulate (chemical and certain biological) and gas phase chemical contaminants. The pre-filter is made according to the present invention and positioned in a housing that can be removably attached to a commercially available HEPA filter.
The high efficiency filter according to the present invention provides a high volume, low pressure drop device for collecting or removing chemical compounds from the environment.
Thus, an improved high-efficiency filter is disclosed which utilizes a novel randomly oriented glass substrate with a carbon coating for detecting or collecting chemical compounds. This invention allows for superior filtering or sampling with a high volume capacity and a low pressure drop across the filter substrate. While preferred embodiments and particular applications of this invention have been shown and described, it is apparent to those skilled in the art that many other modifications and applications of this invention are possible without departing from the inventive concepts herein.
Number | Name | Date | Kind |
---|---|---|---|
2369481 | Modigliani | Feb 1945 | A |
2577214 | Slayter | Dec 1951 | A |
2736676 | Frickert, Jr. | Feb 1956 | A |
3341394 | Kinney | Sep 1967 | A |
3826067 | Wilder et al. | Jul 1974 | A |
4048068 | Hirs | Sep 1977 | A |
4378983 | Martin | Apr 1983 | A |
4839331 | Maroldo et al. | Jun 1989 | A |
5279742 | Markell et al. | Jan 1994 | A |
5599445 | Betz et al. | Feb 1997 | A |
5630937 | Betz et al. | May 1997 | A |
5691206 | Pawliszyn | Nov 1997 | A |
5993501 | Cusick et al. | Nov 1999 | A |
6099607 | Haslebacher | Aug 2000 | A |
6514326 | Hara et al. | Feb 2003 | B1 |
6736133 | Bachinski et al. | May 2004 | B2 |
6756125 | Al-Lamee | Jun 2004 | B2 |
6966939 | Rammig et al. | Nov 2005 | B2 |
6984262 | King et al. | Jan 2006 | B2 |
20050136758 | Newton et al. | Jun 2005 | A1 |
20060000196 | Beier et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
20207663 | Oct 2002 | DE |
Number | Date | Country | |
---|---|---|---|
20060042208 A1 | Mar 2006 | US |